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C[ f ] ≡ ∫ dKdPfdKf(f(x, pμ
f )f(x, kμ

f ) − f(x, pμ)f(x, kμ))Wp,k→pf,kf

pα∂α f(x, p) = C[ f ]

Relativistic Boltzmann equation describes the non-equilibrium evolution of

a weakly coupled system, e.g. heavy-ion collisions and cosmology etc.

Nonlinear integro-differential equation

Generally, it is very hard to solve, let alone find an analytical solution.
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In rare cases, we could seek an analytical solution:

1. Equilibrium state, important and well-known. 

2. BKW solution, homogeneous, isotropic, self-similar 

local equilibrium+ killing conditions = global equilibrium  

Non-relativistic:   R. S. Krupp, M.Sc. thesis, MIT (1967)

 

 
A. V. Bobylev, Sov. Phys. Dokl. 20:820, 822 (1976),  1.M. Krook and T. T. Wu, Phys. Rev. Lett. 36:1107 (1976)  

  

Relativistic: D. Bazow etc, Phys. Rev. Lett.116, 022301 (2016) 

1. M. H. Ernst, J. Stat. Phys. 34, 1001 (1984) 
  



May Prof. Yang rest in peace.
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By the way,

A.V.Bobylev :  discovering Bobylev instability within
Burnett equation.

M.Krook :  BGK model (RTA)

T.T.Wu(吴⼤大峻): finding that the mathematic structure within

the gauge field theory is fiber bundle in collaboration with

Prof.C.N.Yang.
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1. Maxwell-Boltzmann Distribution 

2. BKW solution 
 R. S. Krupp, M.Sc. thesis, MIT (1967)

 

 
A. V. Bobylev, Sov. Phys. Dokl. 20:820, 822 (1976)  

1.M. Krook and T. T. Wu, Phys. Rev. Lett. 36:1107 (1976)  
  

D. Bazow etc, Phys. Rev. Lett.116, 022301 (2016) 

So many so far ! 
输运理理论 p209, ⻩黄祖洽,丁鄂江 

0. Boltzmann equation (1872) 
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Though life (physics) is hard, and always like this,

 Hopefully, we can pull through and find something useful.

we have to face Boltzmann eq  

pα∂α f(x, p) = C[ f ]

C[ f ] ≡ ∫ dKdPfdKf(f(x, pμ
f )f(x, kμ

f )

−f(x, pμ)f(x, kμ))Wp,k→pf,kf



Analytical Solution to Boltzmann Equation

!8

�8

We remove hat later if nothing confusing occurs. 

f(t, p0) = e− p0
α(t)

n

∑
i=0

Ai(t) ⋅ (p0)i

pα∂α f(x, p) = C[ f ]
Focus on a homogeneous  massless system 

̂p0∂ ̂t f( ̂t, ̂p) = C[ f ] ̂t ≡ t/T, ̂p ≡ p/T

Try to seek a solution of the following isotropic form

α(t)
ODE in powers of p0

Ai(t)

Yi Wang, Xuan Zhao, Zhe Xu, Jin Hu, to appear
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f(t, p0) = e− p0
α(t)

n

∑
i=0

Ai(t) ⋅ (p0)i

p0∂t f(t, p0) = C[ f ]

ODEs should be independent of 

α(t)
ODEs in powers of p0

Ai(t)

p0 as prescribed. 

RHS and LHS  should match in the order of p0

Luckily, we find { n = 0, f(t, p0) = e− p0
α(t)

n = 1, f(t, p0) = e− p0
α(t) (A0(t) + A1(t)p0) BKW

Eq like

By this way,  we know why BKW solution stands out !  
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p0∂t f(t, p0) = C[ f ]
Case I: hard sphere

f(t, p0) = e− p0
α(t) (A0(t) + A1(t)p0)

Now we provide a more efficient way to construct relativistic BKW solution 

(versus moment method in D. Bazow etc, Phys. Rev. Lett.116, 022301 (2016) ) 

The nonlinear collision kernel can be worked out analytically!

