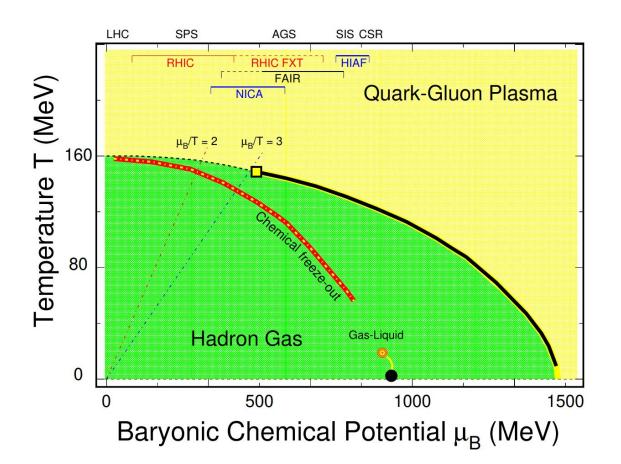
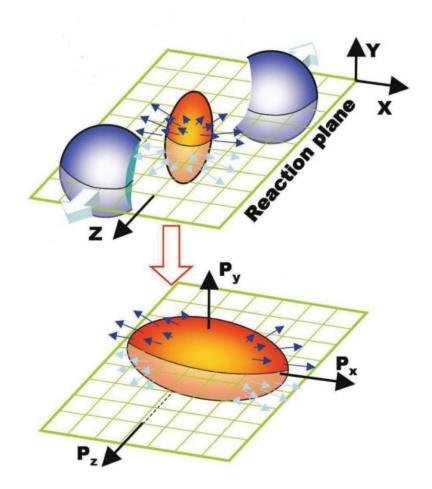


Observation of Strong Directed Flow for ϕ meson in the High Baryon Density Region at RHIC


Guangyu ZHENG (for the STAR collaboration)
University of Chinese Academy of Sciences
October 24-28, 2025

Supported in part by

- > Introduction
- Experimental Setup
- Analysis Method
- > Result and Discussion
- > Summary

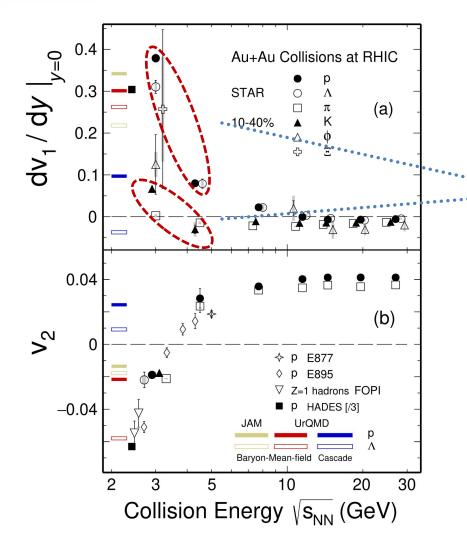

> Beam energy scan program

- Study properties of the QCD matter
- Locate possible QCD phase boundary
- Collider Runs(7.7-62.4 GeV, μ_B : 420-73 MeV)
- Fixed-Target Runs(3.0-13.7 GeV, μ_B : 750-270 MeV)

A. Bzdak et al., Phys. Rept. 853, 1 (2020); X. Luo et al., Particles 3, 278 (2020)

STAR Anisotropic Flow

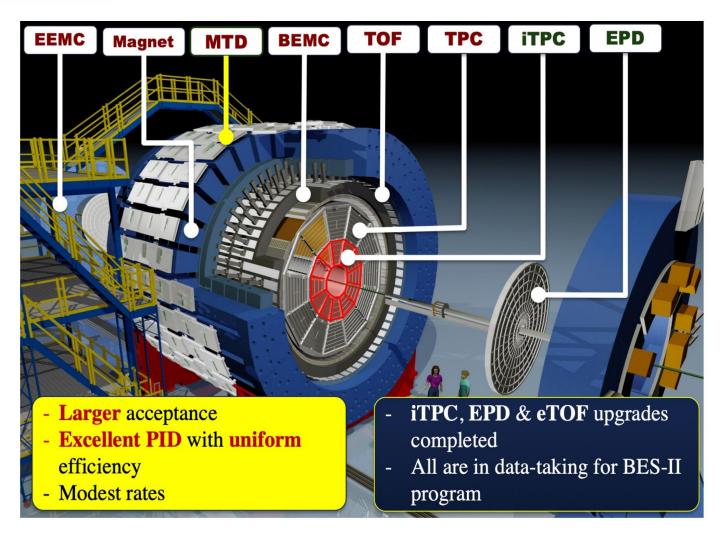
$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{1}^{\infty} 2v_{n} \cos[n(\phi - \Psi_{RP})])$$


$$v_1 = \langle cos(\phi - \Psi_{RP}) \rangle = \langle \frac{p_x}{p_T} \rangle$$
 Directed flow

$$v_2 = \langle cos[2(\phi - \Psi_{RP})] \rangle = \langle \frac{p_x^2 - p_y^2}{p_T^2} \rangle \quad \text{Elliptic flow}$$

