

Anisotropic Hydrodynamics Expands the Domain of Applicability of Hydrodynamics

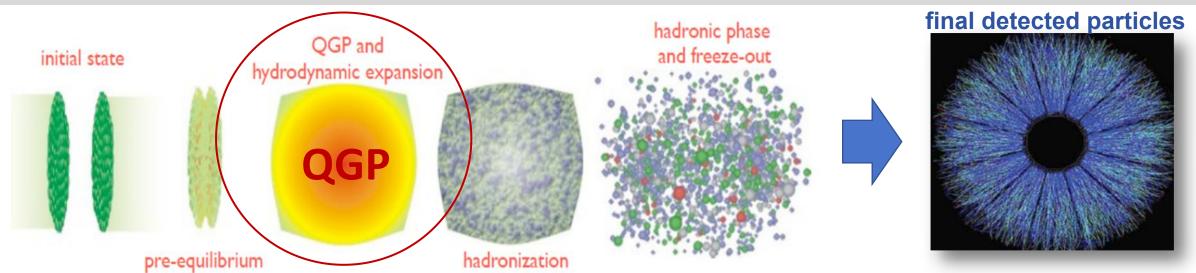
Yiyang Peng

Peking University

S. Zhao, Y. Peng, H. Heinz and H. Song, arXiv: 2509.03841

Y. Peng, V. Ambrus, C. Werthmann, S. Schlichting, U. Heinz and H. Song, arXiv: 2509.04431

Quark Gluon Plasma (QGP) and Hydrodynamics



Conservation laws:

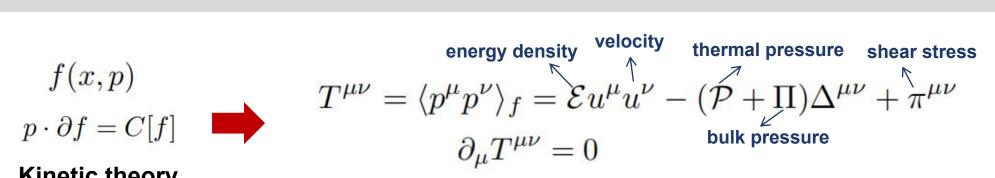
$$\partial_{\mu}T^{\mu
u}=0,\quad \partial_{\mu}N_{i}^{\,\mu}=0.$$

2nd order I-S eq:

$$egin{aligned} \dot{\Pi} &= -rac{1}{ au_\Pi}iggl[\Pi + \zeta heta - l_{\Pi q}
abla_\mu q^\mu + \Pi\zeta T\partial_\mu\left(rac{ au_\Pi u^\mu}{2\zeta T}
ight)iggr], \ \dot{q}^{\langle\mu
angle} &= -rac{1}{ au_q}iggl[q^\mu + \lambdarac{nT^2}{e+p}
abla^\murac{
u}{T} + l_{q\pi}
abla_
u\pi^{\mu
u} + l_{q\Pi}
abla^\mu\Pi - \lambda T^2q^\mu\partial_
u\left(rac{ au_q u^
u}{2\lambda T^2}
ight)iggr], \ \dot{\pi}^{\langle\mu
u
angle} &= -rac{1}{ au_\pi}iggl[\pi^{\mu
u} - 2\eta
abla^{\langle\mu}u^
u
angle - l_{\pi q}
abla^{\langle\mu}q^
u
angle + \pi^{\mu
u}\eta T\partial_lpha\left(rac{ au_\pi u^lpha}{2\eta T}
ight)iggr]. \end{aligned}$$

Input: EoS $\mathcal{E} = \mathcal{E}(\mathcal{P})$; Initial condition

Hydrodynamics as an Long-range Effective Theory



Kinetic theory

Hydrodynamics

Applicability: small Knudsen number and inversed Reynolds number,

$$\begin{array}{|c|c|}\hline \text{Kn} = \frac{l_{\text{micr}}}{L_{\text{macr}}} \ll 1, & R_{\pi,\Pi}^{-1} = \frac{|\pi^{\mu\nu}|}{\mathcal{P}}, \frac{|\Pi|}{\mathcal{P}} \ll 1 \\ \hline \text{coarse-graining} & \text{local equilibrium} \end{array}$$

Gradient expansion:

