Challenges and opportunities with jets: from small to large system

Opportunities and Ideas at the QCD Frontier

Apr 7 – 11, 2025 中国高等科学技术中心

Yaxian MAO (毛亚显)

Central China Normal University

Phase transition in nature

QCD (the strong interaction sector of the Standard Model of particles and forces) predicts: "at sufficient high energy density (provided by HIC) nuclear matter undergoes a transition from ordinary matter to a new state of matter called the Quark Gluon Plasma (**QGP**)"

The Quark-Gluon Plasma (QGP)

quark-gluon plasma (QGP)

Phase transition at high temperature or density to deconfined state of quarks and gluons

Calculations on the lattice predicts smooth crossover at ~155 MeV at low baryon density Created at the LHC at RHIC using ultra-relativistic heavy-ion collisions

Probing the QGP

- - hydrodynamic flow
 - hadron chemistry and kinematics
 - electromagnetic radiation from QGP
 - quarkonium disassociation/regeneration

Central China Normal University

Hard probes traverse the QGP

Probing QGP with jets

Vacuum fragmentation (e.g. pp collisions)

Collimated sprays of hadrons resulting from fragmentation and subsequent hadronization of "high-energy" partons (quarks&gluons)

Probing QGP with jets

Vacuum fragmentation (e.g. pp collisions)

Collimated sprays of hadrons resulting from fragmentation and subsequent hadronization of "high-energy" partons (quarks&gluons)

In-medium fragmentation (e.g. Pb-Pb collisions)

Quenching→parton lose energy through medium-induced gluon radiations and collisions with medium constituents

- Study structure of QGP by understanding jet modification from medium interaction (jet quenching)
- Several types of jet observables
 - Jet yields and constituents \rightarrow suppression and energy redistribution
 - Jet reconstruction and declustering \rightarrow jet substructure modification
 - Jet correlations and tagging \rightarrow angular deflection and asymmetry

Jets as a probe of the quark-gluon plasma

Energy Redistribution ("loss") ://www.int.washington.edu/node/776

Substructure modification

Defle	ction	
		1
		2
	0000	

- Study structure of QGP by understanding jet modification from medium interaction (jet quenching)
- Several types of jet observables
 - Jet yields and constituents \rightarrow suppression and energy redistribution
 - Jet reconstruction and declustering \rightarrow jet substructure modification
 - Jet correlations and tagging \rightarrow angular deflection and asymmetry

Goal: design observables to disentangle effects and extract properties of the QGP

Jets as a probe of the quark-gluon plasma

Energy Redistribution ("loss") ://www.int.washington.edu/node/776

Deflection

Substructure modification

A (incomplete) roadmap of jet measurements

Jet shapes/ substructure

Groomed/ Ungroomed substructure

Energy Correlators

Flow

Yaxian MAO Central China Normal University

A (incomplete) roadmap of jet measurements

Jet shapes/ substructure

Groomed/ Ungroomed substructure

Energy Correlators

Flow

Yaxian MAO Central China Normal University

Jets (in vacuum)

In the early stage of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons

in-vacuum fragmentation

ATLAS, pp collision event display

In the early stage of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons

in-vacuum fragmentation

When a QGP is formed, the colored partons traverse and interact with a colored medium

- in-medium fragmentation
- jet "quenching" (energy loss)

Goal: understand the nature of this energy loss to characterize the strongly-interacting QGP

Jets (in medium)

Nuclear modification factor

$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{dN_{\rm AA}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$

$egin{aligned} R_{\mathrm{AA}} > 1 & ightarrow ext{enhancement} \ R_{\mathrm{AA}} = 1 & ightarrow ext{no medium modification} \ R_{\mathrm{AA}} < 1 & ightarrow ext{supression} \end{aligned}$

Jet suppression and energy redistribution

- Jet and high p_T hadron suppression observed over extensive range
 - Interplay between high p_T and jet results
- New ML&ME techniques allow for the extension to lower jet p_{T} and large R
 - Allows for an overlapping regime between RHIC and LHC

Flavor dependence of parton energy loss

PRC 91 (2015) 054908; PRC 94 (2016) 014909; PLB 805 (2020) 135424

- Flavor dependence involves: a) color charge differences; b) mass dependence
- Flavor dependence of energy loss: E_{1}^{gluon} loss

$$> E_{\text{loss}}^{\text{light-quark}} > E_{\text{loss}}^c > E_{\text{loss}}^b$$

