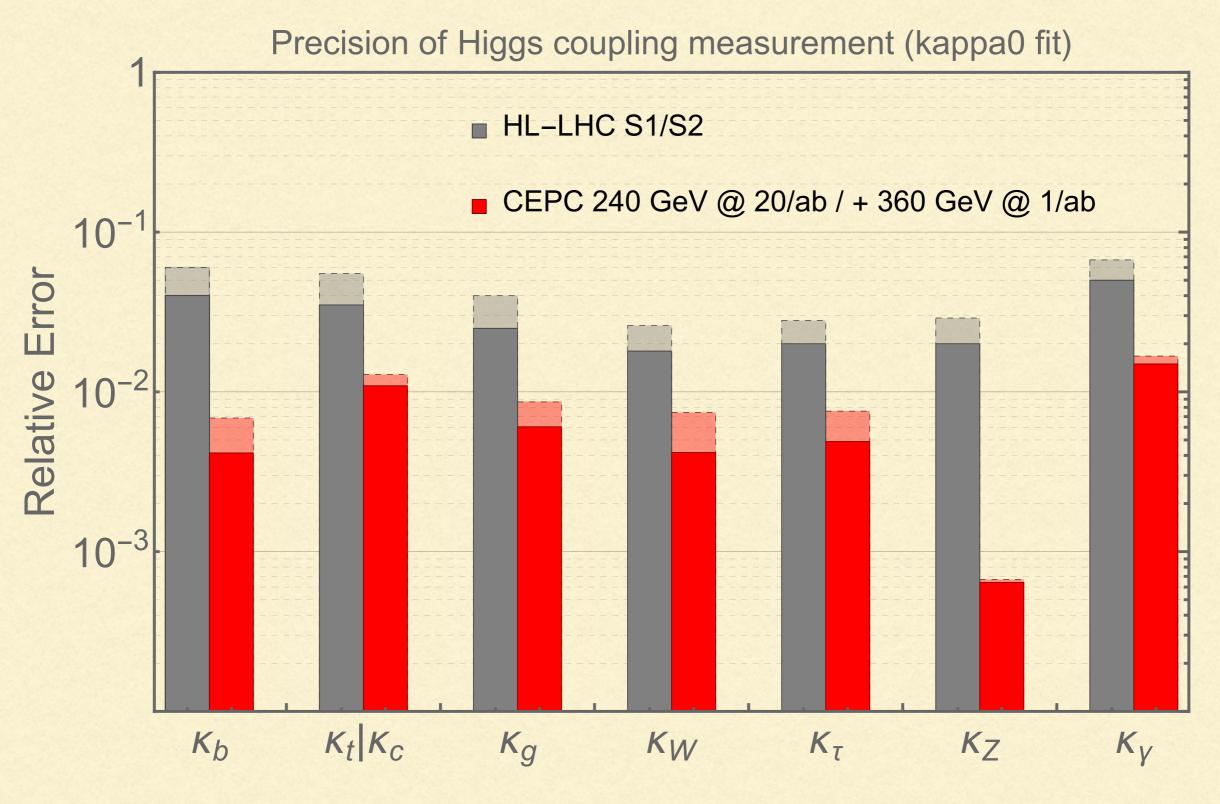
PRECISE PREDICTIONS ON HIGGS DECAYS TO BOTTOM QUARKS AND GLUONS

Jian Wang
Shandong University

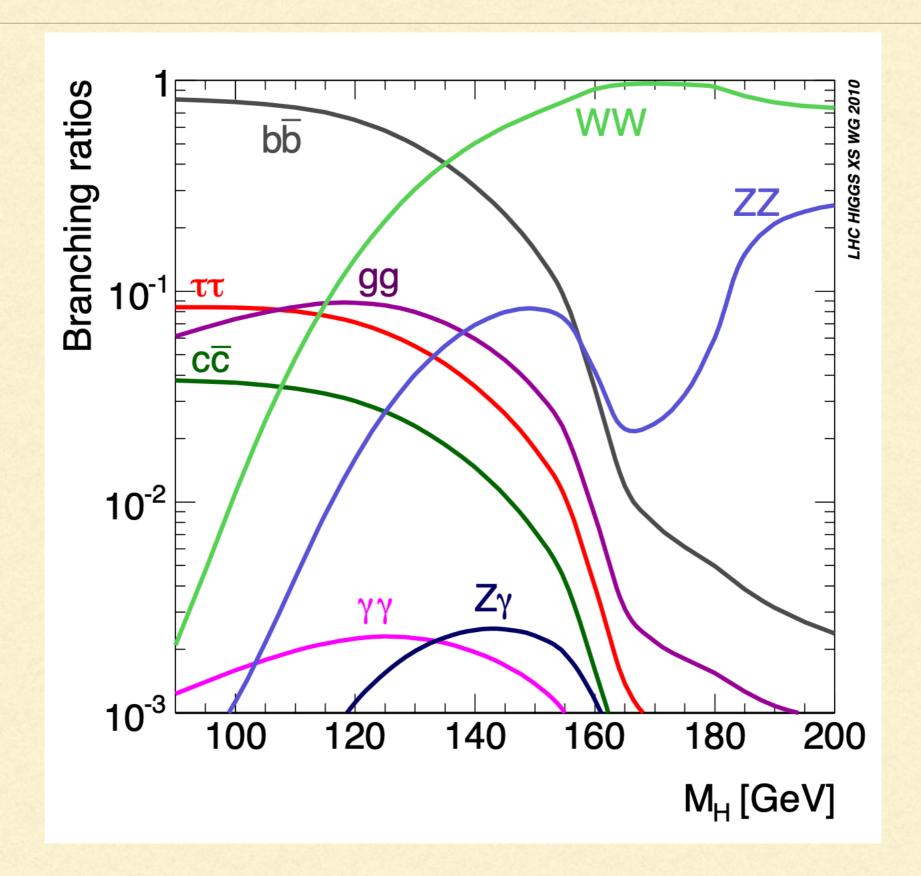
arXiv: 2310.20514, 2411.07493, 2503.22169 with Xing Wang, Yefan Wang, Da-Jiang Zhang