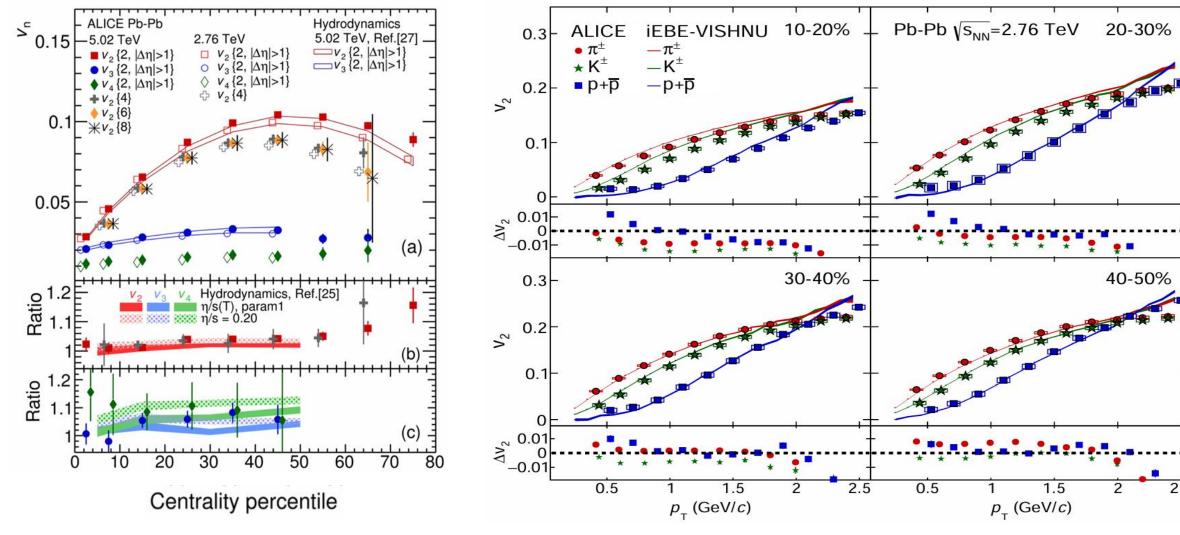
$$m{f}pprox m{f_{eq}} + m{f^{(1)}} + m{f^{(2)}} + \cdots + m{f^{(n)}}$$

Truncate to 2nd order:

$$\dot{\pi}^{\mu
u} = -rac{\pi^{\mu
u}}{ au_\pi} + \dots, \quad \dot{\Pi} = -rac{\Pi}{ au_\Pi} + \dots$$

Success in Large Systems

Hydrodynamics nice description of integrated and differential flow of charged and identified hadrons.



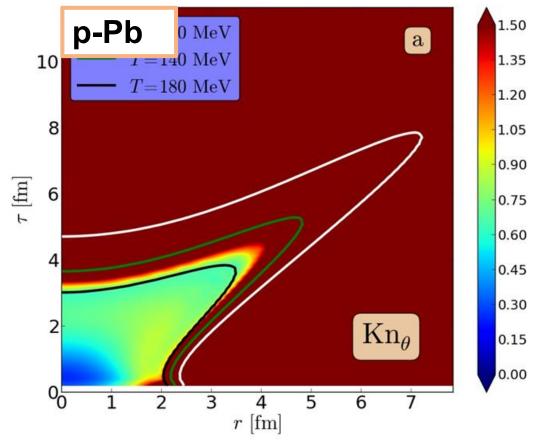
Phys. Rev. Lett. 116(2016) 132302

ALICE Paper, JHEP 1609 164 (2016)

Challenge in Small Systems

Applicability of hydro challenged in small systems(p-Pb, p-Au, O-O, p-p, ...):

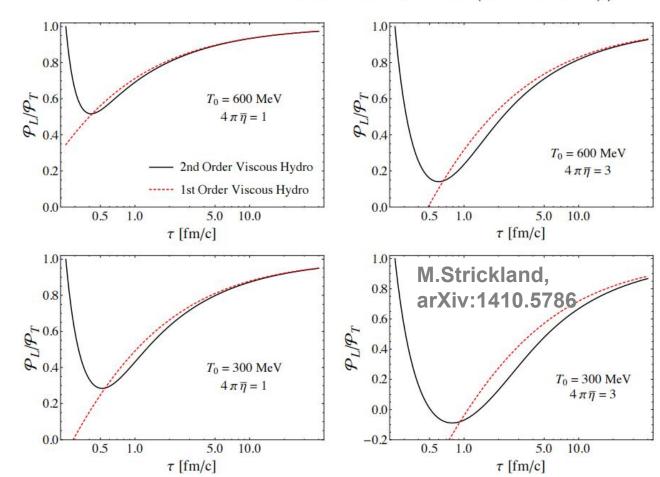
Large Knudsen number:



H. Niemi, G.S. Denicol, arXiv:1404.7327

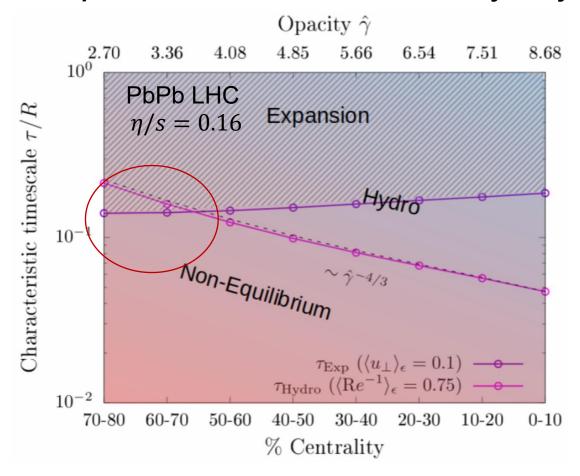
Early-time pressure anisotropy (large inversed Reynolds number): Longitudinal pressure: $\mathcal{P}_L = \mathcal{P} + \Pi + \tau^2 \pi^{\eta_s \eta_s}$

