Low q² issues in hyperon decays

周小蓉 中国科学技术大学

Opportunities and Ideas at the QCD Frontier CCAST, Beijing 2025/4/9

超子的衰变

- 超子衰变的理论描述: 低能有效理论 (ChPT, VMD, NRCQM, pole model etc.), Lattice QCD
- 超子衰变存在的问题:
 - ΔI = 1/2规则, S/P波问题, Hara定理

$\Delta I = 1/2$ rule in Kaon decay

• In $K \to \pi\pi$ decay, their amplitudes:

$$A(K^{+} \to \pi^{+}\pi^{0}) = \frac{3}{2}A_{2}e^{i\chi_{2}} \qquad \Delta I = \frac{3}{2} \text{ transition}$$

$$A(K^{0} \to \pi^{+}\pi^{-}) = A_{0}e^{i\chi_{0}} + \frac{1}{\sqrt{2}}A_{2}e^{i\chi_{2}} \qquad \Delta I = \frac{1}{2} \text{ transition}$$

$$\frac{\text{Re}(A_{0})}{Re(A_{1})} \approx \frac{\sqrt{\mathcal{B}(K^{+} \to \pi^{+}\pi^{0})\tau_{K_{S}}}}{\sqrt{\mathcal{B}(K_{S} \to \pi^{+}\pi^{-})\tau_{K^{+}}}} = \sqrt{\frac{0.21 \cdot 0.1ns}{0.69 \cdot 12ns}} = \frac{1}{22}$$

• The $\Delta I = 1/2$ rule means the weak transitions changing isospin by 1/2 are enhanced over the 3/2 transitions in S-wave

Current precision
$$\omega = Re(A_0)/Re(A_2) = 22.35 \pm 0.06$$

• Direct CP violation in $K \to \pi\pi$ arises from interference between isospin amplitudes

$$\frac{\varepsilon'}{\varepsilon} = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}(A_2)}{\operatorname{Re}(A_2)} - \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)} \right] = (21.7 \pm 8.4) \times 10^{-4}$$

$\Delta I = 1/2$ rule in Kaon decay

- $\Delta I = 1/2$ rule: $\omega = Re(A_0)/Re(A_2) = 22.35 \pm 0.06$
- A factor of 2 is provided by perturbative QCD correction to the 4-quark operators
- **Dual QCD approach** (1/N expansion method, mainly long-distance contribution)

$$\omega = Re(A_0)/Re(A_1) = 16.0 \pm 1.5$$
 Eur. Phys. J. C 74 (2014) 2871

RBC-UKQCD Lattice QCD

$$\omega = Re(A_0)/Re(A_1) = 12 \pm 1.7$$
 PRL110, 152001 (2012)
$$\omega = Re(A_0)/Re(A_1) = 31.0 \pm 11.1$$
 PRD91, 074503, 054509 (2015)
$$\omega = Re(A_0)/Re(A_1) = 19.9 \pm 2.3 \pm 4.4$$
 PRD102, 054509 (2020)

• QCD dynamics is dominantly responsible for the $\Delta I = 1/2$ rule, but new physics contributions at the level of 15% could still be present.

$\Delta I = 1/2$ rule in Hyperon decay

• The $\Delta I = 1/2$ rule is also applicable in the decay of hyperons, e.g. $\Lambda \to p\pi^-$ and $\Lambda \to n\pi^0$

$$\begin{split} S(\Lambda_{-}) &= -\sqrt{\frac{2}{3}}\,S_{11}e^{i(\delta_{11}^S + \xi_1^S)} + \sqrt{\frac{1}{3}}\,S_{33}e^{i(\delta_{33}^S + \xi_3^S)}, \qquad S(\Lambda_0) = \sqrt{\frac{1}{3}}\,S_{11}e^{i(\delta_{11}^S + \xi_1^S)} + \sqrt{\frac{2}{3}}\,S_{33}e^{i(\delta_{33}^S + \xi_3^S)}, \\ P(\Lambda_{-}) &= -\sqrt{\frac{2}{3}}\,P_{11}e^{i(\delta_{11}^P + \xi_1^P)} + \sqrt{\frac{1}{3}}\,P_{33}e^{i(\delta_{33}^P + \xi_3^P)}, \qquad P(\Lambda_0) = \sqrt{\frac{1}{3}}\,P_{11}e^{i(\delta_{11}^P + \xi_1^P)} + \sqrt{\frac{2}{3}}\,P_{33}e^{i(\delta_{33}^P + \xi_3^P)}, \end{split}$$