	$240{ m GeV},20~{ m ab}^{-1}$		$360{ m GeV},1~{ m ab}^{-1}$		
	ZH	$\mathbf{v}\mathbf{v}\mathbf{H}$	ZH	vvH	eeH
inclusive	0.26%		1.40%	\	\
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
Н→сс	2.02%		8.80%	16%	20%
$H{ ightarrow}gg$	0.81%		3.40%	4.50%	12%
$H{ ightarrow}WW$	0.53%		2.80%	4.40%	6.50%
$H{ ightarrow} ZZ$	4.17%		20%	21%	
H o au au	0.42%		2.10%	4.20%	7.50%
$H o \gamma \gamma$	3.02%		11%	16%	
$H o \mu \mu$	6.36%		41%	57%	
$H o Z \gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.07%				
Γ_H	1.	65%	1.10%		

"Physics potential of the CEPC", 2205.08553

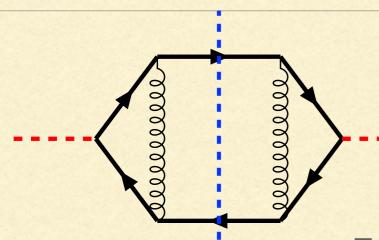


"Physics potential of the CEPC", 2205.08553



"Handbook of LHC Higgs cross sections", 1101.0593

HIGGS DECAYS TO $b\bar{b} + X$



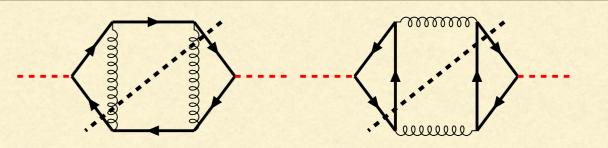
The decay rate is proportional to y_b^2 .

$$\Gamma(H \to b\bar{b}) = \Gamma_{LO} \left[1 + \frac{\alpha_s(\mu)}{\pi} X_1^{y_b y_b} + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 (X_2^{y_b y_b} + X_2^{y_b y_t}) \right]$$

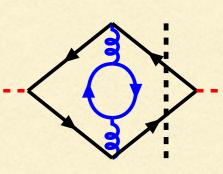
$$\Gamma_{LO} = \frac{N_c}{16\pi} \bar{y}_b^2 m_H \left(1 - \frac{4}{z}\right)^{3/2}, \quad z \equiv \frac{m_H^2}{m_b^2}$$

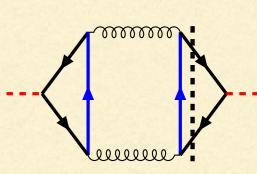
$$X_1^{y_b y_b} = 2 \log \left(\frac{\mu^2}{m_H^2}\right) + \frac{17}{3} + \frac{12 \log(z) + 10}{z} + \mathcal{O}(z^{-2})$$

$$X_2^{y_b y_b} = \tilde{X}_{2,b\bar{b}}^{y_b y_b} + X_{2,b\bar{b}b\bar{b}}^{y_b y_b}$$



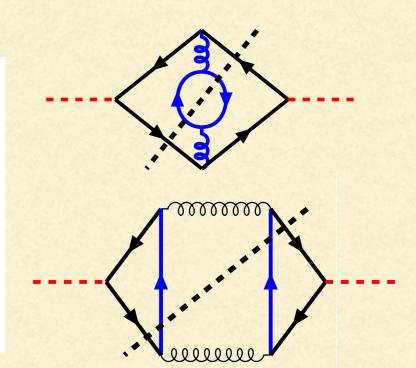
$$\tilde{X}_{2,b\bar{b}}^{y_b y_b}|_{z \to \infty} = -\frac{\log^3(z)}{27} + \frac{19\log^2(z)}{54} + \frac{2\zeta(3)\log(z)}{9} + \frac{\pi^2\log(z)}{54} \\
- \frac{503\log(z)}{324} + \frac{55 - 2n_l}{12}\log^2\left(\frac{\mu^2}{m_H^2}\right) + \frac{307 - 11n_l}{9}\log\left(\frac{\mu^2}{m_H^2}\right) + \frac{2(3n_l - 86)\zeta(3)}{9} \\
+ \frac{(3n_l - 98)\pi^2}{54} - \frac{19\pi^4}{1620} + \frac{2\log(2)\pi^2}{9} + \frac{98681 - 3510n_l}{1296} \\
+ \frac{1}{z}\left(-\frac{5\log^4(z)}{36} + \frac{\log^3(z)}{18} + \frac{\pi^2\log^2(z)}{18} - \frac{(2n_l - 9)\log^2(z)}{2} - \frac{7\pi^2\log(z)}{54} - (2n_l - 55)\log(z)\log\left(\frac{\mu^2}{m_H^2}\right) - \frac{(117n_l - 3625)\log(z)}{27} - 4\zeta(3)\log(z) \\
- \frac{71\pi^4}{540} + \frac{4\pi^2\log(2)}{3} - \frac{5(2n_l - 55)}{6}\log\left(\frac{\mu^2}{m_H^2}\right) + \frac{430\zeta(3)}{9} - \frac{(9n_l - 175)\pi^2}{9} \\
+ \frac{36829 - 1548n_l}{324}\right) + \mathcal{O}(z^{-2}), \tag{5}.$$