Transverse pressure: $\mathcal{P}_T = \mathcal{P} + \Pi + (\pi^{xx} + \pi^{yy})/2$

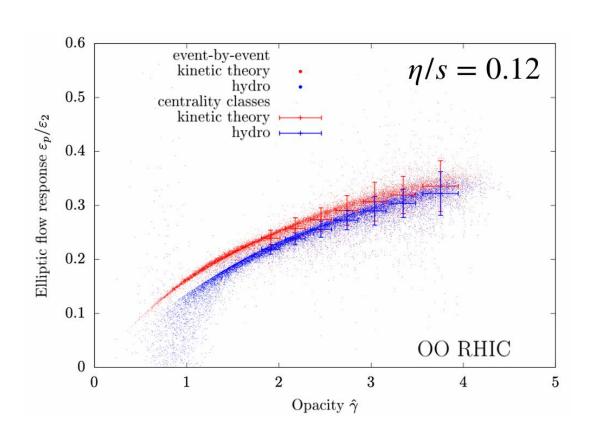


Non-hydro Effects on Final-state Observables

Transverse expansion before hydrodynamization in dilute systems, leading to overestimated dissipative effects on collective flow in hydrodynamics simulation.



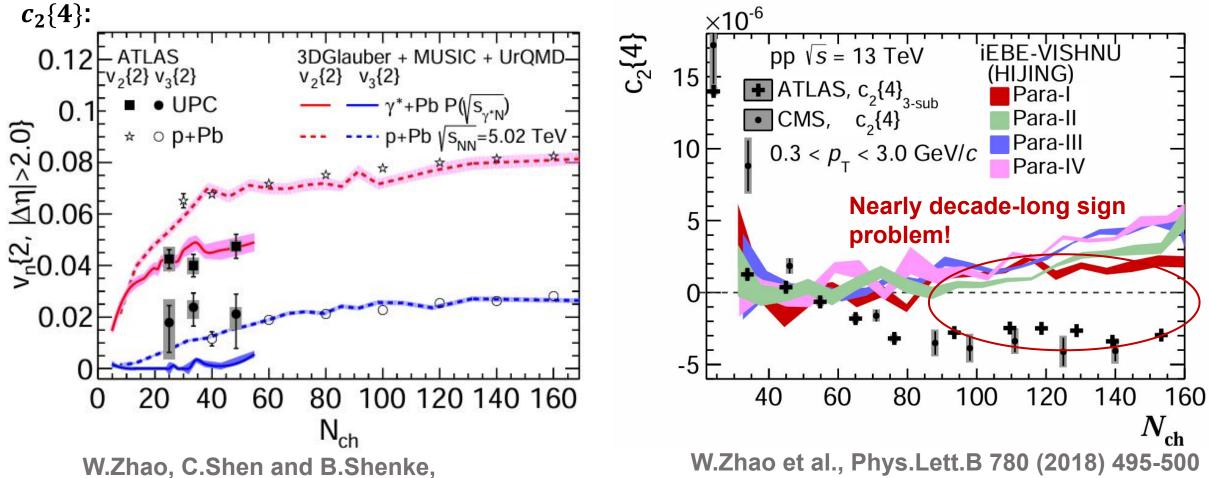
V. Ambrus, S. Schlichting and C. Werthmann, Phys. Rev. Lett. 130, 152301 (2023)



V. Ambrus, S. Schlichting and C. Werthmann, Phys. Rev. D 111, 054024 (2025)

Hydro Simulations in Small Systems

Imperfect description of 2-particle cumulants ($v_n\{2\}$) and even wrong sign of 4-particle cumulant

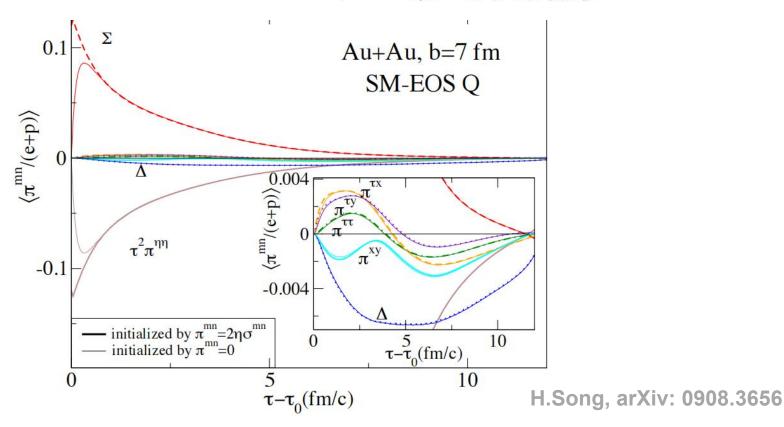


Can we improve viscous hydrodynamics?