• If there no $\Delta I = 3/2$ transition in Λ decay

$$\alpha_0/\alpha_- = 1$$

$$\Gamma(\Lambda \to n\pi^0)/\Gamma(\Lambda \to p\pi^-) = 1/2$$

- Why test $\Delta I = 1/2$ rule in Λ decay:
 - Test the $\Delta I = 1/2$ rule in both S-wave and P-wave: S1/S3 and P1/P3
 - $\Delta I = 3/2$ transition contributes in CPV of decay width

$$\Delta_{\text{CP}} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} = \frac{P_{1,1}P_{3,3}\sin\left(\xi_{1,1}^P - \xi_{3,3}^P\right)\sin\left(\delta_1^P - \delta_3^P\right)}{P_{1,1}^2 + S_{1,1}^2} + \frac{S_{1,1}S_{3,3}\sin\left(\xi_{1,1}^S - \xi_{3,3}^S\right)\sin\left(\delta_1^S - \delta_3^S\right)}{P_{1,1}^2 + S_{1,1}^2}$$

$\Delta I = 1/2$ rule in Hyperon decay

• The $\Delta I = 1/2$ and $\Delta I = 3/2$ amplitudes in Hyperon is related with **decay widths** and **decay asymmetries**

$$\begin{split} \alpha_{[\Lambda]} &:= \frac{2\alpha_{[\Lambda p]} + \alpha_{[\Lambda n]}}{3} = 2\tilde{S}_1\tilde{P}_1\cos\left(\delta_1^P - \delta_1^S\right) \left[1 + \frac{1}{3}\left(1 - 2\tilde{S}_1^2\right)\left(2\Delta_{[\Lambda p]} + \Delta_{[\Lambda n]}\right)\right] \\ \frac{\alpha_{[\Lambda p]} - \alpha_{[\Lambda n]}}{\alpha_{[\Lambda]}} &= \frac{-3}{\sqrt{2}} \left[\frac{\tilde{S}_3}{\tilde{S}_1} \frac{\cos\left(\delta_1^P - \delta_3^S\right)}{\cos\left(\delta_1^P - \delta_3^S\right)} + \frac{\tilde{P}_3}{\tilde{P}_1} \frac{\cos\left(\delta_1^S - \delta_3^P\right)}{\cos\left(\delta_1^P - \delta_3^S\right)}\right] + 3\sqrt{2} \left[\tilde{S}_1\tilde{S}_3\cos\left(\delta_1^S - \delta_3^S\right) + \tilde{P}_1\tilde{P}_3\cos\left(\delta_1^P - \delta_3^P\right)\right] \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ \frac{\Gamma\left(\Lambda \to p\pi^-\right) - 2\Gamma\left(\Lambda \to n\pi^0\right)r_{\Lambda}}{\Gamma\left(\Lambda \to p\pi^-\right) + \Gamma\left(\Lambda \to n\pi^0\right)r_{\Lambda}} = -\sqrt{8} \left[\tilde{S}_1\tilde{S}_3\cos\left(\delta_1^S - \delta_3^S\right) + \tilde{P}_1\tilde{P}_3\cos\left(\delta_1^P - \delta_3^P\right)\right] - \frac{4}{3}\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right)\tilde{P}_1^2 \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda p]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^2\right)\left(\Delta_{[\Lambda n]} - \Delta_{[\Lambda n]}\right) \\ &+ \left(1 - 2\tilde{S}_1^$$

Decay width $\Gamma\left(\Lambda \to p\,\pi^-\right) = (64.1 \pm 0.5)\%; \ \Gamma\left(\Lambda \to n\,\pi^0\right) = (35.9 \pm 0.5)\%.$

Phase-space volumes $r_{\Lambda}=0.965815(8)$.