Energy loss dependence on parton flavor/mass

• Color charge dependence of energy loss: $E_{loss}^{gluon} >$

Energy loss dependence on parton flavor/mass

- Color charge dependence of energy loss: $E_{loss}^{gluon} >$
- γ -tagged (quark enriched) jets are less suppressed than inclusive (gluon dominated) jets

Fquark loss

Energy loss dependence on parton flavor/mass

- small angles —"Dead Cone" effect
- Flavor dependence of energy loss: $E_{loss}^{gluon} > E_{loss}^{light-quark} > E_{loss}^c > E_{loss}^b$

A harder fragmentation is expected in low energy heavy-quark initiated showers due to suppresses radiation close to the heavy-quark

Energy loss predicted to depend also on quark mass: reduction of gluon radiation from heavy quarks at

Flavor/Mass dependence of energy loss

Н_{АА}

Dead-cone effect

Large parton mass

Small parton mass

Energy loss predicted to depend also on quark mass: reduction of gluon radiation from heavy quarks at small angles —"Dead Cone" effect

Flavor/Mass dependence of energy loss

small angles —"Dead Cone" effect

Less suppression of b-jets than inclusive jets in most central collisions

Yaxian MAO Central China Normal University

響
の

Test QCD flavor effects experimentally

Test QCD flavor effects experimentally

More differential study on HF(c tagged)-jet substructure \rightarrow Clear

Test QCD flavor effects experimentally

Softer fragmentation for baryons compared to mesons

Mass/Flavor dependent EECs in jets

Scaling behavior identical to massless case for larger $R_{\rm L}$

```
virtuality ~ p_{\rm T}R_{\rm L} + m
```


A turn-over for $R_{\rm L} \rightarrow m_{\rm Q}/p_{\rm T}$

QCD研讨会, Beijing, 10/04/2025

17

Mass/Flavor dependent EECs in jets

Scaling behavior identical to massless case for larger $R_{L} \in \mathbb{C}^{2.4}$

```
virtuality ~ p_{\rm T}R_{\rm L} + m
```

A turn-over for $R_{\rm L} \rightarrow m_{\rm O}/p_{\rm T}$

QCD研讨会, Beijing, 10/04/2025

17

Mass/Flavor dependent EECs in jets

Scaling behavior identical to massless case for larger $R_{\rm L} \stackrel{<}{\in} \frac{2.4}{2.2}$

```
virtuality ~ p_{\rm T}R_{\rm L} + m
```

A turn-over for $R_{\rm L} \rightarrow m_{\rm O}/p_{\rm T}$

- Clear flavor(mass) hierarchy observed in jet EEC measurements

• Theory already predicted the modifications in HI case \rightarrow experimental measurements ongoing

In pp: dead cone effect exposed by ALICE

Nature 605 (2022) 7910 • Reduction of gluon radiation from heavy quarks at small angles $p_{\text{T,inclusive jet}}^{\text{ch,leading track}} \ge 2.8 \text{ GeV/}c$ pp **√***s* = 13 TeV PYTHIA 8 LQ / inclusive no dead-cone limit ALICE Data $k_{\rm T} > \Lambda_{\rm QCD}$, $\Lambda_{\rm QCD} = 200~{\rm MeV}/c$ charged jets, anti- k_{T} , R=0.4PYTHIA 8 SHERPA LQ / inclusive SHERPA C/A reclustering $|\eta_{|ab}| < 0.5$ no dead-cone limit 0.37 0.22 0.08 0.22 0.08 0.22 0.14 0.14 0.14 $R(\theta)$ $5 < E_{\text{Radiator}} < 10 \text{ GeV}$ 10 < E_{Radiator} < 20 GeV $20 < E_{\text{Radiator}} < 35 \text{ GeV}$ 1.5 View on CDS small angle largeangle Dead-cone effe radiation suppressed inside a cone with $\theta_{+} = m/E$ C D. Dominguez / CERN 0.5 2.5 2.5 1.5 1.5 2 1.5 2 2

ALI-PUB-493419

- of jets that contain a soft D^0 meson.
- D-tagged jets in pp does show the dead-cone effect! where is it in AA?

First direct observation of dead-cone effect in pp using jet iterative declustering and Lund plane analysis

QCD研讨会, Beijing, 10/04/2025

8

In pp: dead cone effect exposed by ALICE

• Reduction of gluon radiation from heavy quarks at small angles

of jets that contain a soft D^0 meson.

D-tagged jets in pp does show the dead-cone effect! where is it in AA?