Phys.Rev.Lett. 129 (2022) 252302

Dorminant Dissipative Terms

Rapid longitudinal v.s. moderate transverse expansion



Only $\mathcal{P}_L - \mathcal{P}_{\mathrm{eq}}$ and $\mathcal{P}_T - \mathcal{P}_{\mathrm{eq}}$ are considerable

→ How to describe these terms better?

Viscous Anisotropic Hydrodynamics (VAH)

Difference between VAH and traditional hydro:

Traditional hydro:
$$T^{\mu
u} = {\cal E} u^\mu u^
u - ({\cal P}_{eq} + \Pi) \Delta^{\mu
u} + \pi^{\mu
u}.$$

dominant terms

small corrections

$$f = f_{\text{eq}} + \delta f \qquad f_{\text{eq}} = \left[\exp\left(-\sqrt{m^2 + \mathbf{p}^2}/T\right) + \Theta\right]^{-1} \qquad \delta f = f_{\text{eq}} (1 - \Theta f_{\text{eq}}) \left[\frac{p^i p^j \pi^{ij}}{2E_{\mathbf{p}} \beta_{\pi}} - \frac{\Pi}{E_{\mathbf{p}} T \beta_{\Pi}} (m^2 - (1 - 3c_s^2) E_{\mathbf{p}}^2) \right]$$

$$\delta f = f_{\text{eq}} (1 - \Theta f_{\text{eq}}) \left[\frac{p^i p^j \pi^{ij}}{2E_{\mathbf{p}} \beta_{\pi}} - \frac{\Pi}{E_{\mathbf{p}} T \beta_{\Pi}} (m^2 - (1 - 3c_s^2) E_{\mathbf{p}}^2) \right]$$

VAH:

$$T^{\mu\nu} = \mathcal{E} u^{\mu} u^{\nu} + \mathcal{P}_{L} z^{\mu} z^{\nu} - \mathcal{P}_{\perp} \Xi^{\mu\nu} + 2 W_{\perp z}^{(\mu} z^{\nu)} + \pi_{\perp}^{\mu\nu}$$

small corrections

$$f(x,p) = f_a(x,p) + \delta \tilde{f}(x,p) \left[f_a = \left[\exp\left(-\frac{1}{\Lambda} \sqrt{m^2 + \frac{\mathbf{p}_{\perp}^2}{\alpha_{\perp}^2} + \frac{p_z^2}{\alpha_{\perp}^2}}\right) + \Theta \right]^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{\mathcal{J}_{4210}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{\mathcal{J}_{4210}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{\mathcal{J}_{4210}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{\mathcal{J}_{4210}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{\mathcal{J}_{4210}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{\mathcal{J}_{4210}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_z^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_z^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_z^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_z^i p_{\perp}^j \pi_{\perp z}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_z^i p_{\perp}^j \pi_{\perp z}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_z^i p_{\perp}^j \pi_{\perp z}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{2\mathcal{J}_{4020}} + \frac{p_z^i p_{\perp z}}{2\mathcal{J}_{4020}} \right)^{-1} \delta \tilde{f} = f_a(1 - \Theta f_a)$$

$$\delta \tilde{f} = f_a (1 - \Theta f_a) \left(\frac{p_z \mathbf{p}_{\perp} \cdot \mathbf{W}_{\perp z}}{\mathcal{J}_{4210}} + \frac{p_{\perp}^i p_{\perp}^j \pi_{\perp}^{ij}}{2\mathcal{J}_{4020}} \right)$$

Relation between different decomposition:

$$\pi^{\mu
u} = \pi_{\perp}^{\mu
u} + 2 W_{\perp z}^{(\mu} z^{
u)} + rac{1}{3} (\mathcal{P}_L - \mathcal{P}_\perp) \, (2 z^\mu z^
u - \Xi^{\mu
u}), \quad \Pi = rac{2 \mathcal{P}_\perp + \mathcal{P}_L}{3} - \mathcal{P}_{
m eq}.$$

- The evolution more reasonable with large $\mathcal{P}_{L,\perp}-\mathcal{P}_{ ext{eq}}$.
- Return to traditional hydro with small $\mathcal{P}_{L,\perp}-\mathcal{P}_{ ext{eq}}$.

M. McNelis, D. Bazow, and U. Heinz, Com. Phys. Comm 267, 108077 (2021)

Viscous Anisotropic Hydrodynamics (VAH)

