Status of Physics Performance

CEPCSW TDR25.03.6 release on March 14

- (Several bug fixes since 25.03.0 release on March 3)
- Switched to 15mm x 15mm Crystal Bar
- Much improved PFO algorithm for ECal/HCal clustering
 - number of PFOs now very close to the number of MC particles
 - small issue observed missing H/E information
- Hits in muon chambers reconstructed
 - but magnetic field set to be 0 in return yoke due to time constraint
 - still working on track propagation through calorimeters to match muon hits
 - muon ID inside jets, important for flavor physics and jet flavor tagging
- Event mixing not ready
 - Agree to evaluate only performance degradation at object level later: Tracking, TPC, etc.
- PID package being worked out
- Mass production of TDR samples started since March 14
 - CPU/evt in good control, while some memory issues cause inefficiency of CPU usage – small number of nodes with large memory
 - simulation + digi + tracking -> ~24 s/evt, 4.x GB memory for job with 200 evts
 - rec -> ~6 s/evt, 6 GB for job with 200 evts

Tracking

Tracking momentum resolution

Chenguan Zhang, Hao Zhu

Few outliers will be fixed with better fits NO BIG ISSUES observed

Curve of $1.7 \times 10^{-5} \oplus 1.2 \times 10^{-3} / (p \cdot sin\theta)$ shown for illustration

Material maps used in sim and rec are now simplified and consistent

Impact parameter resolution

Chenguan Zhang, Hao Zhu

Tracking angular resolution

Chenguan Zhang, Hao Zhu

Tdr25.1.0

5

Tracking efficiencies

Sample: E124_nnHbb

Chenguan Zhang

Improved tracking efficiency in new release

Hit efficiency recovered in 25.3.0

Performance update of PID (charge hadron, lepton, photon) and vertexing in 25.3.6 will be shown in next meeting

Jets

ZH->vvbb sample

JER vs E

JES vs E

ZH->vvgg sample

JER vs E

JER vs cos

Physics level: without event cleaning **Detector level**: with event cleaning |Pt_isr|, |Pt_v|<1GeV. |cos_theta|<0.85 in the table.

Xiaotian Ma, et. al.

	Case	process	$ZH \rightarrow \nu \nu gg$	$ZH \rightarrow \nu \nu bb$	$ZH \rightarrow \nu\nu cc$	$ZH \rightarrow \nu \nu u u$	$ZH \rightarrow \nu \nu dd$	$ZH \rightarrow \nu \nu ss$
	Physical	BMR/%	4.00 ± 0.01	4.36 ± 0.03	4.16 ± 0.03	3.79 ± 0.01	3.97 ± 0.01	4.44 ± 0.01
25.1.0	level	Efficiency/%	73.3	73.7	74.0	74.2	74.1	74.1
	Detector level	BMR/%	3.95 ± 0.01	3.74 ± 0.02	4.01 ± 0.01	3.77 ± 0.01	3.95 ± 0.01	4.40 ± 0.01
		Efficiency/%	65.7	28.1	48.6	70.3	70.1	70.2
	Case	process	$ZH \rightarrow yyaa$	711 Anich	711	711	711	711
		process		$Z\Pi \rightarrow VVDD$	$ZH \rightarrow VVCC$	$ZH \rightarrow vvuu$	$ZH \rightarrow vvaa$	$ZH \rightarrow \nu\nu ss$
	Physical	BMR/%	3.87 ± 0.01	4.37 ± 0.03	$2H \rightarrow VVCC$ 4.09 ± 0.02	3.82 ± 0.01	3.97 ± 0.01	$2H \rightarrow vvss$ 4.33 ± 0.01
25.3.0	Physical level	BMR/% Efficiency/%	3.87 ± 0.01 74.4	4.37 ± 0.03 74.5	$2H \rightarrow VVCC$ 4.09 ± 0.02 74.8	3.82 ± 0.01 74.9	$2H \rightarrow vvaa$ 3.97 ± 0.01 74.8	$2H \rightarrow vvss$ 4.33 ± 0.01 74.8
25.3.0	Physical level Detector	BMR/% Efficiency/% BMR/%	3.87 ± 0.01 74.4 3.82 ± 0.01	$ \begin{array}{c} 2H \rightarrow 0.000 \\ 4.37 \pm 0.03 \\ 74.5 \\ 3.70 \pm 0.01 \end{array} $	$2H \rightarrow VVCC$ 4.09 ± 0.02 74.8 3.92 ± 0.01	$2H \rightarrow 0.01$ 3.82 ± 0.01 74.9 3.80 ± 0.01	$2H \rightarrow 0.01$ 3.97 ± 0.01 74.8 3.94 ± 0.01	$2H \rightarrow vvss$ 4.33 ± 0.01 74.8 4.30 ± 0.01