First direct observation of dead-cone effect in pp using jet iterative declustering and Lund plane analysis

- loss mechanisms

- Hybrid model predicts different (even reversed) R-dependence of jet R_{AA} due to medium response
- Jet-fluid model w/ hydrodynamic wake can reproduce the R-dependence of experimental Run I ATLAS results

R dependence of jet R_{AA} can be sensitive to medium response effect and help to disentangle energy

competing effect between the amount/how energy redistributed and ability to recover it

- loss mechanisms

- results

R dependence of jet R_{AA} can be sensitive to medium response effect and help to disentangle energy

competing effect between the amount/how energy redistributed and ability to recover it

Hybrid model predicts different (even reversed) R-dependence of jet R_{AA} due to medium response

 Jet-fluid model w/ hydrodynamic wake can reproduce the R-dependence of experimental Run I ATLAS \rightarrow More differential and uniform analyses comparison and future studies are needed

Inclusive jets R_{AA} ratio from ALICE: larger radius jets more suppressed

- Inclusive jets R_{AA} ratio from ALICE: larger radius jets more suppressed
- Dijet pair R_{AA} ratio from ATLAS: larger radius jets less suppressed

R_{AA} - substructure interplay

- Large rg jets are more suppressed
- At fixed jet p_T , large R-jet has higher probability to have large θ_g splittings

Yaxian MAO China Normal University

R_{AA} - substructure interplay

- Large rg jets are more suppressed
- At fixed jet p_T , large R-jet has higher probability to have large θ_g splittings

Yaxian MAO China Normal University

 \rightarrow important to study the r_g dependent R_{AA} with different R

QCD研讨会, Beijing, 10/04/2025

21

Baryon to meson enhancement around jets

Jet fragmentation into HF particles

- B/M ratio inside jet cone doesn't show a peak as inclusive case at intermediate p_T
- Charmed-jet fragmentation is slightly different when containing a strangeness quark hadrons

Jet fragmentation into HF particles

- B/M ratio inside jet cone doesn't show a peak as inclusive case at intermediate p_T
- Charmed-jet fragmentation is slightly different when containing a strangeness quark hadrons
- models are needed

axian MAO China Normal University

PYTHIA can't produce quarkonium jet fragmentation $\psi(2S) \rightarrow$ further development of theoretical

Heavy flavor hadronization: B/M ratio

24

Using multiplicity in transverse region as event activity classifier to better separate soft and hard processes No enhancement (suppression) observed for Near (Away) side in pp and p-Pb collisions

- - No enhancement (suppression) observed for Near (Away) side in pp and p-Pb collisions
- Peak width become narrower in HM events for low p_T associated particles

Yaxian MAO entral China Normal University

Using multiplicity in transverse region as event activity classifier to better separate soft and hard processes

- With full jet reconstruction, study the dijet balance or h-jet azimuthal correlations
 - No modification observed at HM of jet-jet geometry
 - Azimuthal broadening in HM events observed for recoiling jets with high p_T trigger particles

- With full jet reconstruction, study the dijet balance or h-jet azimuthal correlations
 - No modification observed at HM of jet-jet geometry
 - Azimuthal broadening in HM events observed for recoiling jets with high p_T trigger particles

Consistency study between particle and jet correlations?

Jet quenching not observed in small systems

No significant energy loss observed so far

Strong change of behavior of R_{AA} beyond 80% centrality is reproduced considering biases in event selection and collision geometry, and o nuclear modification \rightarrow not a medium effect!

QCD研讨会, Beijing, 10/04/2025

Jet quenching not observed in small systems

No significant energy loss observed so far

Strong change of behavior of R_{AA} beyond 80% centrality is reproduced considering biases in event selection and collision geometry, and o nuclear modification \rightarrow not a medium effect!

Jet quenching not observed in small systems

No significant energy loss observed so far

- Open question: when (which system size) does energy loss sets in? Outlook to Run 3 and 4:

Strong change of behavior of R_{AA} beyond 80% centrality is reproduced considering biases in event selection and collision geometry, and o nuclear modification \rightarrow not a medium effect!

- Instead of a summary, a short list for discussion (only based on what I have presented):
 - Flavor/Mass dependence: can we decouple the flavor and mass effects for jet quenching study?
 - R-dependence of jet quenching: how do jet substructure and medium response interplay in different R jets?
 - Jet fragmentations: do we really understand vacuum jets?
 - Jet hadronchemistry: do we fully understand coalescence with different quark contents?
 - Jet quenching in small systems: what is the boundary to create QGP? what part of the jet is most sensitive to jet-medium interaction?

Summary and discussion

Thank you for your attention!