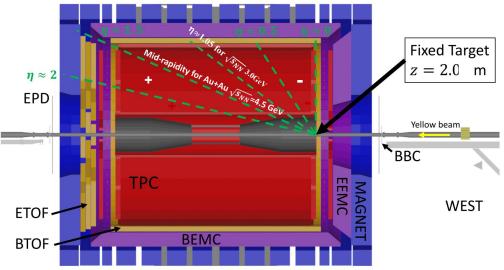
- Directed flow originates mainly from the "sideward push" of compressed nuclear matter → sensitive to the compressibility of the system.
- > A sensitive probe for:
 - Early-time dynamics
 - Equation of State (EoS) of the created medium.

v₁ Slope for Baryons and Mesons


STAR, Phys.Lett.B 827 (2022) 137003

- \triangleright BES-I (STAR) measured mid-rapidity v_1 for π , K, (anti-)protons, ϕ and (anti-) Λ over a wide energy range.
- Increasing difference in the v_1 slope below 4.5 GeV for baryons (proton, Λ) and mesons (π , K)
 - Baryonic mean field?
 - Mass ordering?
 - Different hadronic cross sections?
- $\triangleright \phi$ meson is an ideal probe for early-stage dynamics
 - Meson with close mass to baryons(proton, Λ)
 - Small hadronic cross section and long lifetime(~46fm/c)

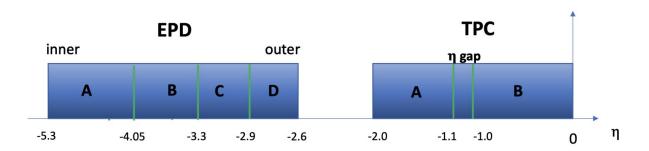
STAR, Phys. Rev. Lett. 118, 212301 (2017)
B. Mohanty, N. Xu, Journal of Physics G 36, 064022 (2009)



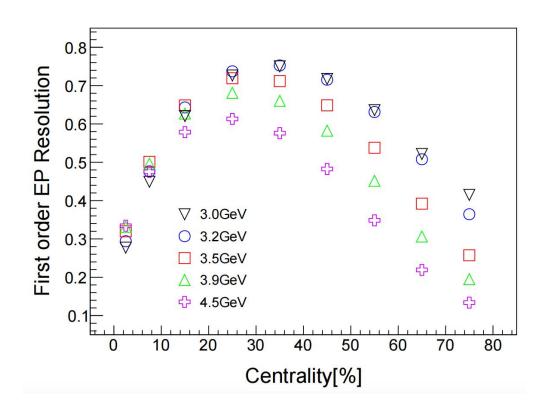
STAR STAR Experimental Setup

> STAR Detector Upgrade:

- Inner-Time Projection Chamber: Better track quality, Larger acceptance
- Endcap Time Of Flight: Particle identification
- Event Plane Detector: Event plane determination (2.1< |η| < 5.1)

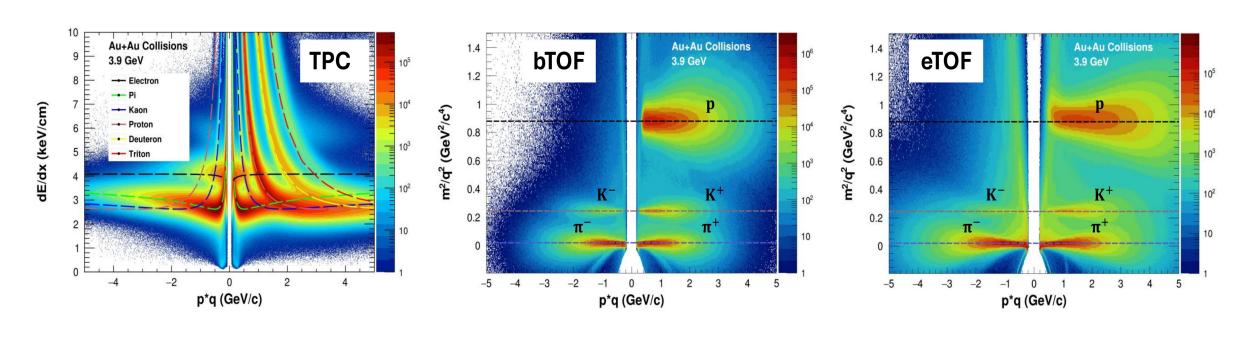


Event Plane Reconstruction

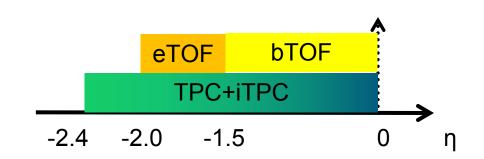

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C58, 1671 (1998)