It is divergent in the massless limit!

$$\begin{split} X_{2,b\bar{b}b\bar{b}}^{y_b}|_{z\to\infty} &= \frac{\log^3(z)}{27} - \frac{19\log^2(z)}{54} - \frac{2\zeta(3)\log(z)}{9} - \frac{\pi^2\log(z)}{54} + \frac{503\log(z)}{324} \\ &+ \frac{19\pi^4}{1620} - \frac{2\log(2)\pi^2}{9} + \frac{5\zeta(3)}{18} + \frac{31\pi^2}{108} - \frac{2491}{648} \\ &+ \frac{1}{z} \left(\frac{\log^4(z)}{18} - \frac{\log^3(z)}{18} - \frac{2\pi^2\log^2(z)}{9} + \frac{7\pi^2\log(z)}{54} - \frac{\log^2(z)}{3} + 4\zeta(3)\log(z) \right. \\ &+ \frac{211\log(z)}{54} + \frac{13\pi^4}{270} - \frac{7\zeta(3)}{9} + \frac{19\pi^2}{18} - \frac{8353}{324} \right) + \mathcal{O}(z^{-2}) \,. \end{split}$$



$$X_{2}^{y_{b}y_{b}}|_{z\to\infty} (m_{b}^{2}\to 0) = \frac{55-2n_{l}}{12} \log^{2}\left(\frac{\mu^{2}}{m_{H}^{2}}\right) + \frac{307-11n_{l}}{9} \log\left(\frac{\mu^{2}}{m_{H}^{2}}\right) + \frac{(4n_{l}-113)\zeta(3)}{6}$$

$$+ \frac{(2n_{l}-55)\pi^{2}}{36} + \frac{10411-390n_{l}}{144} + \frac{1}{z}\left(-\frac{\log^{4}(z)}{12} - \frac{\pi^{2}\log^{2}(z)}{6} - \frac{(6n_{l}-25)\log^{2}(z)}{6}\right)$$

$$- \frac{(26n_{l}-829)\log(z)}{6} - (2n_{l}-55)\log(z)\log\left(\frac{\mu^{2}}{m_{H}^{2}}\right) - \frac{5(2n_{l}-55)}{6}\log\left(\frac{\mu^{2}}{m_{H}^{2}}\right) - \frac{\pi^{4}}{12}$$

$$+ \frac{4\pi^{2}\log(2)}{3} + 47\zeta(3) - \frac{(2n_{l}-41)\pi^{2}}{2} + \frac{791-43n_{l}}{9}\right) + \mathcal{O}(z^{-2}). \tag{5.12}$$

The large logarithms at subleading power: $log^4(z) = 1688$

$\overline{m_b}(m_H) = 2.78 \text{ GeV}$

MS Yukawa Coupling — LO — NLO

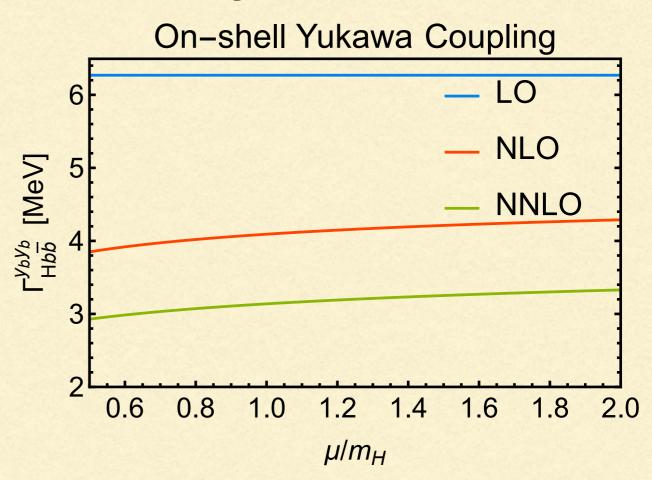
1.2 1.4

 μ/m_H

NNLO

1.6 1.8

$m_b = 5.07 \; \text{GeV}$



LO unc. ~23% NLO unc. ~9%

1.0

2.4

2.2

2.0

1.8

0.6

0.8

 $\Gamma^{y_by_b}_{Hb\overline{b}}$ [MeV]

NNLO unc.~3%

NLO/LO=1.12-1.28

NNLO/NLO=0-1.07

NLO unc.~11% NNLO unc.~13% NLO/LO=0.65 NNLO/NLO=0.78

width	LO	NLO	$\mathrm{NNLO}(y_b^2)$	$\mathrm{NNLO}(y_b y_t)$	$\mathrm{NNNLO}(y_b^2)$	$\mathrm{NNNNLO}(y_b^2)$
$\overline{ m MS}$	$1.891^{+0.241}_{-0.192}$	$2.285^{+0.105}_{-0.110}$	$2.359^{+0.020}_{-0.041}$	$2.376^{+0.026}_{-0.046}$	$2.379^{+0.005}_{-0.015}$	$2.377^{+0.006}_{-0.006}$
on-shell	6.269	$4.092^{+0.197}_{-0.242}$	$3.138^{+0.191}_{-0.210}$	$3.193^{+0.181}_{-0.197}$	$2.804^{+0.112}_{-0.096}$	$2.649^{+0.065}_{-0.049}$

Larin et al, hep-ph/9506465

Chetyrkin hep-ph/9608318, Baikov et al, hep-ph/0511063, Herzog et al, 1707.01044

The results in MS scheme become stable quickly. Scale unc. ~0.3%.