Relaxation equations of VAH:

$$\begin{split} \dot{\mathcal{P}}_L &= -\frac{\bar{\mathcal{P}} - \mathcal{P}_{\rm eq}}{\tau_{\rm II}} - \frac{\mathcal{P}_L - \mathcal{P}_\perp}{3\tau_\pi/2} + \bar{\zeta}_z^L z_\mu D_z u^\mu + \bar{\zeta}_\perp^L \theta_\perp - 2W_{\perp z}^\mu \dot{z}_\mu + \bar{\lambda}_{Wu}^L W_{\perp z}^\mu D_z u_\mu \quad \text{Longitudinal Pressure} \\ &+ \bar{\lambda}_{W\perp} W_{\perp z}^\mu z_\nu \nabla_{\perp\mu} u^\nu - \bar{\lambda}_\pi^L \pi_\perp^{\mu\nu} \sigma_{\perp,\mu\nu}, \\ \dot{\mathcal{P}}_\perp &= -\frac{\bar{\mathcal{P}} - \mathcal{P}_{\rm eq}}{\tau_{\rm II}} + \frac{\mathcal{P}_L - \mathcal{P}_\perp}{3\tau_\pi} + \bar{\zeta}_z^\perp z_\mu D_z u^\mu + \bar{\zeta}_\perp^L \theta_\perp + W_{\perp z}^\mu \dot{z}_\mu + \bar{\lambda}_{Wu}^\perp W_{\perp z}^\mu D_z u_\mu \quad \text{Transverse} \\ &- \bar{\lambda}_{W\perp}^\perp W_{\perp z}^\mu z_\nu \nabla_{\perp\mu} u^\nu + \bar{\lambda}_\pi^\perp \pi_\perp^{\mu\nu} \sigma_{\perp,\mu\nu}. \\ \dot{W}_{\perp z}^{\{\mu\}} &= -\frac{W_{\perp z}^\mu}{\tau_\pi} + 2\bar{\eta}_u^W \Xi^{\mu\nu} D_z u_\nu - 2\bar{\eta}_\perp^W z_\nu \nabla_\perp^\mu u^\nu - \left(\bar{\tau}_z^W \Xi^{\mu\nu} + \pi_\perp^{\mu\nu}\right) \dot{z}_\nu + \bar{\delta}_W^W W_{\perp z}^\mu \theta_\perp \quad \text{diffusion} \\ &- \bar{\lambda}_{Wu}^W W_{\perp z}^\mu z_\nu D_z u^\nu + \bar{\lambda}_{W\perp}^W \sigma_\perp^{\mu\nu} W_{\perp z,\nu} + \omega_\perp^{\mu\nu} W_{\perp z,\nu} + \bar{\lambda}_\pi^W \pi_\mu^{\mu\nu} D_z u_\nu - \bar{\lambda}_\pi^W \pi_\perp^{\mu\nu} z_\alpha \nabla_{\perp\nu} u^\alpha, \\ \dot{\pi}_\perp^{\{\mu\nu\}} &= -\frac{\pi_\perp^{\mu\nu}}{\tau_\pi} + 2\bar{\eta}_\perp \sigma_\perp^{\mu\nu} - 2W_{\perp z}^{\{\mu\dot{z}^\nu\}} - \bar{\delta}_\pi^\pi \pi_\perp^{\mu\nu} \theta_\perp - \bar{\tau}_\pi^\pi \pi_\perp^{\alpha\{\mu} \sigma_\perp^{\nu\}}, \\ &- \bar{\lambda}_{Wu}^\pi W_{\perp z}^{\{\mu} D_z u^\nu\} + \bar{\lambda}_W^\pi + W_{\perp z}^{\{\mu} z_\alpha \nabla_\perp^{\nu\}} u^\alpha. \quad \text{Transverse she} \end{split}$$

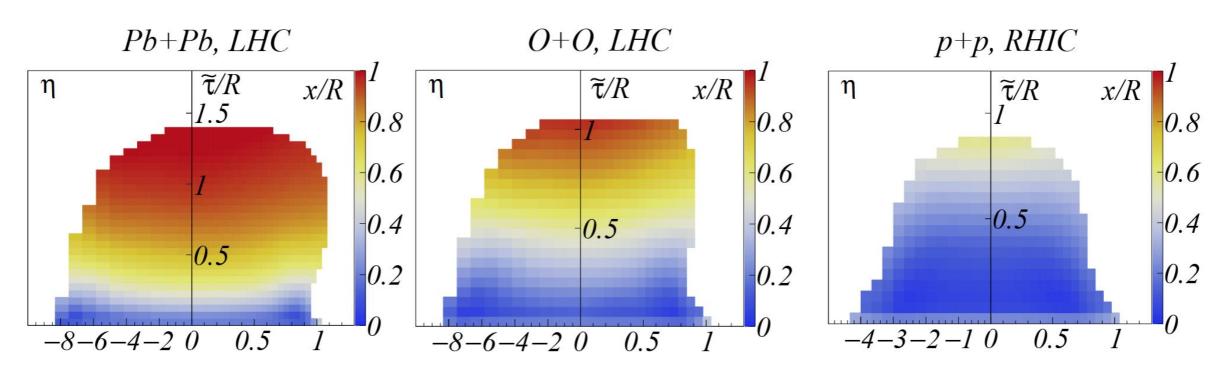
Transverse shear

stress tensor

Evaluating Pressure Anisotropy

Evolution of $P_L/P_{\perp}(\tau, x, \eta)$:

- Large anisotropy in the early stage and peripheral area.
- It's hard for smaller system to reach isotropization.