Corrections $\Delta_{[\Lambda p]} = 0.007769(3); \ \Delta_{[\Lambda n]} = -0.023631(6)$ due to different masses in the kinematical factors. $N-\pi$ scattering Phase shifts: $\delta_1^S = 6.52(9); \ \delta_1^P = -0.79(8); \ \delta_3^S = -4.60(7); \ \delta_3^P = -0.75(4). \ (|\mathbf{q}| = 103 \ \text{MeV}/c)$ PHYSICAL REVIEW D 105, 116022 (2022)

Hyperon Hadronic Weak Decay

• Effective Lagranian of the decay:

$$\mathcal{L} = \frac{eG_F}{2} \bar{B}_f (P + S\gamma_5) \sigma^{\mu\nu} B_i F_{\mu\nu}$$

$$S = \sum_i S_i e^{i(\delta_i^S + \xi_i^S)}$$

$$P = \sum_i P_i e^{i(\delta_i^P + \xi_i^P)}$$

- *i* runs the change in isospin ΔI
- δ_i is the strong final-state interaction phase
- ξ_i is the weak interaction phase

Observables:

$$\Gamma = \frac{e^2 G_F^2}{\pi} \left(|S|^2 + |P|^2 \right)$$

$$\alpha_{Y} = \frac{2 \operatorname{Re} (S^{*}P)}{|S|^{2} + |P|^{2}}, \quad \beta_{Y} = \frac{2 \operatorname{Im} (S^{*}P)}{|S|^{2} + |P|^{2}}, \quad \gamma_{Y} = \frac{|S|^{2} - |P|^{2}}{|S|^{2} + |P|^{2}}$$

$$\beta_Y = \sqrt{1 - \alpha_Y^2} \sin \phi_Y \qquad \gamma_Y = \sqrt{1 - \alpha_Y^2} \cos \phi_Y$$

Anisotropic proton decay distribution

$$\frac{dN}{d\cos\theta} = \frac{N_0}{2}(1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta) \qquad \text{slope} = \alpha_{\Lambda}P_{\Lambda}$$

$$\frac{dN}{d\cos\theta}$$

Hyperon Hadronic Weak Decay at e⁺e⁻ collider

Typical reaction of $e^+e^- o J/\psi o \Xi^- \overline{\Xi}{}^+$

□ The first reaction: $J/\psi \to \Xi^-\overline{\Xi}^+$

- Two helicity amplitudes $|J; J_z\rangle = |1; +1\rangle, |1; -1\rangle$
- Interference between them produces a θ_{ψ} -dependent production for Ξ hyperons that are spin-polarized:

$$\frac{1}{N} \frac{dN}{d\cos\theta_{\psi}} = \frac{3}{4\pi} \frac{1 + \alpha_{\psi}\cos^{2}\theta_{\psi}}{3 + \alpha_{\psi}}$$

$$\mathcal{P}_{\Xi} = \frac{\sqrt{1 - \alpha_{\psi}^{2}\sin\theta_{\psi}\cos\theta_{\psi}\sin\Delta\Phi}}{1 + \alpha_{\psi}\cos^{2}\theta_{\psi}}$$

- J/ψ produced almost at rest
- $\mathcal{Z}^{-}\bar{\mathcal{Z}}^{+}$ produced back-to-back, spin-correlated
- Decay occurs within a few cm of IP
- Low momentum π^- and π^+
- Clean topology, low background rate: 1:400

衰变道	$lpha_{\psi}$	$\Delta\Phi_{\psi}$	最大极化率(%)
$J/\psi o \Lambda ar{\Lambda}$	$0.475 \pm 0.002 \pm 0.003$	$0.752 \pm 0.004 \pm 0.007$	24.7
$J/\psi o \Sigma^+ \bar{\Sigma}^-$	$-0.508 \pm 0.006 \pm 0.004$	$-0.270 \pm 0.012 \pm 0.009$	16.4
$J/\psi o \Xi^- \bar{\Xi}^+$	$0.586 \pm 0.012 \pm 0.010$	$1.213 \pm 0.046 \pm 0.016$	30.1
$J/\psi \to \Xi^0 \bar{\Xi}^0$	$0.514 \pm 0.006 \pm 0.015$	$1.168 \pm 0.019 \pm 0.018$	32.1