In onshell scheme, N3LO/NNLO=0.88, N4LO/N3LO=0.95. Scale unc.~2%.

$$\mathcal{L}_{\text{eff}} = -\frac{H}{v} \left(C_1 \mathcal{O}_1^R + C_2 \mathcal{O}_2^R \right) + \mathcal{L}_{\text{QCD}}$$

$$\mathcal{O}_1 = (G_{a,\mu\nu}^0)^2, \quad \mathcal{O}_2 = m_b^0 \bar{b}^0 b^0$$

$$C_{1} = -\left(\frac{\alpha_{s}}{\pi}\right) \frac{1}{12} - \left(\frac{\alpha_{s}}{\pi}\right)^{2} \frac{11}{48}$$

$$-\left(\frac{\alpha_{s}}{\pi}\right)^{3} \left[\frac{2777}{3456} + \frac{19}{192}L_{t} - n_{f}\left(\frac{67}{1152} - \frac{1}{36}L_{t}\right)\right] + \mathcal{O}(\alpha_{s}^{4}),$$

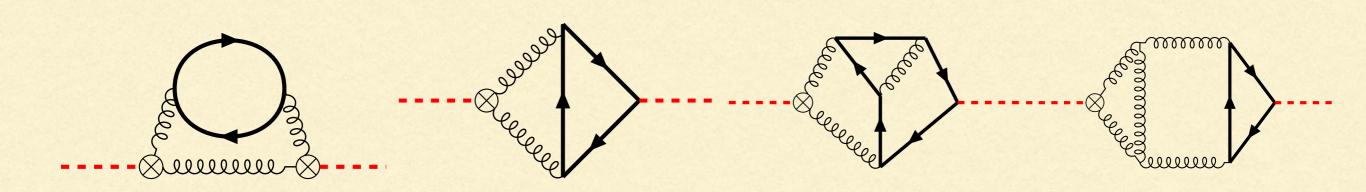
$$C_{2} = 1 + \left(\frac{\alpha_{s}}{\pi}\right)^{2} \left[\frac{5}{18} - \frac{1}{3}L_{t}\right]$$

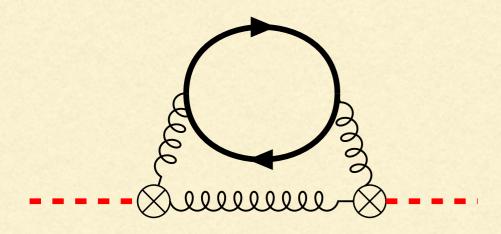
$$+\left(\frac{\alpha_{s}}{\pi}\right)^{3} \left[-\frac{841}{1296} + \frac{5}{3}\zeta(3) - \frac{79}{36}L_{t} - \frac{11}{12}L_{t}^{2} + n_{f}\left(\frac{53}{216} + \frac{1}{18}L_{t}^{2}\right)\right] + \mathcal{O}(\alpha_{s}^{4}),$$

The relative error of using this EFT is below 1%. The correction to the total decay width is below 0.01%.

$$\Gamma_{H \to b\bar{b}} = \Gamma_{H \to b\bar{b}}^{C_2 C_2} + \Gamma_{H \to b\bar{b}}^{C_1 C_2} + \Gamma_{H \to b\bar{b}}^{C_1 C_1}$$

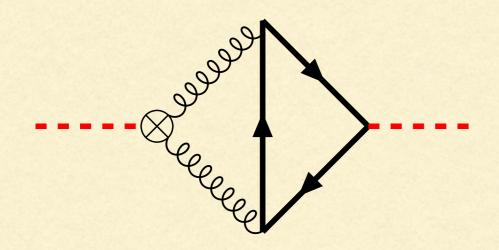
$$\begin{split} &\Gamma_{H\to b\bar{b}}^{C_{2}C_{2}} = C_{2}C_{2}\left[\Delta_{0,b\bar{b}}^{C_{2}C_{2}} + \left(\frac{\alpha_{s}}{\pi}\right)\Delta_{1,b\bar{b}}^{C_{2}C_{2}} + \left(\frac{\alpha_{s}}{\pi}\right)^{2}\Delta_{2,b\bar{b}}^{C_{2}C_{2}} + \left(\frac{\alpha_{s}}{\pi}\right)^{3}\Delta_{3,b\bar{b}}^{C_{2}C_{2}} + \mathcal{O}(\alpha_{s}^{4})\right] \\ &\Gamma_{H\to b\bar{b}}^{C_{1}C_{2}} = C_{1}C_{2}\left[\left(\frac{\alpha_{s}}{\pi}\right)\Delta_{1,b\bar{b}}^{C_{1}C_{2}} + \left(\frac{\alpha_{s}}{\pi}\right)^{2}\Delta_{2,b\bar{b}}^{C_{1}C_{2}} + \mathcal{O}(\alpha_{s}^{3})\right], \\ &\Gamma_{H\to b\bar{b}}^{C_{1}C_{1}} = C_{1}C_{1}\left[\left(\frac{\alpha_{s}}{\pi}\right)\Delta_{1,b\bar{b}}^{C_{1}C_{1}} + \mathcal{O}(\alpha_{s}^{2})\right], \end{split}$$





$$\Delta_{1,b\bar{b}}^{C_1C_1}|_{z\to\infty} = \frac{m_H^3}{\pi v^2} C_A C_F \left[\frac{1}{6} \log(z) - \frac{7}{12} + \frac{3}{z} \right] + \mathcal{O}(z^{-2})$$

