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» Motivation
» Ising Model

» Characteristics of the free energy landscape

® ncar the (Critical Point)CP
® ncar the 1st order Phase Transition Line (1st-PTL)

» Relative variance of the equilibration time and non-self-averaging

» Summary
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The relaxation dynamics near phase boundaries 1s a fundamental problem in non-equilibrium
statistical physics.

B Well-established: critical slowing down.

B Poorly understood: how systems relax at the first-order phase transitions (1st-PT).
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» It is found that the nonequilibrium evolution at T > T, lasts very shortly,
and the influence 1s much weaker than that at T < T.
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Teq 18 defined by the number of sweeps required for
the order parameter to reach the steady value.
N 1s the number of evolution processes.

» The average equilibration time 7., along the 1st-PT line exhibits an
ultra-slow relaxation, which 1s caused by the complex structure of the

free energy.
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Research status

*Pseudo-critical slowing down — the relaxation time diverges near the spinodal point
due to the vanishing second derivative of free energy.

*Exponential slowing down — the tunneling time between coexisting phases grows
exponentially with system size, governed by the free energy barrier.

*Metastable lifetime — shows a similar exponential dependence on system size due
to the free energy barrier.

—

The dynamical slowing down observed across different timescales can be

attributed to the structure of the underlying free energy landscape.
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Research status

Iy

T>T,

T <T,

H=0

» What would be the free energy landscape near the first-order
phase boundary far below T.?

» Would it resemble the behavior near T,.?
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ISing MOdel Metropolis algorithm

Constant nearest-neighbor interactions J
Uniform external field H

Eisy = ]ZSSJ stz if?%*
(ij) v v )?
Partition function | A\ v
_ v 1
Z(T,H) = ) exp(~Esy/ksT) 3
o N=L
S; = +1, —1

The restricted free energy :

F(m) = —kgTInZ = —kBTlnz S(my — m)exp(—Ey/kgT)
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The free energy landscape along the phase boundary
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t=2500: only a fraction of systems reach equilibrium
t=4500: equilibrium fraction increases
t=300k: almost all systems reach equilibrium
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® Necar the critical point, the
double-well of the free
energy agrees with the
Landau-Ginzburg—theory.

® Far below T,, pre-equilibrium
free energy forms a barrier—
well-barrier structure,
trapping the system at m = 0.
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The free energy landscape along the phase boundary
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® Near the critical point, the
double-well of the free

energy agrees with the
Landau-Ginzburg—theory.

® Far below T, , the growing
barrier results the ultra-
slow relaxation.
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The free energy landscape near the phase boundary
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»H=0.00001: F (m) maintains identical landscape to the zero-field case
across all temperatures.
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The free energy landscape near the phase boundary

T =4.60 T =4.52 T =4.51 T =4.50 T=4.49 T =4.20
25[(g) H=0.001 (h) (i) () (k) ()
—e— t= 2500 Of Of of o} ot
O _. t=4a500
0.0 0.1 0.0 0.2 0.0 0.2 —-0.25 0.00 0.25 —-0.250.00 0.25 ~0.5 0.0 0.5
m m m m m m

»H=0.001: the symmetric profile becomes asymmetric, with the
minimum shifting rightward along the magnetization axis.
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The free energy landscape near the phase boundary
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»H=0.01: the metastable minimum vanishes completely across all temperatures.
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Relative variance of the equilibration time and self-averaging

® The existence of coexistence states and metastable states at 1st-PT
increases the randomness and uncertainty of the time evolution.

® To comprehensively understand the relaxation dynamics, the relative variance of
Teqls defined as:

If Rreqtends to zero as the system size increases, T, 18 self-averaging.
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R, along the phase boundary
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* For(a): The Rreq exhibits self-divergence at the 1st-PT line but non-self-averaging at the

CP, revealing a previously unrecognized feature of the 1st-PT.
* For (b): The self-divergence characteristic of the 1st-PT disappears gradually when the
system 1s away from the phase boundary.
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R, along the phase boundary
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* The self-divergence behavior 1s observed not only at the 1st-PT line but also
in 1ts close vicinity.
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» Comprehensive free energy landscape: We constructed the free energy
landscape along the entire first-order phase transition line, which provides
valuable 1nsight into the relaxation behavior across the 1st-PT boundary.

» Verification of ultra-slow relaxation: Fine pre-equilibrium structures trap
random initial states, further confirming the ultra-slow relaxation
previously identified along the 1st-PT line.

» New hallmark of 1st-PT: The self-divergence of the relative variance of

equilibration times reveals a previously unrecognized feature of first-order
phase transitions.

Thanks to attention.
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