

Probing Nucleon-Ωccc Interaction via Lattice QCD at Physical Quark Masses

SPEAKER: LIANG ZHANG (SINAP)

COOPERATOR: TAKUMI DOI (ITHEMS), YAN LYU (ITHEMS),

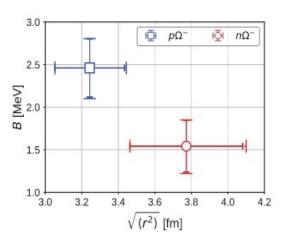
TETSUO HATSUDA (ITHEMS), YU-GANG MA (FDU)

FOR HAL QCD COLLABORATION

arxiv:2508.10388

Introduction

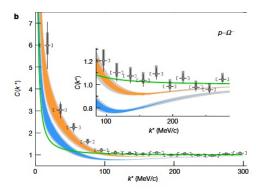
Theoretical Efforts



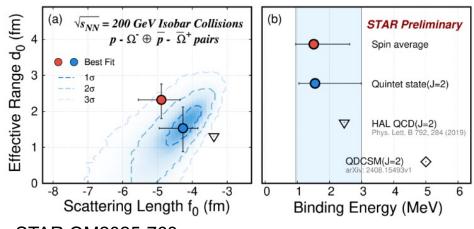
HALQCD:2018qyu

A quasibound state for 5S_2 $N\Omega_{3s}$ $E_h=-0.1-0.7i$ MeV w/o Coulomb $E_h=-1.0-1.0i$ MeV w/ Coulomb Calculated by Sekihara:2018tsb

Experimental Efforts



ALICE:2020mfd



STAR:QM2025-763

Belle's effort: Uchida, 30p1C 14:35

A Possible Bound Dibaryon

$N\Omega_{3s}$

Further researches:

- Bound $NN\Omega_{3s}$ and $N\Omega_{3s}\Omega_{3s}$ hypernuclei (Garcilazo:2019igo)
- Investigating the production of $N\Omega_{3s}$, $NN\Omega_{3s}$ and $N\Omega_{3s}\Omega_{3s}$ in Heavy Ion collisions (Zhang: 2020dma, Zhang:2021vsf)
-

Introduction

Theoretical Efforts

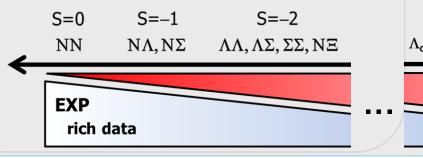
Quark model prediction:

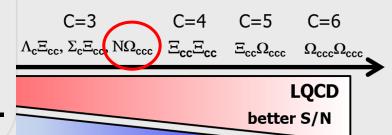
	a_0 (fm)	r_0 (fm)	B' (MeV)
ChQM	1.4989	0.40810	-15.5
QDCSM	1.3347	0.43343	-21.6

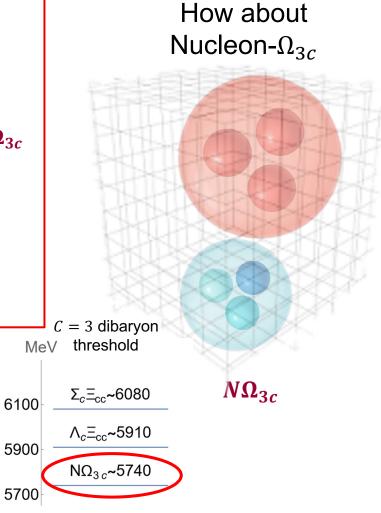
Huang:2019esu

- Unlike $N\Omega_{3s}$ system¹ limited by open channels
- The lowest threshold among C = 3 dibaryons ($\sim 5740 \text{ MeV}$)
- Clean setting to study low-energy $N\Omega_{3c}$ interactions.
- Enables phenomenological study of scattering mechanism
- Implications for possible charm hypernuclei

First-principles calculations from lattice QCD can provide a valuable theoretical prediction for such triply charmed states.