It is power enhanced and divergent in $m_b \to 0$ limit. The extraction of yb is highly non-trivial after considering such contributions.



$$\Delta_{1,b\bar{b}}^{C_1C_2}|_{z\to\infty} = \frac{m_H m_b \overline{m_b}(\mu)}{\pi v^2} C_A C_F \left[-\frac{1}{8} \log^2(z) - \frac{3}{4} \log\left(\frac{\mu^2}{m_H^2}\right) + \frac{\pi^2}{8} - \frac{19}{8} \right] + \frac{1}{2} \frac{\log^2(z)}{z} + 2 \frac{\log(z)}{z} + \frac{9}{2z} \log\left(\frac{\mu^2}{m_H^2}\right) - \frac{\pi^2}{2z} + \frac{15}{2z} \right] + \mathcal{O}(z^{-2}),$$

The double logarithm dominates.

It is induced by soft massive quarks, different from traditional Sudakov double logarithms.

$$-\frac{m_H m_b \overline{m_b}(\mu)}{8\pi v^2} C_A C_F \log^2(z) \times \frac{1}{24} \left(C_A - C_F \right) \log^2(z)$$

$$\begin{split} \Gamma_{H \to b\bar{b}} &= \frac{3m_H \overline{m_b}^2}{8v^2 \pi} \bigg\{ 1 + \left(\frac{\alpha_s}{\pi} \right) \frac{17}{3} \\ &+ \left(\frac{\alpha_s}{\pi} \right)^2 \left[\frac{1}{9} \log^2(\overline{z}) - \frac{2}{3} \log(x) - \frac{97\zeta(3)}{6} - \frac{17\pi^2}{12} + \frac{9235}{144} \right] \\ &+ \left(\frac{\alpha_s}{\pi} \right)^3 \left[\frac{5}{648} \log^4(\overline{z}) + \frac{59}{324} \log^3(\overline{z}) - \frac{31\pi^2}{324} \log^2(\overline{z}) + \frac{989}{648} \log^2(\overline{z}) \right. \\ &+ \frac{32\zeta(3)}{27} \log(\overline{z}) - \frac{41\pi^2}{324} \log(\overline{z}) + \frac{137}{216} \log(\overline{z}) - \frac{23}{18} \log^2(x) - \frac{49}{6} \log(x) \\ &+ \frac{1945\zeta(5)}{36} - \frac{13\pi^4}{3240} - \frac{81239\zeta(3)}{216} - \frac{81239\zeta(3)}{216} - \frac{22291\pi^2}{648} + \frac{37434709}{46656} \right] \bigg\} \\ &+ \frac{m_H^3}{v^2 \pi} \left(\frac{\alpha_s}{\pi} \right)^3 \left[\frac{\log(\overline{z})}{216} - \frac{7}{432} \right] + \mathcal{O}(\overline{z}^{-1}) + \mathcal{O}(x) + \mathcal{O}(\alpha_s^4) \end{split}$$

	[MeV]	$\mu=rac{1}{2}m_H$	$\mu=m_H$	$\mu=2m_H$
$\mathcal{O}(lpha_s^0)$	$\Gamma^{C_2C_2}_{Hbar{b}}$	2.1314	1.8905	1.6985
$\mathcal{O}(lpha_s^1)$	$\Gamma^{C_2C_2}_{Hbar{b}}$	0.25813	0.39409	0.47563
$\mathcal{O}(lpha_s^2)$	$\Gamma^{C_2C_2}_{Hbar{b}}$	-0.0043084	0.076819	0.143670
	$\Gamma^{C_1C_2}_{Hbar{b}}$	0.027078	0.024746	0.022608
$\mathcal{O}(lpha_s^3)$	$\Gamma^{C_2C_2}_{Hbar{b}}$	-0.015360	0.0048336	0.038198
	$\overline{\Gamma^{C_1C_2}_{Hbar{b}}}$	0.010314	0.013585	0.015170
	$\Gamma^{C_1C_1}_{Hbar{b}}$	0.0088676	0.0064617	0.0048595

MS scheme

NLO/LO=20%

INLO/NLO=4%

1% correction!