Hyperon Hadronic Weak Decay at e⁺e⁻ collider

- □ The next two reactions: $\mathcal{Z}^- \to \Lambda \pi^- (\overline{\mathcal{Z}}^+ \to \overline{\Lambda} \pi^+)$
 - In Ξ^- and $\bar{\Xi}^+$ rest frames: $\frac{dN}{d\cos\theta_{\Lambda}} \propto 1 + \alpha_{\Xi} \mathcal{P}_{\Xi} \cos\theta_{\Lambda}$

$$\mathbf{P}_{\Lambda} = \frac{(\alpha_{\Xi} + \mathcal{P}_{\Xi} \cos \theta_{\Lambda}) \hat{\mathbf{z}} + \mathcal{P}_{\Xi} \beta_{\Xi} \hat{\mathbf{x}} + \mathcal{P}_{\Xi} \gamma_{\Xi} \hat{\mathbf{y}}}{1 + \alpha_{\Xi} \mathcal{P}_{\Xi} \cos \theta_{\Lambda}}$$

- The decay angle $\theta_{\Lambda}(\theta_{\overline{\Lambda}})$ relative to P_{Ξ} direction
- P_{Λ} is polarization of Λ with \hat{x} , \hat{y} , \hat{z} oriented in helicity frame
- α , β , γ are the Lee-Yang decay parameters of Ξ that can be determined with $\frac{dN}{d\cos\theta}$ and P_A
- □ The last two reactions: $\Lambda \to p\pi^-(\overline{\Lambda} \to \overline{n}\pi^0)$
 - In Λ and $\overline{\Lambda}$ rest frames: $\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} \mathcal{P}_{\Lambda} \cos\theta_p$.
 - The decay angle $\theta_p(\theta_{\bar{p}})$ relative to P_{Λ} direction
 - Only α of Λ can be determined since proton polarization is not measured.

A joint angular analysis of $J/\psi \to \Xi^- \overline{\Xi}^+$

$$\begin{split} e^+e^- &\to J/\psi \to \Xi^-\bar{\Xi}^+ \to \Lambda(\to n\pi^0)\pi^-\bar{\Lambda}(\to \bar{p}^-\pi^+)\pi^+, (\text{neutron channel}) \\ e^+e^- &\to J/\psi \to \Xi^-\bar{\Xi}^+ \to \Lambda(\to p^+\pi^-)\pi^-\bar{\Lambda}(\to \bar{n}\pi^0)\pi^+. (\text{anti-neutron channel}) \end{split}$$

$$\mathcal{W}(\xi;\omega) = \sum_{\mu,\,v=0}^{3} C_{\mu v} \sum_{\mu' \,v'=0}^{3} a^{\Xi}_{\mu \mu'} a^{\Xi}_{v v'} a^{\Lambda}_{\mu' 0} a^{\bar{\Lambda}}_{v' 0}$$

• Spin density matrix $(J/\psi \to \Xi^- \bar{\Xi}^+)$:

$$C_{\mu\bar{\nu}} = 2 \times \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta & 0 & \beta_{\psi} \sin\theta\cos\theta & 0 \\ 0 & \sin^{2}\theta & 0 & \gamma_{\psi} \sin\theta\cos\theta \\ -\beta_{\psi} \sin\theta\cos\theta & 0 & \alpha_{\psi} \sin^{2}\theta & 0 \\ 0 & -\gamma_{\psi} \sin\theta\cos\theta & 0 & -(\alpha_{\psi} + \cos^{2}\theta) \end{pmatrix}$$
$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi)$$