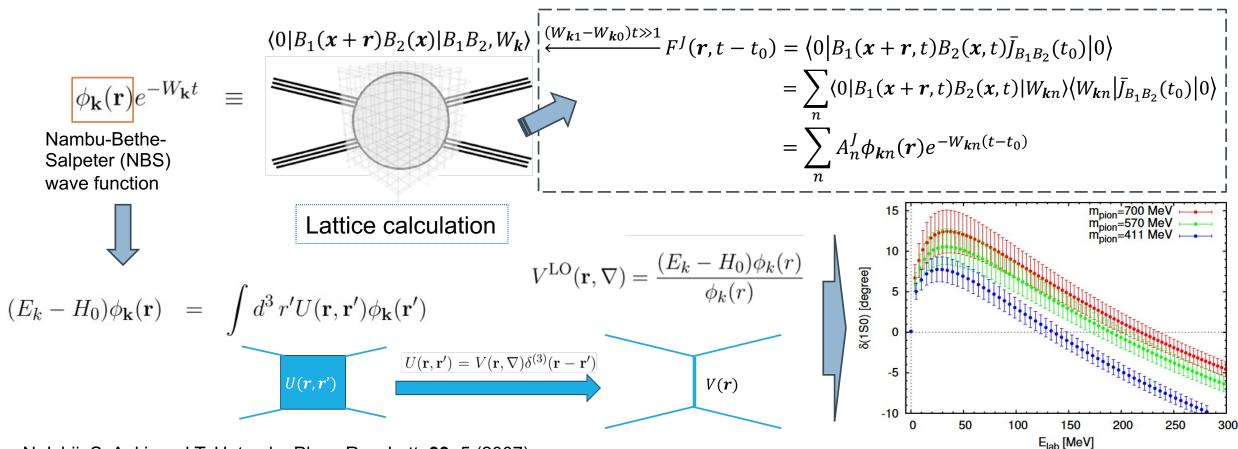




[1] HALQCD:2018qyu

HAL QCD method

HAL QCD method provide a First-Principles calculation method on hadron interaction.



N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 5 (2007).

S. Aoki and T. Doi, Front. Phys. 8, 1 (2020).

From N. Ishii, *Pos(Cd12*), p. 25.

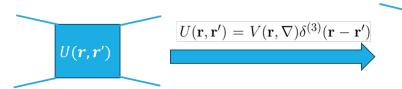
HAL QCD method

Time-dependent HAL method^{1,2,3} used in this work

$$R^{J}(\boldsymbol{r},t) = \frac{F^{J}(\boldsymbol{r},t)}{G_{B_{1}}(t)G_{B_{2}}(t)} = \sum_{n} B_{n}^{J} \phi_{\boldsymbol{k}n}(\boldsymbol{r}) e^{-\Delta W_{\boldsymbol{k}n}t}$$

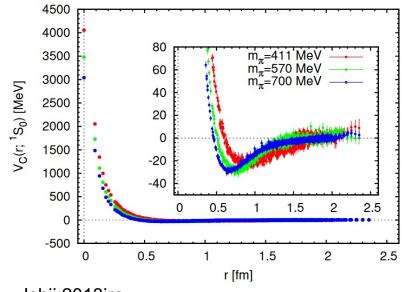
$$E_n \equiv \frac{k_n^2}{2\mu} = \Delta W_n + \frac{1 + 3\delta^2}{8\mu} (\Delta W_n)^2 + \mathcal{O}\left((\Delta W_n)^3\right)$$

$$\left(\frac{1+3\delta^2}{8\mu}\partial_t^2 - \partial_t - H_0\right)R^J(\boldsymbol{r},t) = \int d^3\boldsymbol{r}' U(\boldsymbol{r},\boldsymbol{r}')R^J(\boldsymbol{r}',t)$$



PHYSICAL POINT CALCULATION IS

AVAILABLE NOW!4

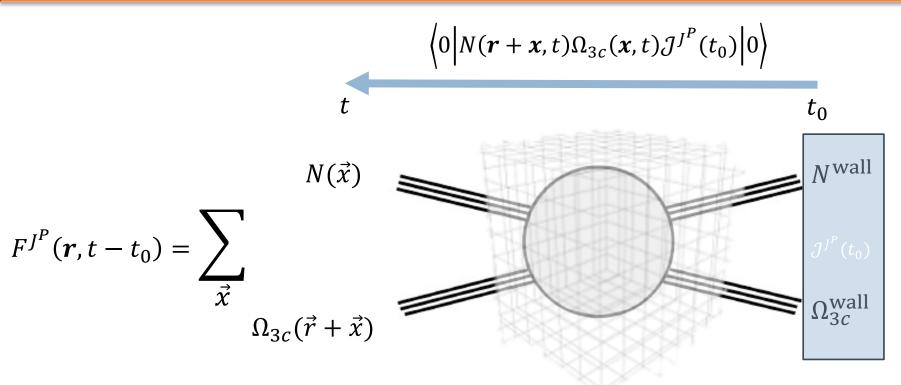


Ishii:2013ira.

$$\frac{V(\mathbf{r})}{8\mu} \partial_t^2 - \partial_t - H_0 R^J(\mathbf{r}, t) = \int d^3 \mathbf{r}' U(\mathbf{r}, \mathbf{r}') R^J(\mathbf{r}', t)$$

- [1] Ishii:2006ec
- [2] Ishii:2012ssm
- [3] Aoki:2020bew
- [4] Aoyama:2024cko

$N\Omega_{ccc}$ system



$$N_{\alpha}(\boldsymbol{x}) = \varepsilon_{i,j,k} \left(u^{iT}(\boldsymbol{x}) C \gamma_5 d^j(\boldsymbol{x}) \right) q_{\alpha}^k(\boldsymbol{x}) \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$$
$$\Omega_{ccc\beta,l}(\boldsymbol{x}) = \varepsilon_{i,j,k} c_{\beta}^i(\boldsymbol{x}) \left(c^{jT}(\boldsymbol{x}) C \gamma_l c^k(\boldsymbol{x}) \right)$$