- ➤ The nth harmonic event plane was calculated as:
- Due to the asymmetry of phase space acceptance in FXT, 3-sub event method is used for event plane resolution calculation.

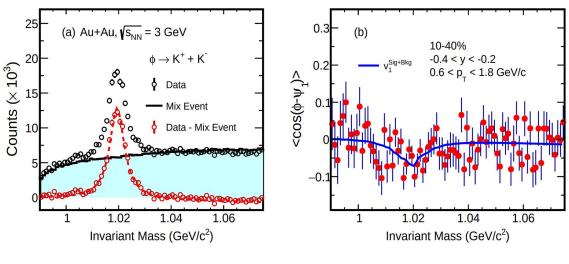
$$R_{1} = \sqrt{\frac{\left\langle \cos\left(\Psi_{1}^{a} - \Psi_{1}^{b}\right) \left\langle \cos\left(\Psi_{1}^{a} - \Psi_{1}^{c}\right) \right\rangle}{\left\langle \cos\left(\Psi_{1}^{b} - \Psi_{1}^{c}\right) \right\rangle}} \qquad v_{1} = \frac{v_{1}^{obs}}{R_{1}} = \frac{\left\langle \cos(\phi - \Psi_{1})\right\rangle}{\left\langle \cos(\Psi_{1} - \Psi_{r})\right\rangle}$$



$$\overrightarrow{Q} = \begin{pmatrix} Q_y \\ Q_x \end{pmatrix} = \begin{pmatrix} \sum_i w_i \sin(n\phi_i) \\ \sum_i w_i \cos(n\phi_i) \end{pmatrix} \qquad \Psi_n = \tan^{-1} \left(\frac{\sum_i w_i \sin(n\phi_i)}{\sum_i w_i \cos(n\phi_i)} \right) / n$$



STAR Particle Identification



- ightharpoonup Good particle identification capability based on TPC (dE/dx) and TOF (β) for charged pion, kaon and proton identification.
- > Large acceptance for TPC+iTPC (-2.4 < η < 0) and bTOF+eTOF (-2.0 < η < 0)

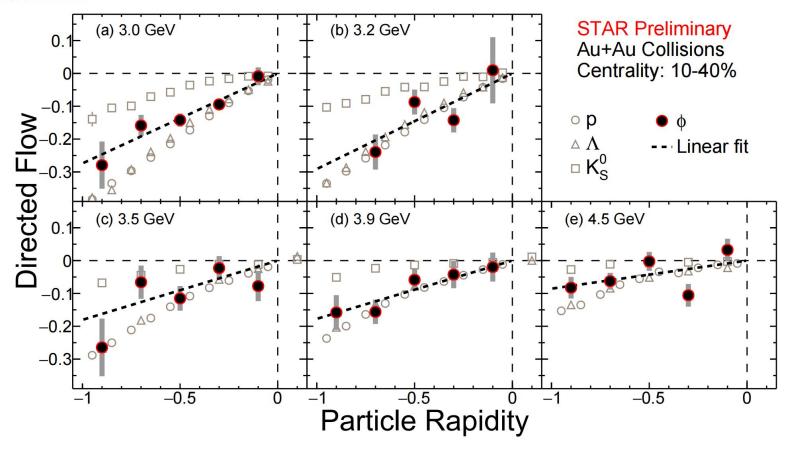
STAR Signal Reconstruction

- ➤ Signal is reconstructed by paring K+K-, Background from mixed events.
- v_n value is the sum of signal and background contributions.
- Background term was parameterized with the polynominal.