• For $\frac{1}{2}^+ \to \frac{1}{2}^+ + 0^- \text{decay } (\Xi^- \to \Lambda \pi^-)$:

$$a_h^{\Xi} = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \alpha \cos \phi \sin \theta & \gamma \cos \theta \cos \phi - \beta \sin \phi & -\beta \cos \theta \cos \phi - \gamma \sin \phi & \sin \theta \cos \phi \\ \alpha \sin \theta \sin \phi & \beta \cos \phi + \gamma \cos \theta \sin \phi & \gamma \cos \phi - \beta \cos \theta \sin \phi & \sin \theta \sin \phi \\ \alpha \cos \theta & -\gamma \sin \theta & \beta \sin \theta & \cos \theta \end{pmatrix}$$

A joint angular analysis of $J/\psi \to \Xi^- \overline{\Xi}^+$

The fit yields 143973±414 signal events and a purity of 91.2%. Good consistence between data and simulation

A joint angular analysis of $J/\psi \to \Xi^- \overline{\Xi}^+$

- **Production parameters** are consistent with previous results, verifying the polarization and spin correlation.
- Precision of α_0 and $\overline{\alpha}_0$ are improved by factor of 4 and 1.7.
- Strong and weak-phase difference are measured.

$$\begin{split} (\delta_P-\delta_S)_{\mathrm{SM}} &= (1.9\pm4.9)\times 10^2 \text{ rad} \\ (\xi_P-\xi_S)_{\mathrm{SM}} &= (1.8\pm1.5)\times 10^4 \text{ rad} \\ (\delta_P-\delta_S)_{\mathrm{HyperCP}} &= (10.2\pm3.9)\times 10^2 \text{ rad} \end{split}$$

• Four CP observables are constructed from decay parameters.

PRL 132, 101801(2024)

Parameters	This work	Previous result
$lpha_{J/\psi}$	$0.611 \pm 0.007^{+0.013}_{-0.007}$	$0.586 \pm 0.012 \pm 0.010$
$\Delta\Phi_{J/\psi}$ (rad)	$1.30 \pm 0.03^{+0.02}_{-0.03}$	$1.213 \pm 0.046 \pm 0.016$
$lpha_\Xi$	$-0.367 \pm 0.004^{+0.003}_{-0.004}$	$-0.376 \pm 0.007 \pm 0.003$
ϕ_Ξ (rad)	$-0.016 \pm 0.012^{+0.004}_{-0.008}$	$0.011 \pm 0.019 \pm 0.009$
$ar{lpha}_{\Xi}$	$0.374 \pm 0.004^{+0.002}_{-0.004}$	$0.371 \pm 0.007 \pm 0.002$
$ar{\phi}_\Xi$ (rad)	$0.010 \pm 0.012^{+0.002}_{-0.013}$	$-0.021 \pm 0.019 \pm 0.007$
$lpha_{\Lambda-}$	$0.764 \pm 0.008^{+0.005}_{-0.006}$	$0.7519 \pm 0.0036 \pm 0.0024$
$lpha_{\Lambda+}$	$-0.774 \pm 0.009^{+0.005}_{-0.005}$	$-0.7559 \pm 0.0036 \pm 0.0030$
$lpha_{\Lambda0}$	$0.670 \pm 0.009^{+0.009}_{-0.008}$	0.75 ± 0.05
$ar{lpha}_{\Lambda0}$	$-0.668 \pm 0.008^{+0.006}_{-0.008}$	$-0.692 \pm 0.016 \pm 0.006$
$\delta_P\!-\!\delta_S$ (rad)	$0.033 \pm 0.020^{+0.008}_{-0.012}$	$-0.040 \pm 0.033 \pm 0.017$
$\xi_P\!-\!\xi_S$ (rad)	$0.007 \pm 0.020^{+0.018}_{-0.005}$	$0.012 \pm 0.034 \pm 0.008$
A_{CP}^{Ξ}	$-0.009 \pm 0.008^{+0.007}_{-0.002}$	$0.006 \pm 0.013 \pm 0.006$
$\Delta\phi^{\Xi}_{\mathrm{CP}}$ (rad)	$-0.003 \pm 0.008^{+0.002}_{-0.007}$	$-0.005 \pm 0.014 \pm 0.003$
A_{CP}^-	$-0.007 \pm 0.008^{+0.002}_{-0.003}$	$-0.0025 \pm 0.0046 \pm 0.0012$
$A_{ m CP}^0$	$0.001 \pm 0.009^{+0.005}_{-0.007}$	-
$A_{ ext{CP}}^{\Lambda}$	$-0.004 \pm 0.007^{+0.003}_{-0.004}$	-
$lpha_{\Lambda0}/lpha_{\Lambda-}$	$0.877 \pm 0.015^{+0.014}_{-0.010}$	1.01 ± 0.07
$ar{lpha}_{\Lambda0}/lpha_{\Lambda+}$	$0.863 \pm 0.014^{+0.012}_{-0.008}$	$0.913 \pm 0.028 \pm 0.012$