Observation: better BMR in 25.3.0 with 15mm x 15mm crystal bar geometry than 10x10 in 25.1

Should be due to the improved PFA clustering

Dijet mass and BMR of barrel and endcap

Much worse resolution in endcap as expected

Jet Flavor Tagging with BDT

- With similar set of variables as ILD (ILD paper <u>arXiv:1506.08371</u>)
- Much better performance compared to ILD
 - caveat: missing beam background, electronic noise in RefTDR

More details in Minlin Wu's talk

Jet Origin ID (JOI)

Based on Particle Transformer

 $- \mathbf{L} - \varepsilon_d$ for CDR

25.01

No vertex used, but learn from track impact parameters

- JOI implemented with TDR simulations
- In general slightly better performance observed than CDR (both with truth PID)

 $- \pm - \varepsilon^T / \varepsilon^C$

cosθ_{iet}

- Could be due to better VTX, and ???
- Will be repeated in 25.03.6 with reco PID

First look at benchmarks

mH through recoil mass

Fitted by exponential & TwosidedCB mH=125.281 GeV, Stat unc. = 2.4 MeV Currently only barrel muons considered

- cos(theta)<0.85, and truth muon ID
- Reasonable STAT unc. on mH ~ 2.4 MeV with 20/ab
- Might have 2 or 3 categories in TDR
 - barrel-barrel, barrel-endcap, endcapendcap
 - Stat unc. will be further improved
- Systematic uncertainties to be be

investigated

- Beam energy spread, muon pT resolution/scale, etc.
- Syst. unc. in endcap could be larger

25.01

Search for Higgs invisible

Kinematic selection

Copy the selection criteria from Chinese Phys. C 44 123001

> qq final state

Process	eeH	mmH	qqH	SZ	SW	SZW	ZZ	ww	zzww	2f	Hincl	All bkg
Total yield	140800	135400	2736200	32403400	69705000	4989600	22819400	181522200	73003000	1082137200	4073200	140800
Kin sel	23	0	1626945	244397	128022	0	182434	601706	20246	97783	55033	23
eff (%)	0.0163	0.000	59.460	0.754	0.184	0.000	0.800	0.332	0.028	0.009	1.351	0.0163
eff CDR (%)	-	-	60.81	0.66	0.06	0.00	0.64	0.21	0.02	0.00	0.97	0.03

- With 5.6 ab-1 or 20 ab-1
- 3 Z final states considered, sensitivity dominated by Zqq as expected
- Fit Mmis
- No systematic uncertainties yet
- Compute expected BR(H→invisible)
 - SM BR(H→invisible)≈0.1%

Final state	Uncertainty	Upper limit	Upper limit (CDR)
ee	$(1.00^{+4.68}_{-1.00})\cdot 0.1\%$	0.921%	1.08%
μμ	$\left(1.00^{+2.53}_{-1.00} ight)\cdot 0.1\%$	0.495%	0.55%
qq	$(1.00^{+1.21}_{-1.00}) \cdot 0.1\%$	0.237%	0.27%
All	$\left(1.00^{+1.05}_{-0.92} ight)\cdot 0.1\%$	0.202%	0.26%

5.6 ab-1

Final state	Uncertainty	Upper limit
ee	$(1.00^{+2.46}_{-1.00}) \cdot 0.1\%$	0.483%
μμ	$(1.00^{+1.28}_{-0.86}) \cdot 0.1\%$	0.234%
qq	$(1.00^{+0.64}_{-0.64}) \cdot 0.1\%$	0.125%
All	$\left(1.00^{+0.55}_{-0.53} ight)\cdot 0.1\%$	0.102%
	20 ab-1	

Summary

- Studies on physics object performance through full simulation shown
 - Tracking pT resolution $1.7 \times 10^{-5} \oplus 1.2 \times 10^{-3}/(p \cdot sin\theta)$ for polar angle at 85°
 - PID (TPC+TOF)~ 3σ separation power for 3-10 GeV pi-K
 - BMR reaches the design goal: ~ 3.82% in TDR vs. 3.75% in CDR for Hgg
 - Excellent vertex performance as expected
 - Preliminary results show very promising jet flavor tagging and JOI performance
- Moving to physics benchmark studies with 25.03.6 release
 - Mass production started on March 14
 - Though still some developments ongoing
 - Hopefully final results ready in 2 weeks