1. Using wall source

- 2. Calculating 4-point correlation $F^{J^P}(\mathbf{r}, t t_0)$ with source projected to J^P state
- 3. Calculate $R^{J^P}(\mathbf{r}, t t_0)$ for time-dependent HAL method
- 4. Solve effective potential
- 5. Calculate observables

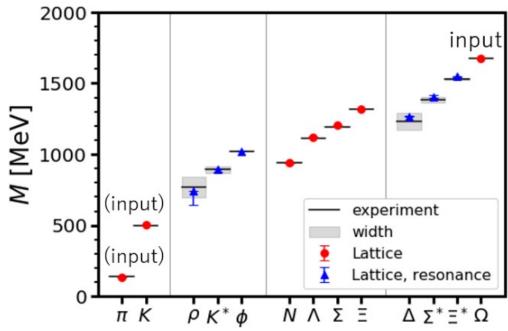
Wall Source

$$q^{\text{wall}}(t_0) \equiv \sum_{\vec{x}} q(\vec{x}, t_0)$$

Configurations

Here we using HAL-conf-2023¹ to do the calculation which enable lattice simulations at the physical point on a large lattice volume and with a large number of ensembles.

- \checkmark (2 + 1)-flavor nonperturbatively improved Wilson fermions with stout smearing
- ✓ the Iwasaki gauge action
- ✓ Size of the lattice is 96⁴, corresponding to (8.1fm)⁴ in physical units
- $\checkmark a^{-1} = 2338.8(1.5)(^{+0.2}_{-3.0}) \text{ MeV}$
- $\checkmark m_{\pi} \simeq 137 \, MeV$, $m_{K} \simeq 502 \, MeV$ (at the physical point)
- √ 8,000 trajectories

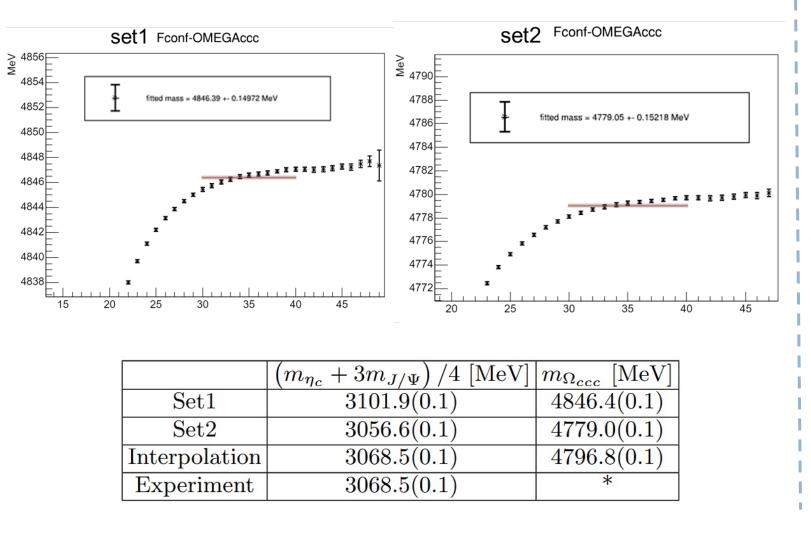


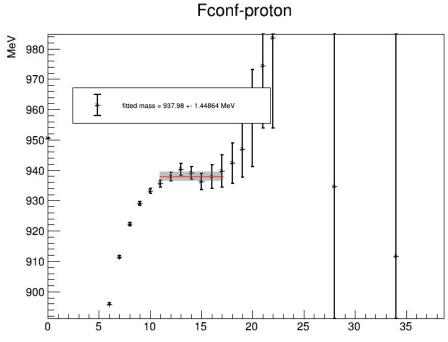
Charm quark is simulated by relativistic heavy quark (RHQ) action², we adopt two sets of RHQ parameters, one heavier charm mass and one lighter, to do interpolation towards physical charm mass.