Disparity in Λ decay that reveals $\Delta I = 1/2$ rule

Test of CP violation

$$R\left(\cos\theta_{p},\cos\theta_{\bar{p}}\right) = \frac{1 + \alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p}}{1 + \alpha_{\Lambda+}\bar{\alpha}_{\Xi}\cos\theta_{\bar{p}}}$$

Test of $\Delta I = 1/2$ rule

$$R\left(\cos\theta_{n},\cos\theta_{p}\right) = \frac{1 + \alpha_{\Lambda0}\alpha_{\Xi}\cos\theta_{n}}{1 + \alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p}}$$

The average of the ratio

$$\langle \alpha_{\Lambda 0} \rangle / \langle \alpha_{\Lambda -} \rangle = 0.870 \pm 0.012^{+0.011}_{-0.010}$$

Consistent with kaon decay

$$S_1/S_3 = 28.4 \pm 1.3^{+1.1}_{-1.0} \pm 3.9$$

$$P_1/P_3 = -13.0 \pm 1.4^{+1.1}_{-1.2} \pm 0.7$$

Observed for the first time, different from S-wave

S/P wave puzzle

• Three parameters fully describe the hyperon hadronic weak decays:

$$\Gamma = \frac{e^2 G_F^2}{\pi} (|S|^2 + |P|^2) \qquad \alpha_Y = \frac{2 \text{Re}(S^* P)}{|S|^2 + |P|^2} \qquad \phi_Y = \sin^{-1} \frac{\beta_Y}{\sqrt{1 - \alpha_Y^2}}$$

S/P wave puzzle: the S wave in hyperon decay follows SU(3) symmetry, while the P wave doesn't.

In the ChPT, if the two low energy constants can describe well the experimental S-wave amplitudes, they reproduce very poorly the P-wave amplitudes

It is the S/P wave puzzle that limits the precision of SM predictions of CPV!

$$\alpha_{Y} = \frac{2|S_{Y}||P_{Y}|\cos\left(\left(\delta_{y\pi}^{P} - \delta_{y\pi}^{S}\right) + \left(\xi_{Y}^{P} - \xi_{Y}^{S}\right)\right)}{|S_{Y}|^{2} + |P_{Y}|^{2}}$$

$$\alpha_{\bar{Y}} = -\frac{2|S_{Y}||P_{Y}|\cos\left(\left(\delta_{y\pi}^{P} - \delta_{y\pi}^{S}\right) - \left(\xi_{Y}^{P} - \xi_{Y}^{S}\right)\right)}{|S_{Y}|^{2} + |P_{Y}|^{2}}$$

$$\mathcal{A}_{CP}^{Y} \equiv \frac{\alpha_{Y} + \alpha_{\bar{Y}}}{\alpha_{Y} - \alpha_{\bar{Y}}} = -\sin\left(\delta_{y\pi}^{P} - \delta_{y\pi}^{S}\right)\sin\left(\xi_{Y}^{P} - \xi_{Y}^{S}\right)$$

$$\mathcal{B}_{CP}^{\Xi} \equiv \frac{\beta_{\Xi} + \beta_{\bar{\Xi}}}{\alpha_{\Xi} - \alpha_{\bar{\Xi}}} = \tan\left(\xi_{\Xi}^{P} - \xi_{\Xi}^{S}\right) \approx \xi_{\Xi}^{P} - \xi_{\Xi}^{S}$$