Au+Au Collision
$$\phi \to K^+ + K^-$$
(a) 3.0 GeV
(b) 4.5 GeV

1.5

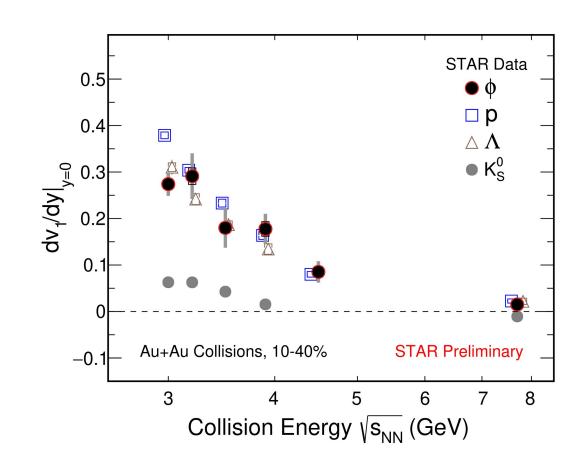
Particle Rapidity


$$v_n^{\text{Sig+Bg}}(M_{\text{inv}}) = \left\langle \cos \left[n \left(\phi - \Psi_1 \right) \right]_{M_{inv}} / R_n \right\rangle$$

$$v_n^{\text{Sig+Bg}}\left(M_{\text{inv}}\right) = v_n^{\text{Sig}} \frac{\text{Sig}}{\text{Sig + Bg}} \left(M_{\text{inv}}\right) + v_n^{\text{Bg}} \left(M_{\text{inv}}\right) \frac{\text{Bg}}{\text{Sig + Bg}} \left(M_{\text{inv}}\right)$$

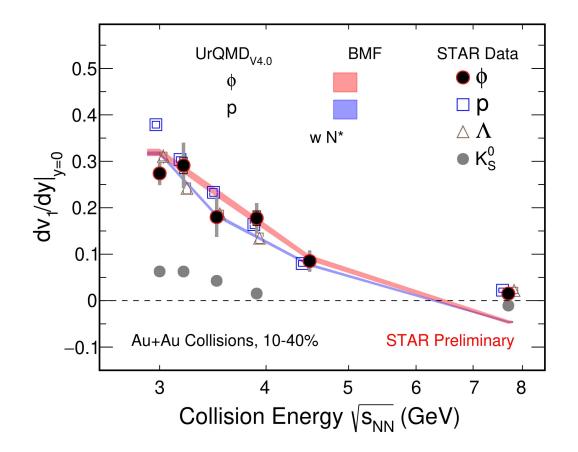
$$v_n^{\rm Bg}\left(M_{\rm inv}\right) = p_0 + p_1 M_{\rm inv}$$

Rapidity Dependence of v₁


particle	p _T (GeV/c) range	Fitting function
φ	(0.6,1.8)	F * y
K_S^0	(0.4,1.6)	
р	(0.4,2.0)	$F * y + C * y^3$
٨	(0.4,2.0)	

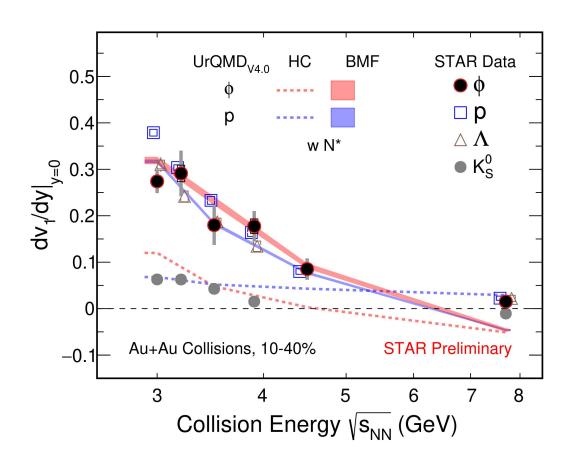
- The ϕ meson $v_1(y)$ is similar in magnitude and sign to those of protons and Λ baryons, but significantly larger than that of K_S^0 .
- ➤ The magnitude of v₁ for all particle species decreases with increasing collision energy

Guangyu Zheng QPT 2025


STAR Energy Dependence of V₁ Slope

- Positive mid-rapidity v_1 slope observed for ϕ meson at 3,3.2,3.5,3.9 and 4.5 GeV.
- In the high baryon density region(3-4.5 GeV), ϕ meson v_1 is comparable in magnitude to that of protons and Λ baryons while Kaons show a much smaller v_1 .
- \triangleright At 7.7GeV and above, the v_1 slope of all particles, including the ϕ meson are similar.