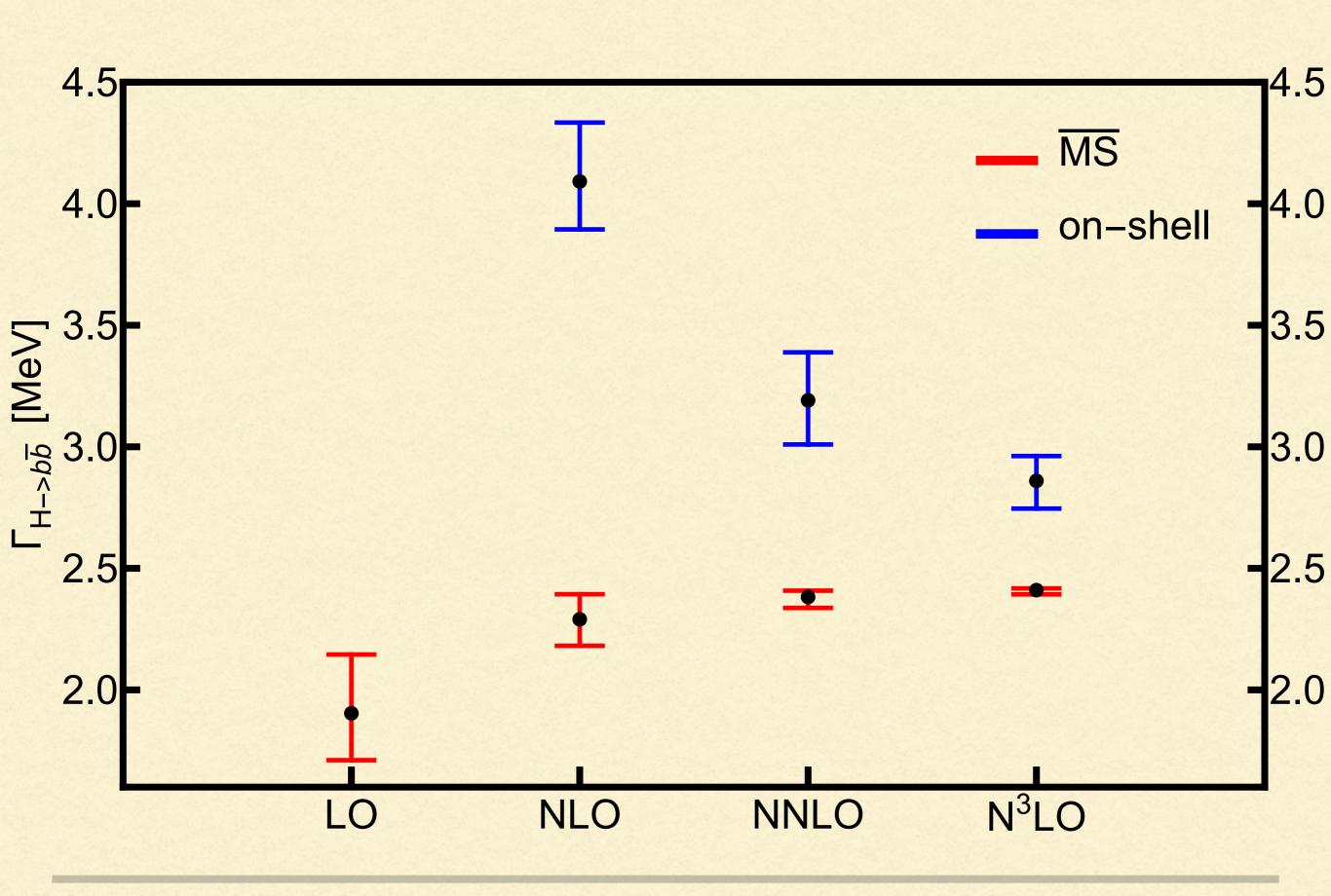
For CIC2, NNLO/NLO=55%

Fortunately, the CICI conbribution is not large.

	[MeV]	$\mu=rac{1}{2}m_H$	$\mu = m_H$	$\mu=2m_H$
$\Gamma_{H o bar{b}}\left(\overline{ ext{MS}} ight)$	$\mathcal{O}(lpha_s^0)$	2.1454	1.9036	1.7108
	$\mathcal{O}(lpha_s^1)$	0.24806	0.38682	0.47051
	$\mathcal{O}(lpha_s^2)$	0.014742	0.091773	0.15580
	$\mathcal{O}(lpha_s^3)$	0.0092203	0.028117	0.055816
$\Gamma_{H o bar{b}} \left(ext{OS} ight)$	$\mathcal{O}(lpha_s^0)$	6.2687	6.2687	6.2687
	$\mathcal{O}(lpha_s^1)$	-2.4192	-2.1770	-1.9797
	$\mathcal{O}(lpha_s^2)$	-0.85590	-0.90061	-0.91641
	$\mathcal{O}(lpha_s^3)$	-0.23550	-0.33107	-0.39831
<u> </u>			<u> </u>	

$$\Gamma_{H \to b\bar{b}}^{\text{N}^3\text{LO QCD}} \left(\overline{\text{MS}} \right) = 2.410^{+0.007}_{-0.017} \text{ MeV}$$

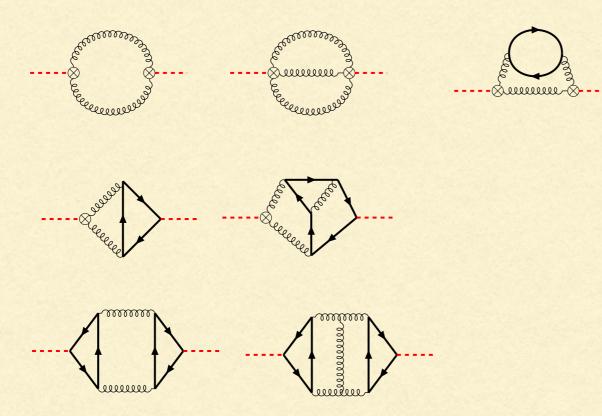
$$\Gamma_{H \to b\bar{b}}^{\text{N}^3\text{LO QCD+NLO EW}} \left(\overline{\text{MS}} \right) = 2.382^{+0.007}_{-0.017} \text{ MeV}$$



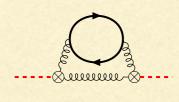
HIGGS DECAYS TO GLUONS

$$\Gamma_{H \to gg} = \Gamma_{H \to gg}^{C_1 C_1} + \Gamma_{H \to gg}^{C_1 C_2} + \Gamma_{H \to gg}^{C_2 C_2}$$