[1] Aoyama:2024cko

[2] Aoki:2001ra

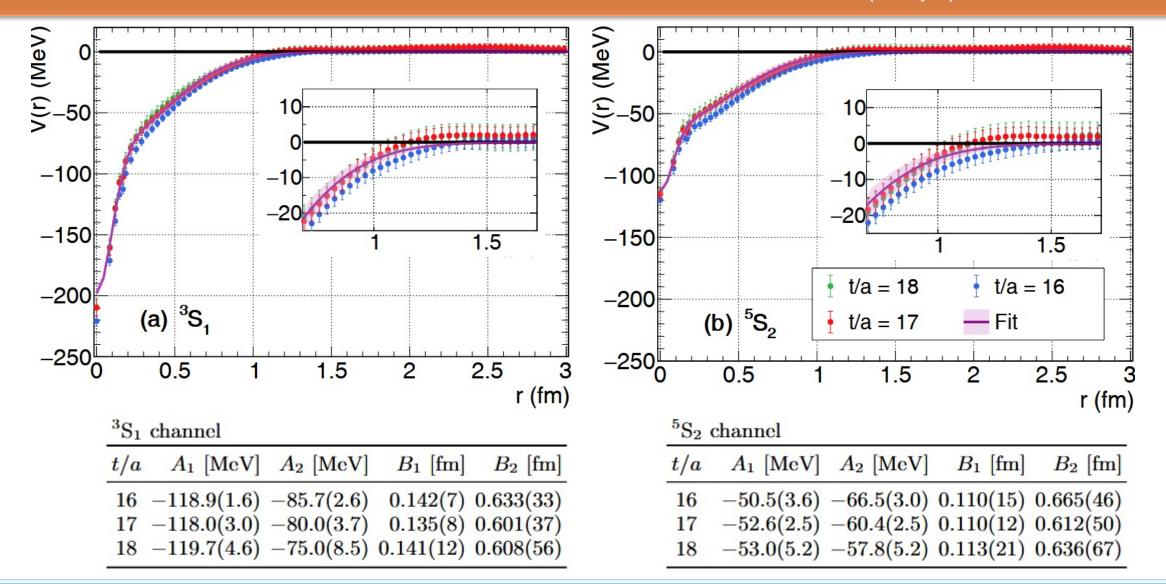
Mass measurement





$N\Omega_{ccc}$ potentials

Fitted with $\sum_{i=1}^{2} A_i \exp\left(-\left(\frac{r}{B_i}\right)^2\right)$ with $r \in [0.08, 3.00]$ fm

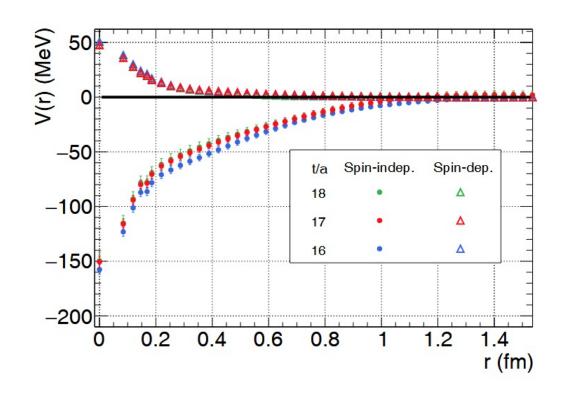


Decomposed $N\Omega_{ccc}$ potentials

We further decompose the potential V_{LO}^{J} into the spin-independent central potential V_0 and the spin-dependent one V_S with the 3S_1 and 5S_2 channels, extracted as,

$$\begin{split} V_{\text{LO}}^{J}(r) &= V_0(r) + \vec{s}_{\scriptscriptstyle N} \cdot \vec{s}_{\scriptscriptstyle \Omega_{3c}} V_s(r) \\ \vec{s}_{\scriptscriptstyle N} \cdot \vec{s}_{\scriptscriptstyle \Omega_{3c}} &= \frac{1}{2} \left(J(J+1) - \frac{3}{4} - \frac{15}{4} \right), \\ V_0 &= \frac{1}{8} \left(5 V_{\text{LO}}^{J=2} + 3 V_{\text{LO}}^{J=1} \right), \\ V_s &= \frac{1}{2} \left(V_{\text{LO}}^{J=2} - V_{\text{LO}}^{J=1} \right). \end{split}$$

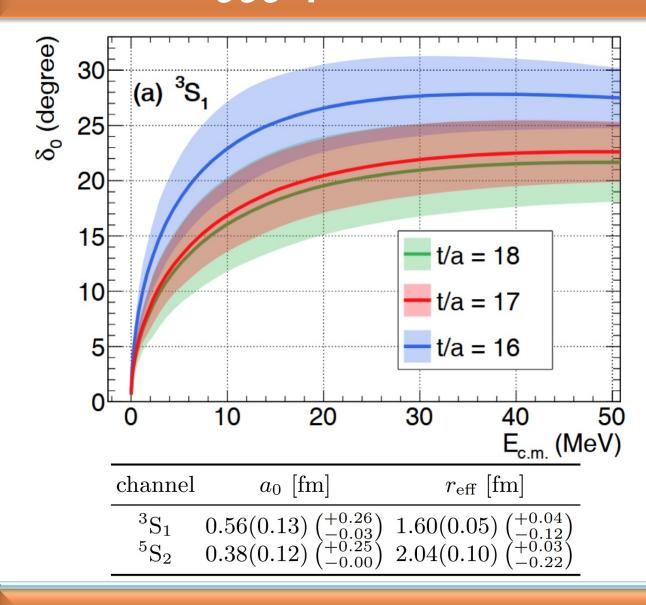
- The spin-dependent potential makes a significant contribution at short distances.
- The spin-independent potential gives a dominating contribution for whole $N\Omega_{3c}$ potentials