CPV observables	SM predictions	BESIII data
A_{CP}^{Λ}	$(-3 \sim 3) \times 10^{-5}$	$(-2.5 \pm 4.6 \pm 1.2) \times 10^{-3}$
A_{CP}^{Ξ}	$(0.5\sim6)\times10^{-5}$	$(6 \pm 13.4 \pm 5.6) \times 10^{-3}$
B_{CP}^{Ξ}	$(-3.8 \sim -0.3) \times 10^{-4}$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$

S/P wave puzzle

- Using the **ChPT approaches**, with updated decay parameters, the updated S-wave and P-wave are obtained (R.X. Shi, L.S. Geng, *Sci.Bull.* 68 (2023) 779-782).
- The P-wave in $\Lambda \to p\pi^-$ and $\Xi^- \to \Lambda\pi^-$ differs a lot from E. E. Jenkins, NPB 375, 561 (1992)
- It could be improved with updated α_0 from $\Lambda \to n\pi^0$

TABLE V. Experimental S- and P-wave hyperon non-leptonic decay amplitudes extracted from the most recent pdgLive [3], BESIII measurements [51, 52] and CLAS data [53].

Decay modes	$\mathcal{B}[\overline{3}]$	α_{π} [3, 51–53]	ϕ_{π} (°) [3, 52]	$s = A_S^0$	Expt)	$p = A_P^{\text{(Expt)}} \vec{q} /$	$(E_f + m_f)$
Decay modes		α_{π} [5, 51–55]	$\varphi_{\pi}(f)[S,SZ]$	This work	[49]	This work	[49]
$\Sigma^+ \to n\pi^+$	0.4831(30)	0.068(13)	167(20)	0.06(1)	0.06(1)	1.81(1)	1.81(1)
$\Sigma^- \to n \pi^-$	0.99848(5)	-0.068(8)	10(15)	1.88(1)	1.88(1)	-0.06(1)	-0.06(1)
$\Lambda \to p \pi^-$	0.639(5)	0.7462(88)	-6.5(35)	1.38(1)	1.42(1)	0.62(1)	0.52(2)
$\Xi^- o \Lambda \pi^-$	0.99887(35)	-0.376(8)	0.6(12)	-1.99(1)	-1.98(1)	0.39(1)	0.48(2)
$\Sigma^+ \to p \pi^0$	0.5157(30)	-0.982(14)	36(34)	-1.50(3)	-1.43(5)	1.29(4)	1.17(7)
$\Lambda \to n\pi^0$	0.358(5)	0.74(5)	•••	-1.09(2)	-1.04(1)	-0.48(4)	-0.39(4)
$\Xi^0 \to \Lambda \pi^0$	0.99524(12)	-0.356(11)	21(12)	1.62(10)	1.52(2)	-0.30(10)	-0.33(2)

Updated one: $0.670 \pm 0.009^{+0.009}_{-0.008}$

Weak Radiative Hyperon Decay

- The radiative decay was thought to be a simple reaction since it is free of final-state interaction.
- There are seven WRHD processes:

$B_i \to \gamma B_f$	$BF(10^{-3})$	α_{γ}
$\Lambda \to \gamma n$	1.75±0.15	_
$\Sigma^+ \to \gamma p$	1.23 ± 0.05	-0.76 ± 0.08
$\Sigma^0 \to \gamma n$	_	_
$\Xi^0 \to \gamma \Lambda$	1.17 ± 0.07	-0.70 ± 0.07
$\Xi^0 \to \gamma \Sigma^0$	3.33 ± 0.10	-0.69 ± 0.06
$\Xi^- \to \gamma \Sigma^-$	1.27 ± 0.23	1.0 ± 1.3
$\Omega^- o \gamma \Xi^-$	< 0.46(90% <i>C.L.</i>)	_