C[ f ] = e− p0
α(t) (

2A2
1(t)α5(t)

π2
p0 −

4A2
1(t)α4(t)
3π2

(p0)2 +
A2

1(t)α3(t)
6π2

(p0)3)

see Yi Wang’s poster.  
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p0∂t f(t, p0) = C[ f ]
Case I: hard sphere

A′�0(t) =
2A2

1(t)α5(t)
π2

A′�1(t) +
A0(t)α′�(t)

α2(t)
= −

4A2
1(t)α4(t)
3π2

α′�(t) =
A1(t)α5(t)

6π2

}We have:
2 conservation laws  

and 1 free data.

Yi Wang, Xuan Zhao, Zhe Xu, Jin Hu, to appear

Counting:
3 first order ODEs demand

3 initial data.

e0, n0
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Case I: hard sphere

f(t, p0) = e− p0
α(t) (A0(t) + A1(t)p0)

Yi Wang, Xuan Zhao, Zhe Xu, Jin Hu, to appear

A0(t) =
π2(−e0 + 4n0α(t))

α4(t)

α(t) =
e0

3n0
+ ce− n0t

6

A1(t) =
π2(e0 − 3n0α(t))

3α5(t)

with

c is an integration constant.

c = 3/4 reproduces D. Bazow etc, Phys. Rev. Lett.116, 022301 (2016) 
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Case II: anisotropic scattering 

σ = κχ(Θ)

ρn ≡ ∫ dP(p0)n+1 f(t, p0)

∂tρn(t) = C(n)(t)

In this case, the collision kernel is hard to be worked out, so we define 

JHEP 2025 (2025) 07, 066,  Jin Hu

κ is approximated as momentum-independent. 

C(n)(t) ≡ ∫ dP(p0)nC[ f ]

f(t, p0) = e− p0
α(t) (A0(t) + A1(t)p0)
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Case II: anisotropic scattering 

∂tρn(t) = C(n)(t)

JHEP 2025 (2025) 07, 066,  Jin Hu

Using the conservation of  e0, n0

A0(t) =
π2(4n0α(t) − e0)

α(t)4
, A1(t) =

π2(e0 − 3n0α(t))
3α(t)5

α′�(t) = −
1
90

(2πσ(0,2) − 5)(e0 − 3n0α(t))

Independent of n !
with σ( f, g) ≡

2g + 1
2 ∫

1

−1
dx xf Pg(x)χ(x) .
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Case II: anisotropic scattering 

JHEP 2025 (2025) 07, 066,  Jin Hu

Collecting all,  

α(t) = (c −
e0

3n0
)e 1

90 t(6πn0σ(0,2)−15n0) +
e0

3n0
.

with

 the first analytical solution to the relativistic BE with anisotropic scattering 

A0(t) =
π2(4n0α(t) − e0)

α(t)4
, A1(t) =

π2(e0 − 3n0α(t))
3α(t)5

f(t, p0) = e− p0
α(t) (A0(t) + A1(t)p0)
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JHEP 2025 (2025) 07, 066,  Jin Hu

 Discussion 1: 

 Even though our cross sections describe anisotropic scatterings,  

The distribution could be isotropic in momentum space. 

 Discussion 2: 

σ(0,2) <
5

2π
,

e0

4n0
≤ c ≤

e0

3n0
,

 Discussion 3: α′�(t) = − 1/90(2πσ(0,2) − 5)(e0 − 3n0α(t))

α = e0/3n0  is the only stable fixed point (eq solution)!  

f ≥ 0

σ( f, g) ≡
2g + 1

2 ∫
1

−1
dx xf Pg(x)χ(x) . where 
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f(x, p)

x, p, f
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 Consider a general transformation 

x′� ≡ eθL̂x, p′� ≡ eθL̂p, f′� ≡ eθL̂f

p ⋅ ∂f(x, p) = C[ f ]  (1)