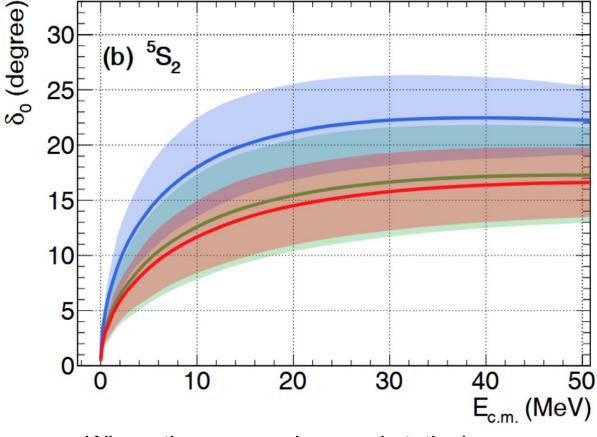


What can we learn from the lattice calculated potentials

$N\Omega_{ccc}$ phase shift

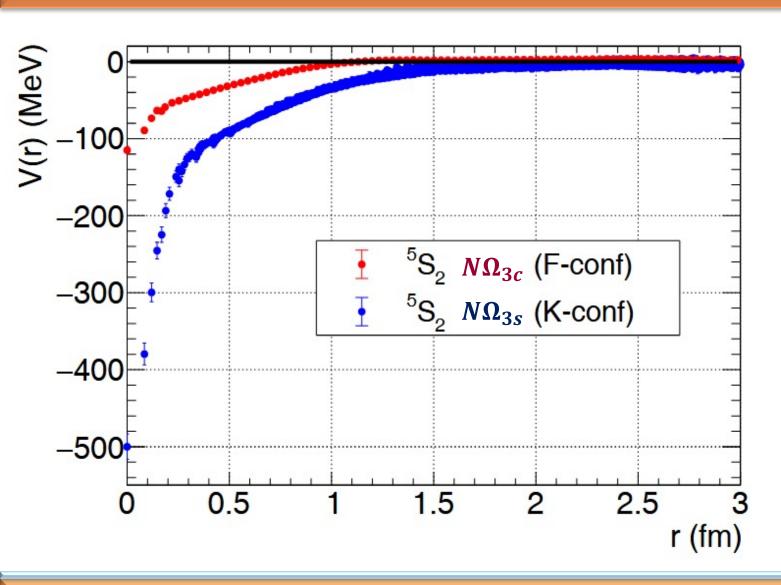
No Bound State Found according to Levinson's theorem





Where the mean values and statical errors are calculated from t/a=17And the systematic errors are derived from t/a=16 and 18.

Comparison of $V^{J=5/2}$ between $N\Omega_{ccc}$ and $N\Omega_{sss}$



 5S_2 $N\Omega_{3c}$ (Fconf) potential exhibits a similar shape but is 2–5 times less attractive compared to the 5S_2 $N\Omega_{3s}$ (Kconf)¹

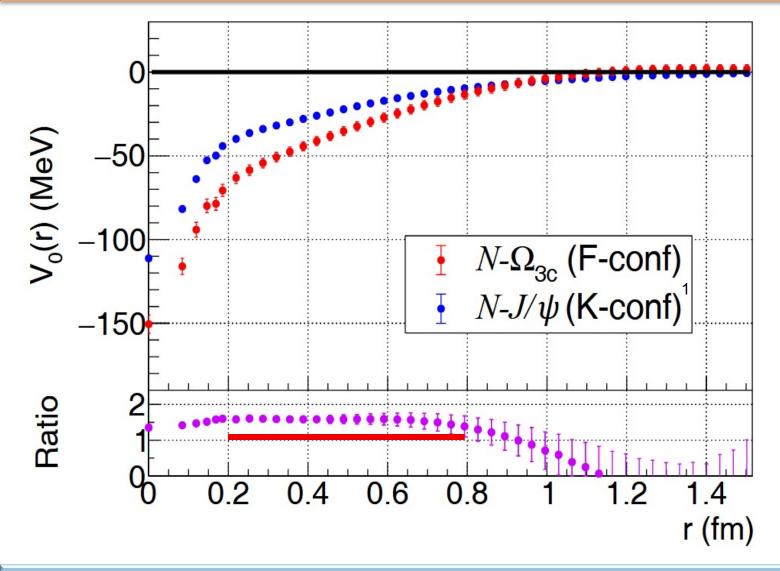
There are two possible reasons:

- ◆ The exchange of two kaons (K) is deeper and longer-ranged than two D mesons.
- At short distances, the chromomagnetic interaction may also contribute, which is inversely proportional to the constituent quark mass²