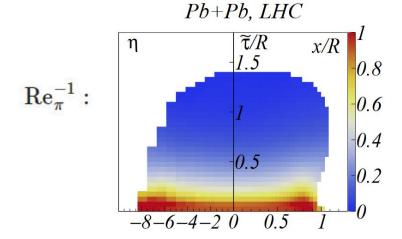
S. Zhao, Y. Peng, U. Heinz and H. Song, paper in preparation

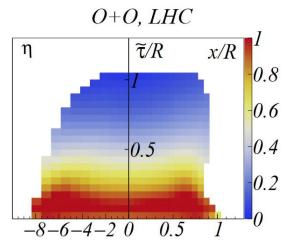
Self-consistency of VAH

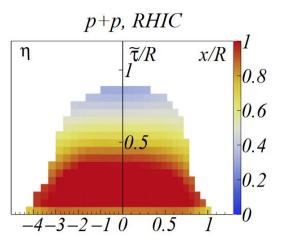
Evolution of Inversed Reynolds number:

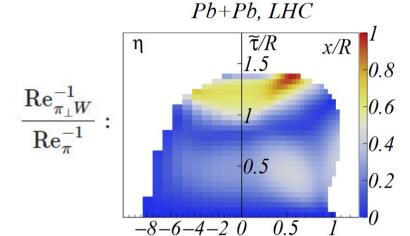
$$\mathrm{Re}_\pi^{-1} = \sqrt{\pi_{\mu\nu}\pi^{\mu
u}}/\mathcal{P}_{eq}, \quad \mathrm{Re}_{\pi_\perp W}^{-1} = \sqrt{\pi_\perp^{\mu
u}\pi_{\perp\mu
u} - W_{\perp z\mu}W_{\perp z}^\mu}/\mathcal{P}_{eq},$$

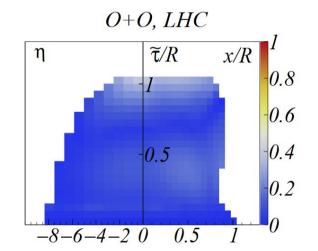
• Small $\pi_{\perp}^{\mu\nu}$, $W_{\perp z}^{\mu}$ indicate self-consistency of VAH from large to small systems.

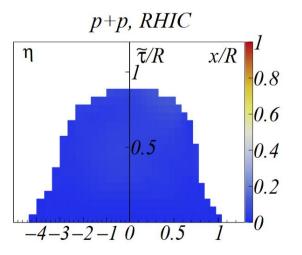








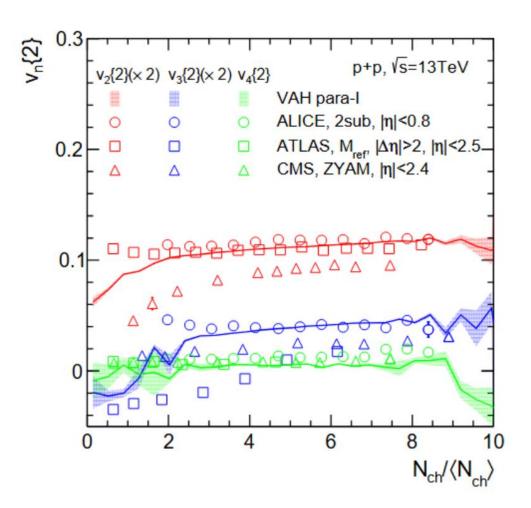




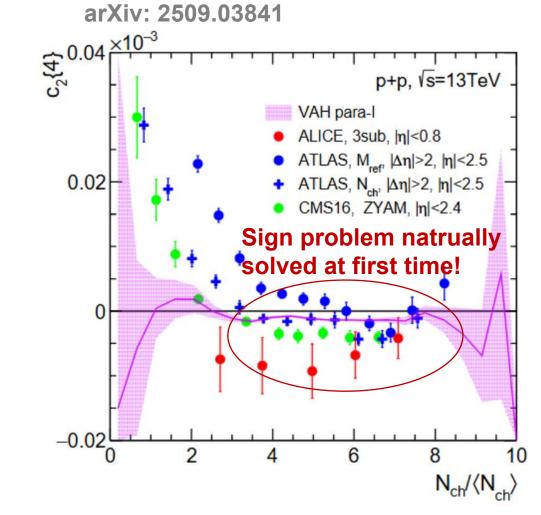
Apply VAH in p+p at 13 TeV

(2+1)-D simulation in the TRENTo3D+VAH+SMASH framework:

- Good description of $v_n\{2\}$, n = 2, 3, 4.
- Produce correct sign of $c_2\{4\}$.