 If              solves (1), and  

L̂ = Ω(xμ, pμ)
∂
∂f

+ Xμ(xμ, pμ)
∂

∂xμ
+ Pμ(xμ, pμ)

∂
∂pμ

 also solves (1), 

 forms a Lie algebra to BE. 

 i.e., p′� ⋅ ∂′�f′�(x′�, p′�) = C′ �[ f′ �]

 then

f′�(x′�, p′�)
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 The PDEs determining these transformation are challenging to solve. 

pα∂α f(x, p) = C[ f ]

 First, we know that BE is constructed respecting Poincare group. Then   

 These are necessary but trivial because they are close. 

 It is not sensible to do it. Changing strategies.  
 We need to combine physical insights, or it turns into a mathematical game.   

L̂(0)
ij = (xi

∂
∂xj

− xj
∂

∂xi
) + (pi

∂
∂pj

− pj
∂

∂pi
) L̂(1)

i =
∂

∂xi

L̂(2)
i = (x0

∂
∂xi

+ xi
∂

∂x0
) + (p0

∂
∂pi

+ pi
∂

∂p0
) L̂(3)

i =
∂

∂x0
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 It is natural to think about scale symmetry. 

 1. momentum doesn’t scale (generally not)   

L̂(4) = xμ ∂
∂xμ

− f
∂
∂f

 We do have scale invariance  

 3. Unluckily,    L̂(4) L̂(0) together with   to L̂(3)  forms a closed algebra. 

 Take-home message:  

 Relativistic BE admits the scaling solution (NTFP)   

e.g., Phys. Rev. Lett. 101, 041603 (2008),  J. Berges etc f(t, p0) = tαfs(tβp0)

2. Full BE with Bose enhancement or Pauli blocking effects could violate it. 

t → λt, p0 → p0λ−β, f → λαf
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 Massless, 

L̂(5) = vxμ ∂
∂xμ

−
1

2l + 1
pμ ∂

∂pμ
+ (1 − v)f

∂
∂f

 Take-home message:  

1. only for scaled cross-sections   

 3. Unluckily,    L̂(5) L̂(0) together with   to L̂(4)

 still forms a closed algebra. Nothing new appears 

 When can momentum also scale ?  

2. Full BE with Bose enhancement or Pauli blocking effects 
cannot admit scaling solution (why over-occupied condition used ). 

 scaled cross-sections σ → λ2(l−1)σpμ → pμλ,

pμ → pμλ, σ → λ2(l−1)σ
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L̂(0)
ij = (xi

∂
∂xj

− xj
∂

∂xi
) + (pi

∂
∂pj

− pj
∂

∂pi
) L̂(1)

i =
∂

∂xi

L̂(2)
i = (x0

∂
∂xi

+ xi
∂

∂x0
) + (p0

∂
∂pi

+ pi
∂

∂p0
) L̂(3)

i =
∂

∂x0

L̂(4) = xμ ∂
∂xμ

− f
∂
∂f

 We give, for the first time, a closed invariant Lie algebra to the relativistic BE. 
Yi Wang, Xuan Zhao, Zhe Xu, Jin Hu, to appear
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L̂(5) = vxμ ∂
∂xμ

−
1

2l + 1
pμ ∂

∂pμ
+ (1 − v)f

∂
∂f

, pμ → pμλ, σ → λ2(l−1)σ
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Yi Wang, Xuan Zhao, Zhe Xu, Jin Hu, to appear
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Summary
• Provide a novel  simple method to construct the 

relativistic BKW solution

•The first analytical solution to the relativistic BE with 

anisotropic scattering

•We first provide a closed invariant lie algebra to the 

relativistic BE.
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Outlook
•Other particular solutions 

•(non)linear response around BKW

•Relation with NTFP

•Generalized hydro from BKW (done!)

•First-principle determination of Lie algebra

•Multicomponents (done!)