[1] HALQCD:2018qyu

[2] Oka:1986fr

Comparison of spin-independent potentials V_0 between $N\Omega_{ccc}$ and NJ/ψ



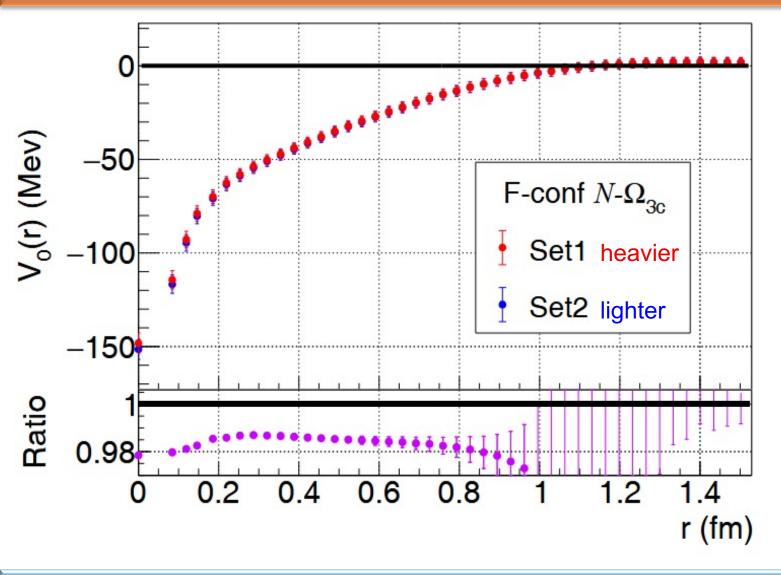
- The soft-gluon exchange governs the scattering for NJ/ψ^2 , which related to V_0 (gWEFT³).
- Figure 3.2. Given the observed similarity between the $N\Omega_{3c}$ and NJ/ψ potentials. Extend similar mechanism to $N\Omega_{3c}$
- The plateau shown indicates the ratio between the coupling strength of the Ω_{3c} to the gluon field and that of the J/ψ to the gluon field.

[1] Lyu:2024ttm

[2] Wu:2024xwy

[3] Dong:2022rwr

Comparison of V_0 between different charm mass for $N\Omega_{ccc}$ system



- > Charm quark mass dependence is found in the spin-independent $N\Omega_{3c}$ potential
- The obtained ratio between these two sets of potential may imply that the charm quark mass dependence is described by an approximate $\frac{1}{m_{\Omega_{3c}}}$ scaling.

Summary

- Performed physical-point lattice QCD simulation to analyze the $N\Omega_{3c}$ interaction with HAL QCD method.
- lacktriangle Reported $N\Omega_{3c}$ 3S_1 and 5S_2 effective potentials and phase shifts from lattice calculation
 - Overall attractive for both channels
 - \triangleright Dominated by spin-independent potential V_0 , with a short-range spin-dependent potential V_s
 - There is no bound state found in $N\Omega_{3c}$ system
 - $> {}^5S_2 N\Omega_{3c}$ (Fconf) potential is qualitatively weaker than ${}^5S_2 N\Omega_{3s}$ (Kconf)
 - V_0 of $N\Omega_{3c}$ is similar with $NJ/\psi \Rightarrow$ possibly governed by the same soft-gluon exchange mechanism
 - rightharm mass dependence of V_0 of $N\Omega_{3c}$ is also observed

Back up

Ω_{ccc} hypernuclei

For A = 3 case: No bound state is found in $\Omega_{3c}NN$, but serval resonances are found via the Faddeev equations^{1,2}

For higher A case: we apply folding model to estimate the existence of Ω_{3c} hypernuclei

Core nuclei	Ω_{3c} separation energy / MeV		
	w/o coulomb	w/ coulomb	
¹² C	8.31(2.26) 0 2 4 6 8 10 12 14	0.127(-)	
²⁸ Si	10.7(2.45) 0 2 4 6 8 10 12 14	20 0 2 4 6 8 10 12 14	
⁴⁰ Ca	11.5(2.51)	20 0 2 4 6 8 10 12 14	
⁵⁸ Ni	12.4(2.61) 0 2 4 6 8 10 12 14	0 2 4 6 8 10 12 14	
^{90}Zr	12.8(2.61) 0 2 4 6 8 10 12 14	20 0 2 4 6 8 10 12 14	
²⁰⁸ Pb	12.5(2.44) 0 2 4 6 8 10 12 14	40 20 0	

 ρ_A is token form El-AzabFarid:2000mgb

$$V_F(\vec{r}) = \int d^3r'
ho_A(\vec{r}') V_{0,N\Omega_{3c}}(\vec{r} - \vec{r}')$$
 ,

 $V_{0,N\Omega_{3c}}$ is the spin-independent potential of $N\Omega_{3c}$ system obtained from the mean value of t/a=17

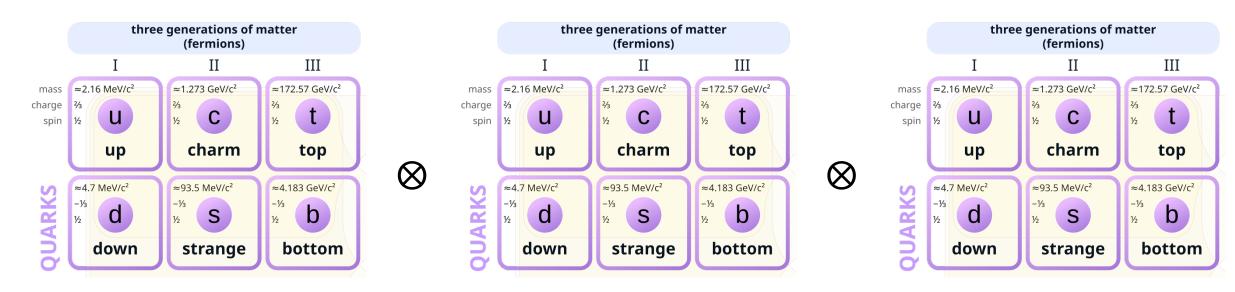
 Ω_{3c}^{++} - ^{12}C could be a Ω_{3c} hypernuclei candidate