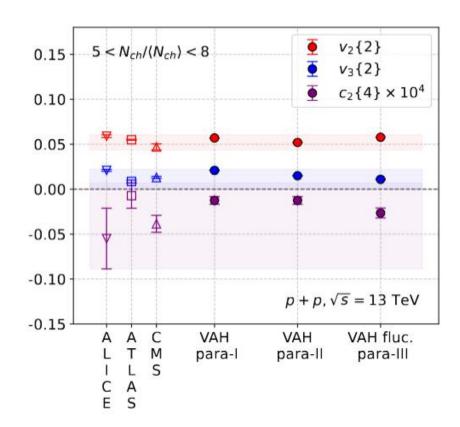
S. Zhao, Y. Peng, U. Heinz and H. Song, arXiv: 2509.03841

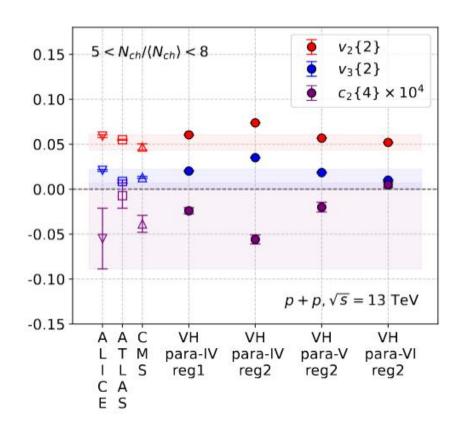


Apply VAH in p+p at 13 TeV

VAH and viscous hydro (VH) with different parameters and regulation schemes:

- Robustness of $c_2\{4\}$ sign for VAH.
- For VH, $c_2\{4\}$ sign has significant parameters and regulation dependence.





VAH, Hydro and Kinetic Theory Comparison

Assumptions:

- Finite transverse extent with longitudinal boost invariance ((2+1)-D simulation)
- Systems consist of massless particles (conformal symmetry).

$$\mathcal{P}_L + 2\mathcal{P}_\perp = 3\mathcal{P} = \mathcal{E}, \quad \Pi = 0$$

Boltzmann equation in the relaxation time approximation (RTA):

$$p\cdot\partial f(x,p) = -rac{u\cdot p}{ au_R(x)}[f(x,p)-f_{eq}(x,p)], \quad au_R = 5\eta/(sT) \longrightarrow ext{Benchmark}$$

Traditional viscous hydro:

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} + 2\tau_{\pi}\pi_{\lambda}^{\langle\mu}\omega^{\nu\rangle\lambda} - \delta_{\pi\pi}\pi^{\mu\nu}\theta \text{ ar}$$
$$-\tau_{\pi\pi}\pi^{\lambda\langle\mu}\sigma_{\lambda}^{\nu\rangle} + \phi_{7}\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha},$$

VAH:

$$\begin{split} \dot{P}_L &= -\frac{P_L - P_\perp}{3\tau_\pi/2} + \bar{\zeta}_z^L \theta_L + \bar{\zeta}_\perp^L \theta_\perp - \bar{\lambda}_\pi^L \pi_\perp^{\mu\nu} \sigma_{\perp,\mu\nu}, \\ \dot{\pi}_\perp^{\{\mu\nu\}} &= -\frac{\pi_\perp^{\mu\nu}}{\tau_\pi} + 2\bar{\eta}_\perp \sigma_\perp^{\mu\nu} - \bar{\lambda}_\pi^\pi \pi_\perp^{\mu\nu} \theta_L - \bar{\delta}_\pi^\pi \pi_\perp^{\mu\nu} \theta_\perp \\ &- \bar{\tau}_\pi^\pi \pi_\perp^{\lambda\{\mu} \sigma_{\perp,\lambda}^{\nu\}} + 2\pi^{\lambda\{\mu} \omega_{\perp,\lambda}^{\nu\}}, \end{split}$$

Y. Peng, V. Ambrus, C. Werthmann, S. Schlichting, U. Heinz and H. Song, arXiv: 2509.04431

Coefficients in consistency with RTA (e.g., $au_{\pi} = au_{\it R}$)

VAH, Hydro and Kinetic Theory Comparison

Quantities of interest:

Transverse energy

$$\frac{dE_{\perp}}{d\eta} = \tau \int_{\mathbf{x}_{\perp}} \left(T^{xx} + T^{yy} \right) \qquad \Longrightarrow \qquad \text{Cooling behavior}$$

Inversed Reynolds number

$$\left\langle \mathrm{Re}^{-1} \right\rangle_{\mathcal{E}} = \left\langle \left(\frac{\pi^{\mu\nu} \pi_{\mu\nu}}{\mathcal{E}^2} \right)^{1/2} \right\rangle_{\mathcal{E}}$$
 Hydrodynamization

Average transverse velocity

$$\langle u_{\perp}
angle_{\mathcal{E}}=\left\langle \left(u_{x}^{2}+u_{y}^{2}
ight)^{1/2}
ight
angle _{\mathcal{E}}$$

Radial expansion

Momentum anisotropy

$$arepsilon_p = rac{\int_{\mathbf{x}_\perp} (T^{xx} - T^{yy})}{\int_{\mathbf{x}_\perp} (T^{xx} + T^{yy})}$$
 Response to initial spatial anisotropy (resemble with v_2)

(resemble with v_2)

Transverse dynamics before!)