•Inelastic collisions and application to pQCD
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Lin-yuan Wei, Yi Wang, Bao-yi Chen, Jin Hu, to appear

Jin Hu, to appear
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D. Bazow etc, Phys. Rev. Lett.116, 022301 (2016) 

 FLRW  spacetime:   

ds2 = − dt2 + a2(t)
dx2 + dy2 + dz2

1 − K(x2 + y2 + z2)

 In maximal symmetric spacetime, K is a constant.  

{K =
−1

0
1   Spherical (closed, finite)  

    Hyperbolic (open, infinite)  

  Flat (infinite)  

  Modern cosmological observational data strongly 

support that the universe is spatially flat on large scales.  K ≃ 0

 also takes this choice.  
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D. Bazow etc, Phys. Rev. Lett.116, 022301 (2016) 

 FLRW:  ds2 = − dt2 + a2(t)(dx2 + dy2 + dz2)

hard sphere case

A0(t) =
π2(−e0 + 4n0α(t))

α4(t)

α(t) =
e0

3n0
+ ce− n0t

6

A1(t) =
π2(e0 − 3n0α(t))

3α5(t)

with f(τ, p0) = λ exp (−
p0

𝒦(τ)T0 )
× [ 4𝒦(τ) − 3

𝒦4(τ)
+

p0

T0 ( 1 − 𝒦(τ)
𝒦5(τ) )] .

𝒦(τ) ≡ 1 −
1
4

e−τ/6,with

how ?

Yi Wang, Xuan Zhao, Zhe Xu, Jin Hu, to appear

τ(t) = ∫
t

t0

1
a3(s)

ds

f(t, p0) = e− p0
α(t) (A0(t) + A1(t)p0)
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−f0(p)ℒ1[χ] ≡ f0(p)∫ dKdPf dKf f0(k)W(χ(pf) + χ(kf) − χ(p) − χ(k))
Mathematical aspects:

is self-adjoint, positive semidefinite.1. ℒ1

S.R.DeGroot  et al,  Relativistic kinetic theory 

2. ℒ1[ψ] = 0, ψ = a + b ⋅ p collision invariants

pα∂α f(x, p) = C[ f ] f(x, p) = f0(x, p)(1 + χ(x, p))

In general cases, we linearize it (we partly suppress x-dependence below)

Though linearized, it is still intractable. e.g. Chapman-Enskog, moment expansion
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Also in rare cases, the eigen spectrum

1.  Non-relativistic monatomic gases given by C.S.Wang and G.E.Uhlenbeck

Studies in the Statistical Mechanics (1970),  J.De Boer and G.E.Uhlenbeck, Chap IV

2.  Relativistic massless            theory λϕ4

G.S.Denicol, J.Noronha, Phys.Lett.B 850 (2024) 138487

( ℒ1 )for

can be solved analytically.

So many so far ! 

−f0(p)ℒ1[χ] ≡ f0(p)∫ dKdPf dKf f0(k)W

× (χ(pf) + χ(kf) − χ(p) − χ(k))
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L̂(5) = axμ ∂
∂xμ

−
1

2l + 1
pμ ∂

∂pμ
+ (1 − a)

Why full BE cannot admit scaling solution ?

 Choose  

 Relativistic BE admits the scaling solution (NTFP)   f(t, p0) = tαfs(tβp0)

t → λt, p0 → p0λ−β, f → λαf .

a(2l + 1) = 1/β,

is still the solution of BEλαf

Note time evolves = time scales !  

unless a = 1 for given β, l

Full BE with quantum effects cannot admit scaling solution ! 
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pα∂α f(x, p) = C[ f ]

 Relativistic BE admits the scaling solution (NTFP)   

Phys. Rev. Lett. 101, 041603 (2008),  J. Berges etc 

 1. momentum doesn’t scale (generally not)   

L̂(4) = xμ ∂
∂xμ

+ 1

f(t, p0) = tαfs(tβp0)

 We do have scale invariance  

 But it is trivial:   

 2. Unluckily,    L̂(4) L̂(0) together with   to L̂(3)  forms a closed algebra. 