Due to the strong coulomb repulsion, heavier Ω_{3c} hypernuclei may not exist

- [1] Filikhin:2025ige
- [2] Etminan:2025emv

Introduction

From quark model, it's nature that we will have all these baryons defined as this formula shows



The baryon with highest charm number predicted by quark model is Ω_{ccc} , which is predicted with mass around 4.8~4.9 GeV from different model¹⁻⁵

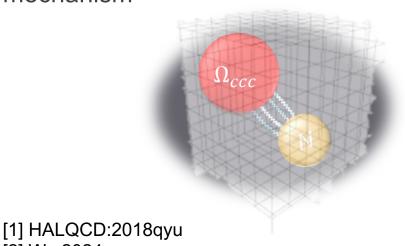
Although it's not found in experiment, theoretical research has long been carried out. Except its mass, the production in HIC⁴, di- Ω_{ccc} interaction⁵ and other properties have been studied

^[1] P. Hasenfratz *et al.*, Phys. Lett. B **94**, 401 (1980). [2] J. D. Bjorken, AIP Conf. Proc. **132**, 390 (1985). [3] PACS-CS Collaboration *et al.*, Phys. Rev. D **87**, 94512 (2013). [4] H. He, Y. Liu, and P. Zhuang, Physics Letters B **746**, 59 (2015). [5] Y. Lyu *et al.*, Physical Review Letters **127**, 72003 (2021).

Introduction

• The HAL QCD Collaboration has revealed a strongly attractive interaction in the $N\Omega$ system, suggesting the formation of a quasibound state¹.

• At the low-energy, NJ/ψ scattering is dominated by the soft gluon exchange mechanism²

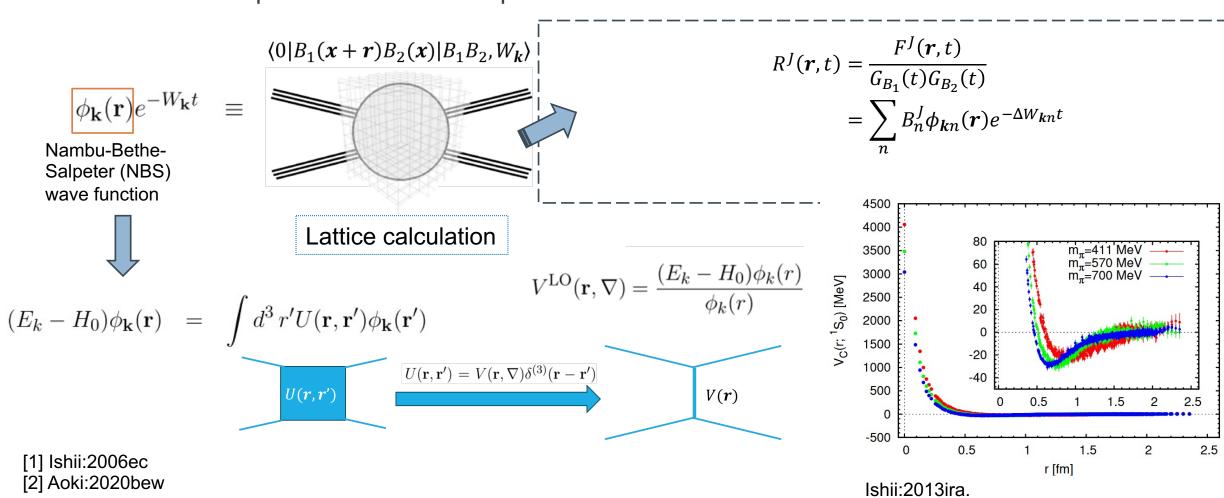


- \square Ω_{3c} hypernuclei
 - Similar with $N\Omega_{3s}$ system, interaction between $N\Omega_{3c}$ may be attractive due to there is no Puail blocking between valance quarks.
 - \triangleright Existence of heavier Ω_{3c} hypernuclei.
- ■What kind of mechanism behind $N\Omega_{3c}$ system?
 - > Suppressed light-meson exchange due to Okubo-Zweig-lizuka (OZI) rule violation in both $N\Omega_{3c}$ and NJ/ψ
 - Comparison between $N\Omega_{3c}$ and NJ/ψ potentials provides a valuable reference framework for understanding heavy-quark nuclear interactions

