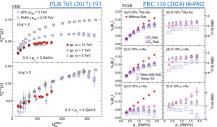

Collective flow measurements in OO and NeNe collisions with CMS

Jiateng Peng (彭佳腾), Fudan University
For the CMS collaboration
the 16th Workshop on QCD Phase Transition and Relativistic
Heavy-Ion Physics, Guilin

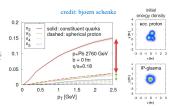
Flow in heavy ion collisions



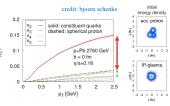
The azimuthal (ϕ) distributions of particles:

 $\frac{2\pi \, dN}{N \, d\phi} = 1 + 2 \sum_{n=0}^{\infty} v_n \cos(n(\phi - \Psi_n))$

Flow coefficient: $v_n = \langle \cos[n(\phi_i - \Psi_n)] \rangle$ v_i : elliptic flow v_i : triangular flow



Flow-like signals have been observed in pp, pA and light ion-heavy ion systems.


Is OGP produced in small systems?

Challenge from the proton structure

QGP in small systems

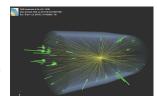
Challenge from the proton structure

PRL 135 (2025) 012302

ab initio models of 16O and 20Ne

Advantages:

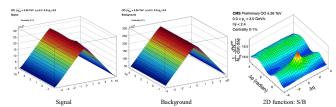
The nucleon-level geometry dominates over the subnucleon structure
 The comparable size leads to similar hydrodynamic evolution


Collision systems:

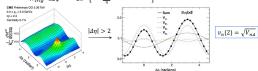
Collision systems: ¹⁶O-¹⁶O (7nb-¹) & ²⁰Ne-²⁰Ne (0.8nb-¹)

Collected in July 2025 at CMS, $\sqrt{s_{NN}} = 5.36$ TeV

Standard CMS HIN event and track selection


- · Minimum bias events, only one reconstructed vertex
- $0.3 < p_T < 3.0 \text{ GeV/c}, |\eta| < 2.4$

event display of OO collisions


$\{\hat{2}\}$ Flow measurement method

• Two-particle correlation: $\frac{1}{N_{trig}}\frac{\mathrm{d}^2N^{patr}}{\mathrm{d}\Delta\eta\mathrm{d}\Delta\phi} = B(0,0)\times\frac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)}$

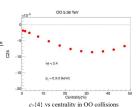
• 1D projection: $\frac{1}{N_{trig}} \frac{\mathrm{d}N^{pair}}{\mathrm{d}\Delta\phi} = \frac{N_{assoc}}{2\pi} \left[1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta\phi) \right]$

In line with previous CMS analyses, the peripheral subtraction method is employed to suppress non-flow

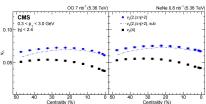
$$V_{n\Delta}^{sub} = V_{n\Delta} - V_{n\Delta} \text{(peripheral)} \times \frac{N_{assoc} \text{(peripheral)}}{N_{assoc}} \times \frac{Y_{jet}}{Y_{jet} \text{(peripheral)}}$$
In this analysis, events from 70-80% centrality are selected as peripheral events

· Four-particle correlation (Q-cumulant):

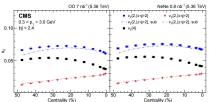
PRC.96.034906

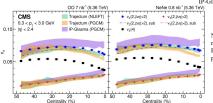

$$\overrightarrow{Q}_n \equiv \sum_i e^{in\overline{\phi}_i} = |Q_n|e^{in\overrightarrow{\psi}_n}$$

$$\langle 2 \rangle = \frac{\overrightarrow{Q}_n^2 - M}{M(M-1)},$$

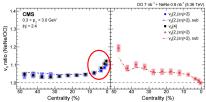

$$\langle 4 \rangle = \frac{\vec{Q}_n^4 - 2\text{Re}[\vec{Q}_{2n}\vec{Q}_n^{*2}] - 4(M-2)\vec{Q}_n^2 + 2M(M-3) + \vec{Q}_{2n}^2}{M(M-1)(M-2)(M-3)}$$

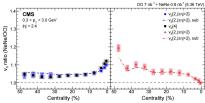
$$c_{-}\{4\} = \langle \langle 4 \rangle \rangle - 2\langle \langle 2 \rangle \rangle^{2}$$


$$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$$


- Significant flow is observed
- v₂ increase and then decrease, from peripheral to central events -- the same as PbPb
- Non-flow contribution is small -- 4 to 15%
- v₂{4} < v₂{2} -- impact of event-by-event fluctuations

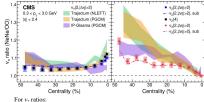
- v₃ increase from peripheral to central events
- -- different from Pb-Pb, but the same as where mutiplicities are comparable in PbPb collisions
- · Non-flow contribution is small


public article: arXiv:2510.02580 Trajectum from PRL 135 (2025) 012302 IP-Glasma from PRL 135 (2025) 022302


NLEFT:

nuclear lattice effective field theory PGCM: projected generator coordinate method

- For v_2 values:
- All three models agree with the trend · Trajectum with NLEFT is the best in central collisions
- All three models agree well with trend
- IP-Glasma overestimates in central collisions


- · v2 ratio significantly increase in the most central collisions
- · non-flow is negligible
- v₂{4} and v₂{2} ratio are consistent
- In central collisions, it seems that $v_2\{4\}$ ratio are larger than $v_2\{2\}$ ratio

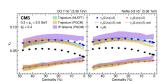
- v₃ ratios exhabit a decreasing trend from peripheral to central collisions
- non-flow is negligible

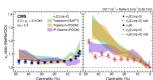
Results: Ne/O ratios of v_n

public article: arXiv:2510.02580 Trajectum from PRL 135 (2025) 012302 IP-Glasma from PRL 135 (2025) 022302 OO 7 nb⁻¹ + NeNe 0.8 nb⁻¹ (5.36 TeV CMS v..(2.|\dn|>2\ v₂(2,|∆n|>2) 0.3 < p_ < 3.0 GeV Trajectum (NLEFT) - · · v_o(2,|Δη|>2), sub

Trajectum PGCM agrees with data, Trajectum NLEFT overestimates

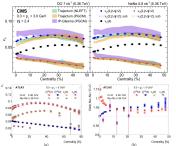
- IP-Glasma predicts no rising trend towards central collisions
- For v_3 ratios: All three model predict the decreasing trend
- · None of the three models agrees with data quantitatively

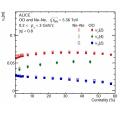




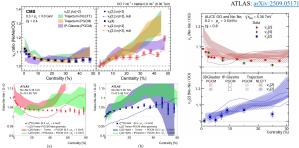
- New measurement of $v_2\{2\}$, $v_2\{4\}$ and $v_3\{2\}$ in OO and NeNe collisions at 5.36TeV Significant flow is observed
- Measurement of the ratios of NeNe to OO v_n values Significant rising trend towards central collisions in v_n ratio

ALICE and ATLAS have similar measurements





Thanks for your attention!


Jiateng Peng, FDU
For the CMS collaboration

Backup: results from ALICE and ATLAS CMS: arXiv:2510.02580 ALICE: arXiv:2509.06187 ATLAS; arXiv:2509.05171

Backup: results from ALICE and ATLAS CMS: arXiv:2510.02580 ALICE: arXiv:2509.06428