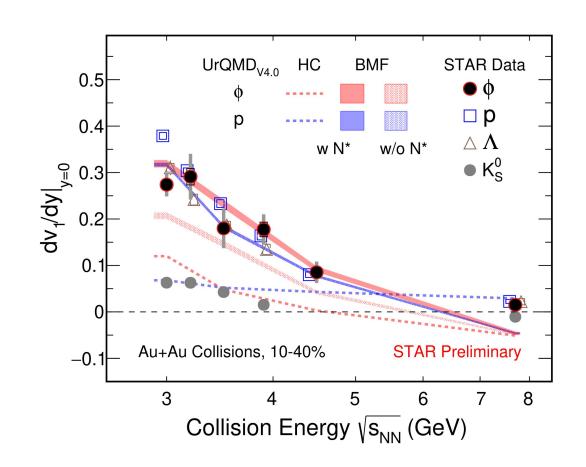
Energy Dependence of v₁ Slope


- [1] J. Steinheimer and M Bleicher J. Phys. G: Nucl. Part. Phys. 43 015104 (2016).
- [2] J. Steinheimer, T. Reichert, and Marcus Bleicher, arXiv: 2507.19289.
- ightharpoonup UrQMD_{v4.0}[1,2] is the latest version with high-mass baryon resonances decaying to ϕ meson and Chiral Baryonic Mean-Field potentials.

$$N + N \rightarrow N^* + N \rightarrow N + \phi + N$$
.

high-mass baryon resonances plus the baryon mean-field reproduced the energy dependence of v_1 for proton (baryon) and ϕ (meson) quite well in the measured energy range $3 < \sqrt{s_{NN}} < 4.5$ GeV.

STAR Energy Dependence of V₁ Slope

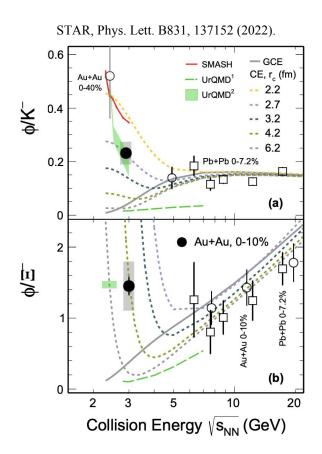

[1] STAR, Phys.Lett.B 827 (2022) 137003 [2] J. Steinheimer, et al. Phys. Lett. B 867, 139605 (2025)

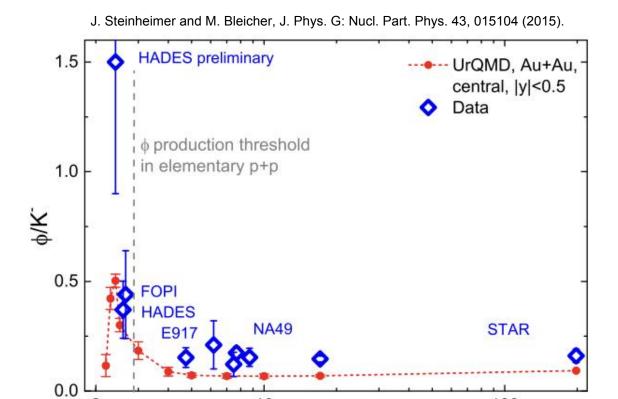
- ➤ Baryonic mean-field is essential to describe proton and hyperon flow as well as strange hadron production yields in high baryon density region[1,2], while it is generally not suitable for meson.
- Without the baryonic mean-field, the model results underestimate the strength of the measured ϕ and proton v_1 by at least a factor of three.

Guangyu Zheng QPT 2025

STAR Energy Dependence of V₁ Slope

[1]STAR, Phys. Lett. B831, 137152 (2022).


- With the baryonic mean-field but without the highmass resonances implemented, the $UrQMD_{v4.0}$ model results for proton are the same but fail to reproduce the observed ϕ meson v_1 .
- $\triangleright \phi$ meson inherits the flow properties from the baryons (N*).
- ightharpoonup High-mass resonances are also necessary for reproducing the enhancements of ratios for $N(\phi)/N(K^-)$ and $N(\phi)/N(\Xi)$ [1].
- \succ The high-mass baryonic resonance is important for both strong ϕ meson v_1 and enhancement of its yields.


- $ightharpoonup \phi$ Meson directed flow in 10-40% mid-central collisions at $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5, 3.9, 4.5 GeV.
 - Comparable in strength to that of protons and Λ baryons but significantly larger than that of other mesons.
- \triangleright Transport model calculation with UrQMD_{v4.0}.
 - Strong sensitivity of ϕ meson v_1 to baryonic mean-field potentials and production mechanism of high-mass baryonic resonance
- \succ The high-mass baryonic resonance is important for both strong ϕ meson v_1 and enhancement of its yields.

Back up

 $\sqrt{s_{_{NN}}}$ [GeV]

100

10

 \triangleright High-mass resonances are also necessary for reproducing the enhancements of ratios for $N(\phi)/N(K^-)$ and $N(\phi)/N(\Xi)$.