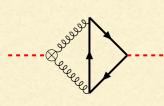
$$\Gamma_{H\to gg}^{C_1C_1} = C_1C_1 \left[\Delta_{0,gg}^{C_1C_1} + \left(\frac{\alpha_s}{\pi}\right) \Delta_{1,gg}^{C_1C_1} + \mathcal{O}(\alpha_s^2) \right],
\Gamma_{H\to gg}^{C_1C_2} = C_1C_2 \left[\left(\frac{\alpha_s}{\pi}\right) \Delta_{1,gg}^{C_1C_2} + \left(\frac{\alpha_s}{\pi}\right)^2 \Delta_{2,gg}^{C_1C_2} + \mathcal{O}(\alpha_s^3) \right],
\Gamma_{H\to gg}^{C_2C_2} = C_2C_2 \left[\left(\frac{\alpha_s}{\pi}\right)^2 \Delta_{2,gg}^{C_2C_2} + \left(\frac{\alpha_s}{\pi}\right)^3 \Delta_{3,gg}^{C_2C_2} + \mathcal{O}(\alpha_s^4) \right],$$



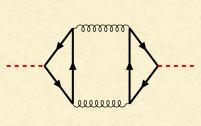
$$\Delta_{0,gg}^{C_1C_1} = \frac{C_A C_F m_H^3}{2\pi v^2}$$



$$\Delta_{1,gg}^{C_1C_1} = \frac{m_H^3}{\pi v^2} C_A C_F \left(\left[-\frac{1}{6} \log(z) - \frac{1}{6} \log\left(\frac{\mu^2}{m_H^2}\right) \right] + C_A \left[\frac{11}{12} \log\left(\frac{\mu^2}{m_H^2}\right) + \frac{73}{24} \right] + n_l \left[-\frac{1}{6} \log\left(\frac{\mu^2}{m_H^2}\right) - \frac{7}{12} \right] \right)$$



$$\Delta_{1,gg}^{C_1C_2}|_{z\to\infty} = \frac{m_H m_b m_b}{\pi v^2} C_A C_F \times \left[\frac{1}{8} \log^2(z) - \frac{\pi^2}{8} - \frac{1}{2} - \frac{1}{2} \frac{\log^2(z)}{z} - \frac{1}{2} \frac{\log(z)}{z} + \frac{\pi^2}{2z} + \mathcal{O}(z^{-2}) \right]$$



$$\Delta_{2,gg}^{C_2C_2}|_{z\to\infty} = \frac{m_b^2 \overline{m_b}^2}{\pi v^2 m_H} C_A \times \left[\frac{\left(\log^2(z) - 4\log(z) + \pi^2 + 4\right) \left(\log^2(z) + 4\log(z) + \pi^2 + 4\right)}{96} + \mathcal{O}(z^{-1}) \right]$$

$$\begin{split} \Gamma_{H \to gg} &= \frac{m_H^3}{v^2 \pi} \bigg\{ \left(\frac{\alpha_s}{\pi} \right)^2 \frac{1}{72} + \left(\frac{\alpha_s}{\pi} \right)^3 \left[-\frac{1}{216} \log(\overline{z}) + \frac{229}{864} \right] \bigg\} \\ &+ \frac{m_H \overline{m_b}^2}{v^2 \pi} \bigg\{ \left(\frac{\alpha_s}{\pi} \right)^2 \left[-\frac{1}{24} \log^2(\overline{z}) + \frac{\pi^2}{24} + \frac{1}{6} \right] \\ &+ \left(\frac{\alpha_s}{\pi} \right)^3 \left[-\frac{5}{1728} \log^4(\overline{z}) - \frac{59}{864} \log^3(\overline{z}) + \frac{31\pi^2}{864} \log^2(\overline{z}) - \frac{989}{1728} \log^2(\overline{z}) \right. \\ &- \frac{4\zeta(3)}{9} \log(\overline{z}) + \frac{41\pi^2}{864} \log(\overline{z}) - \frac{137}{576} \log(\overline{z}) - \frac{137\pi^4}{8640} - \frac{29\zeta(3)}{36} \\ &+ \frac{1277\pi^2}{1728} + \frac{17275}{3456} \right] + \mathcal{O}(\overline{z}^{-1}) \bigg\} \end{split}$$

$$\begin{split} \Gamma_{H \to \text{hadrons}} &= \frac{m_H^3}{v^2 \pi} \bigg\{ \left(\frac{\alpha_s}{\pi} \right)^2 \frac{1}{72} + \left(\frac{\alpha_s}{\pi} \right)^3 \frac{215}{864} + \mathcal{O}(\overline{z}^{-1}) \bigg\} \\ &+ \frac{3 m_H \overline{m_b}^2}{8 v^2 \pi} \bigg\{ 1 + \left(\frac{\alpha_s}{\pi} \right) \frac{17}{3} + \left(\frac{\alpha_s}{\pi} \right)^2 \left[-\frac{2}{3} \log(x) - \frac{97 \zeta(3)}{6} - \frac{47 \pi^2}{36} + \frac{9299}{144} \right] \\ &+ \left(\frac{\alpha_s}{\pi} \right)^3 \left[-\frac{23}{18} \log^2(x) - \frac{49}{6} \log(x) + \frac{1945 \zeta(5)}{36} - \frac{5\pi^4}{108} - \frac{81703 \zeta(3)}{216} \right. \\ &- \frac{10507 \pi^2}{324} + \frac{38056609}{46656} \right] + \mathcal{O}(\overline{z}^{-1}) \bigg\} \end{split}$$