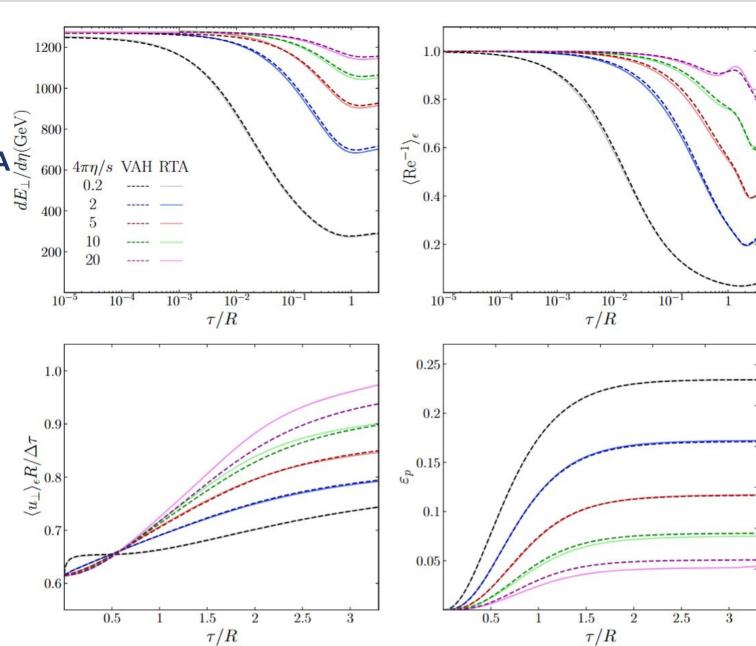
Criterion of diluteness (Opacity):

$$\hat{\gamma} = rac{1}{5 \eta/s} igg(rac{R}{\pi a} rac{dE_{\perp}^0}{d\eta}igg)^{1/4}$$

- The only parameter that determines the evolution.
- **Encoding system size, viscosity and energy dependence.**
- Transition from free-streaming (ultra-dilute) to ideal Hydro (ultra-dense) with opacity increasing from 0 to ∞ (shear viscosity from ∞ to 0).

Evolution Behaviours

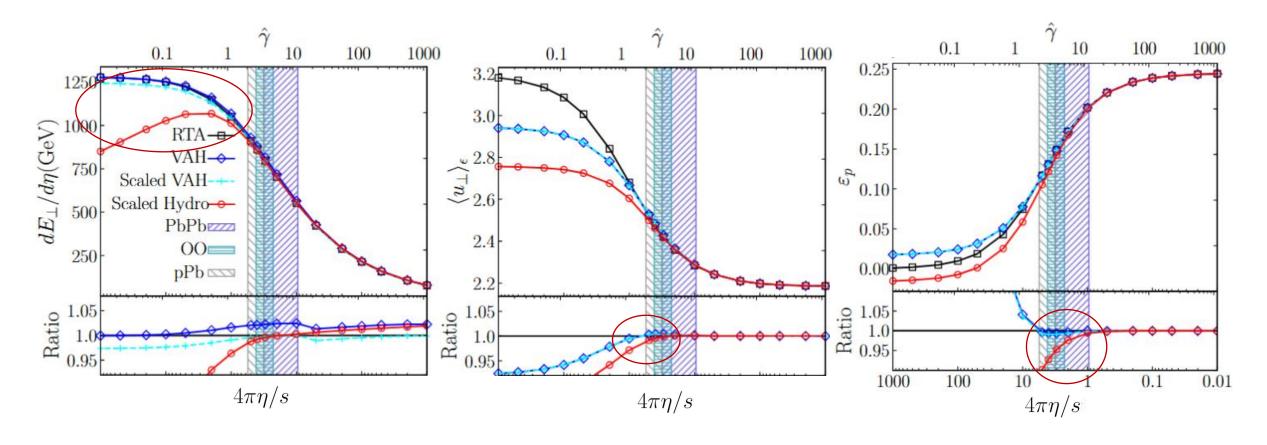
- VAH nearly converges to RTA in early-time evolution.
- Good agreement with RTA at smal or miderate shear viscosities $(4\pi\eta/s \le 5)$
- Discrepancies emerge at large shear viscosity $(4\pi\eta/s \ge 10)$, corresponding to very small opacity $(\widehat{\gamma} \lesssim 1)$



Final-state Results

Final state results ($\tau = 3R$) as functions of opacity:

- Traditional hydro gradually deviates from RTA in O+O and p+Pb collisions, while VAH maintains good agreement.
- VAH fails to capture transverse dynamics at exceptionally large shear viscosity (small opacity).



Summary

- Viscous anisotropic hydrodynamics (VAH) is an extended version of viscous hydrodynamics with self-consistent assumptions.
- Properly capture the sign of 4-particle cumulant $c_2\{4\}$ in p+p collisions at 13 TeV.
- Good agreements with microscopic theory in dilute systems when traditional hydro fails; extending the applicability of hydrodynamics.