HAL QCD method

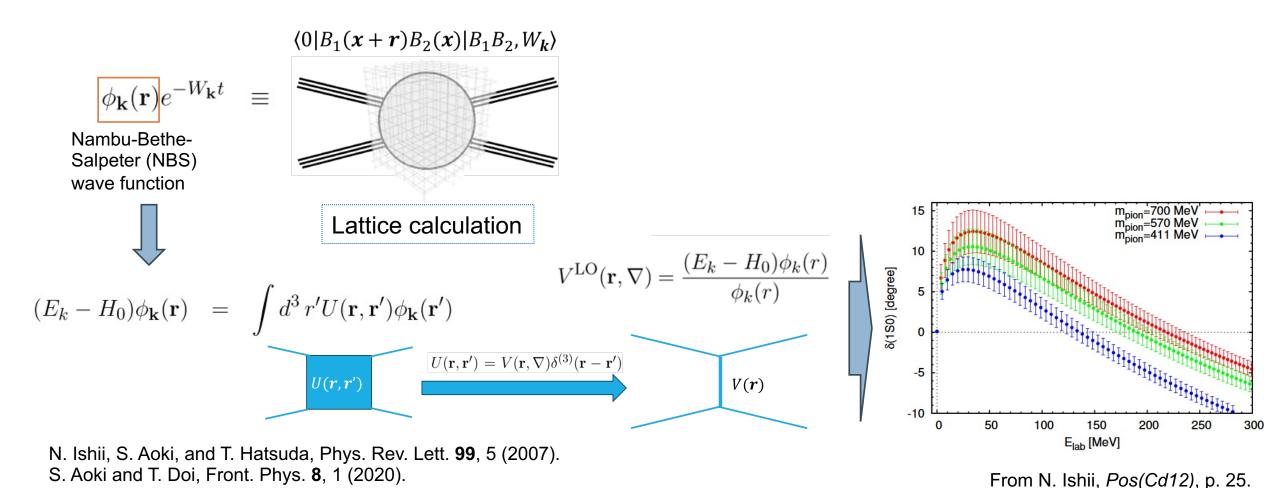
Related talk: Doi, 29a1 10:00 Murakami, 29p1B 14:45 Sasaki, 30p1B 15:25 Murase, 1p1B 15:25

HAL QCD method provide a First-Principles calculation method on hadron interaction.



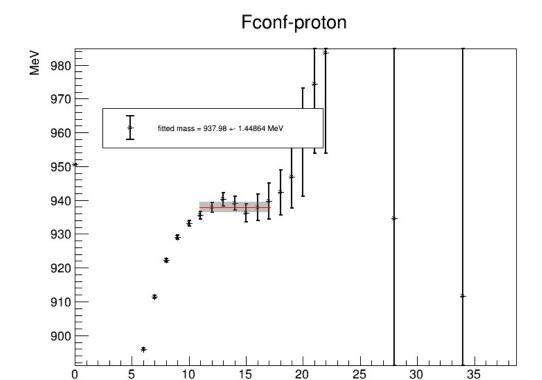
HAL QCD method

HAL QCD method provide a First-Principles calculation method on hadron interaction.

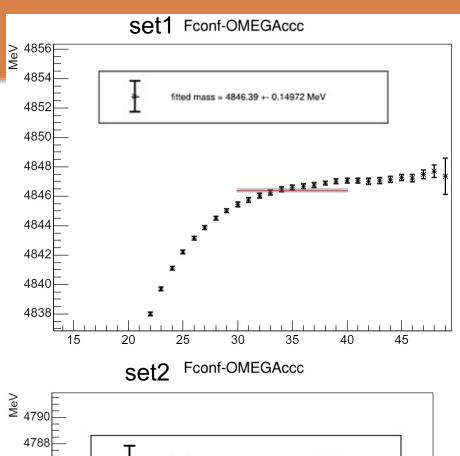


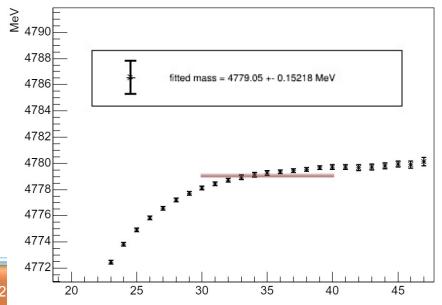
2025/10/27 QPT 2025 21

Mass measurement



	$\left(m_{\eta_c} + 3m_{J/\Psi}\right)/4 \text{ [MeV]}$	$m_{\Omega_{ccc}} [{ m MeV}]$
Set1	3101.9(0.1)	4846.4(0.1)
Set2	3056.6(0.1)	4779.0(0.1)
Interpolation	3068.5(0.1)	4796.8(0.1)
Experiment	3068.5(0.1)	*





2025/10/27 QPT 202 20 25 30 35 40 45 22

Summary

We perform the physical point simulation by employing "HAL-conf-2023" generated by the HAL Collaboration

Using HAL QCD method to analysis $\Omega_{ccc} - N$ interaction

- Reported $\Omega_{ccc}N^{-3}S_1$ and 5S_2 effective potential
- ➤ As well as these channels' phase shift
- ➤ Both potentials are overall attractive
- \triangleright But we don't find a bound state for $\Omega_{ccc}N$ system

What's more can we learn from $\Omega_{ccc} - N$ interaction

Folding potentials