		on-shell scheme			$\overline{ m MS}$ scheme		
	[MeV]	$\mu = \frac{m_H}{2}$	$\mu = m_H$	$\mu = 2m_H$	$\mu = \frac{m_H}{2}$	$\mu=m_H$	$\mu = 2m_H$
$\mathcal{O}(lpha_s^2)$	$\Gamma_{H\to gg}^{C_2C_2}$	0.003208	0.002598	0.002148	0.0006336	0.0004269	0.0002994
	$\Gamma^{C_1C_2}_{H o gg}$	-0.03018	-0.02444	-0.02021	-0.01601	-0.01200	-0.00925
	$\Gamma^{C_1C_1}_{H o gg}$	0.2269	0.1837	0.1520	0.2269	0.1837	0.1520
$\mathcal{O}(lpha_s^3)$	$\Gamma_{H\to gg}^{C_2C_2}$	-	-	-	_	-	-
	$\Gamma^{C_1C_2}_{H o gg}$	-0.009250	-0.01140	-0.01208	-0.01088	-0.01054	-0.009632
	$\Gamma^{C_1C_1}_{H\to gg}$	0.1052	0.1117	0.1104	0.1019	0.1091	0.1082

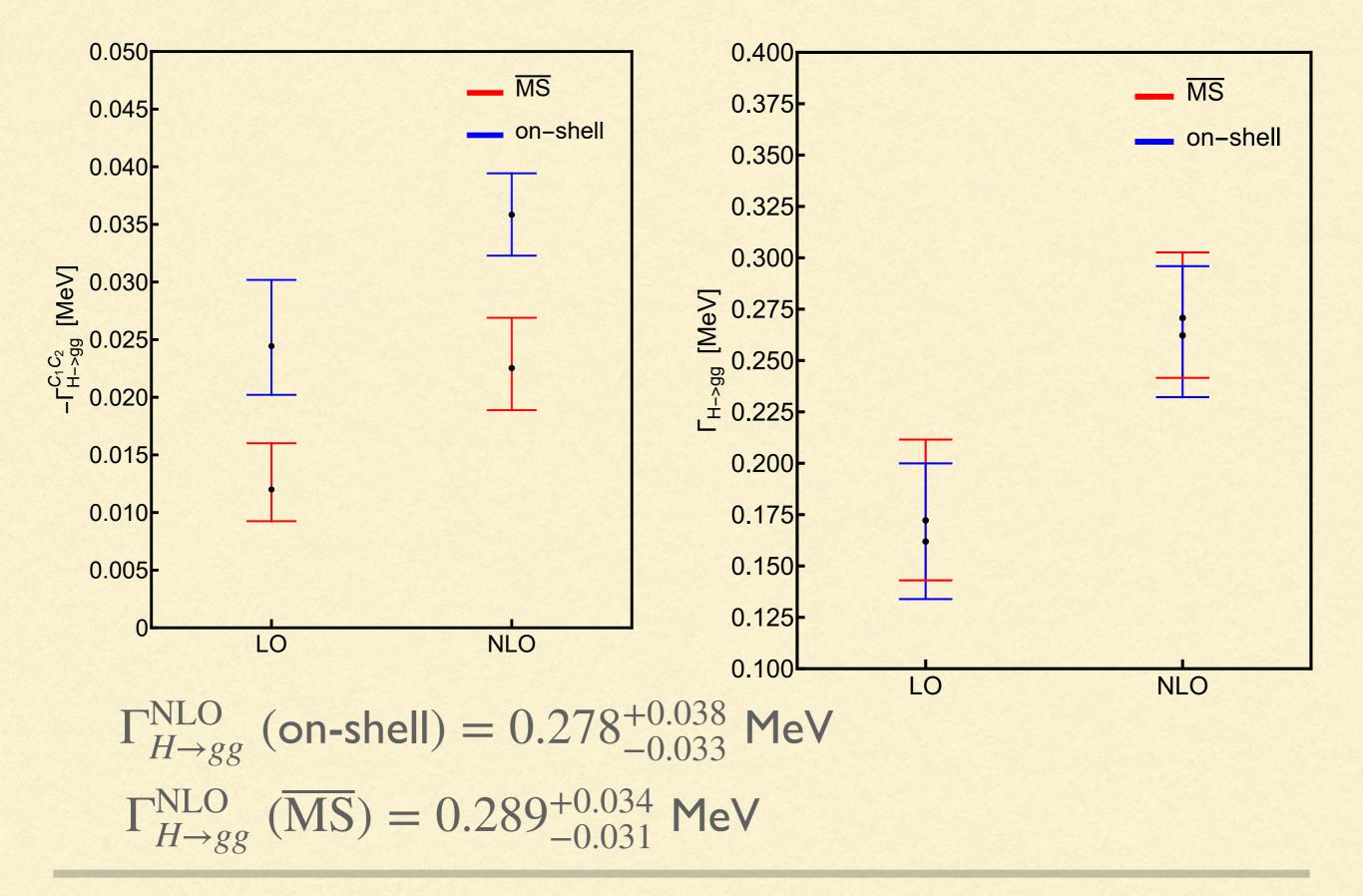
The CICI contributions are dominant.

The CIC2 contributions are 13%, much larger than m_b^2/m_H^2 .

The C2C2 contributions are only 1%.

The QCD correction in CICI is 61%.

The QCD correction in CIC2 is 47% (88%) in onshell (MS) scheme.



CONCLUSIONS

- Higgs decays to $b\bar{b}$ and gg can be measured with an accuracy better than 1%.
- Theoretical predictions are investigated with full dependence on the bottom quark mass.
- Large corrections are found due to the logarithms $\log(m_H^2/m_b^2)$.
- Extraction of the bottom quark Yukawa coupling is nontrivial after considering higher order corrections.

Thanks a lot for your attention!