Effective Lagrangian

$$\mathcal{L} = \frac{eG_F}{2}\bar{B}_f(a^{PC} + b^{PV}\gamma_5)\sigma^{\mu\nu}B_iF_{\mu\nu}$$

• Observables:

$$\Gamma = \frac{e^2 G_F^2}{\pi} \left(|a|^2 + |b|^2 \right) \cdot \left| \vec{k} \right|^3,$$

$$\alpha_{\gamma} = \frac{2 \operatorname{Re}(ab^*)}{|a|^2 + |b|^2}$$

"Hara theorem" for WRHD

• Most attempts study the single quark transition operator for $s \to d\gamma$. The remaining two quarks are assumed to be spectators.

The "Hara theorem":

- The U-spin properties of the weak and EM Hamiltonian imply that the PV part of the radiative weak decay vanishes in U-spin symmetry
- If one assumes that $m_d != m_s$, the ratio of PV amplitude to PC is $(m_s-m_d)/(m_s+m_d)$ implying small but positive asymmetry parameter.
- For a U-spin doublet such as p, Σ^+ , or Σ^- , Ξ^- , Hara theorem requires the **PV amplitudes vanish**

"Hara theorem" for WRHD

PHYSICAL REVIEW

VOLUME 188, NUMBER 5

25 DECEMBER 1969

Asymmetry Parameter and Branching Ratio of $\Sigma^+ \to p_{\gamma}^*$

LAWRENCE K. GERSHWIN,† MARGARET ALSTON-GARNJOST, ROGER O. BANGERTER, ANGELA BARBARO-GALTIERI,
TERRY S. MAST, FRANK T. SOLMITZ, AND ROBERT D. TRIPP

Lawrence Radiation Laboratory, University of California, Berkeley, California 94720

(Received 25 August 1969)

An experiment to study the decay $\Sigma^+ \to p\gamma$ was performed in the Berkeley 25-in. hydrogen bubble chamber. An analysis was made of 48 000 events of the type $K^-p \to \Sigma^+\pi^-$, $\Sigma^+ \to p+$ neutral with K^- momenta near 400 MeV/c. The Σ 's produced in this momentum region are polarized because of the interference of the Y_0^* (1520) amplitude with the background amplitudes. We have measured the proton asymmetry parameter α for 61 $\Sigma^+ \to p\gamma$ events with an average polarization of 0.4. We found $\alpha = -1.03_{-0.42}^{+0.52}$. SU(3) predicts a value $\alpha = 0$. A more restricted sample of events was used to determine the $\Sigma^+ \to p\gamma$ branching ratio. From 31 $\Sigma^+ \to p\gamma$ events and 11 670 $\Sigma^+ \to p\pi^0$ events, we found $(\Sigma^+ \to p\gamma)/(\Sigma^+ \to p\pi^0) = (2.76 \pm 0.51) \times 10^{-3}$. The result is in agreement with the previous measurements.

A single quark transition model is inadequate in describing the baryon radiative weak decays

"Hara theorem" for WRHD

• Non-pQCD effect plays a essential role, low energy effective theories needed

A symphony of strong, weak and EM interaction

Decay modes	Data [6, 7, 21, 23]	Broken SU(3) model [11]	QM [12]	NRCQM [13]
		$\mathcal{B} \times 10^{-3}$		
$\Lambda \to n \gamma$	0.832(38)(54)	0.77	1.84	1.83(96)
$\Sigma^+ o p\gamma$	0.996(21)(18)	0.72	1.30	1.06(59)
$\Sigma^0 o n \gamma$	•••	•••	4.3×10^{-9}	10^{-10}
$\Xi^0 o \Lambda \gamma$	1.17(7)	1.02	0.93	0.96(32)
$\Xi^0 o\Sigma^0\gamma$	3.33(10)	4.42	3.82	9.75(418)
$\Xi^- o \Sigma^- \gamma$	0.127(23)	0.16	0.13	•••
		$lpha_{\gamma}$		
$\Lambda \to n \gamma$	-0.16(10)(5)	-0.93	-0.94	-0.67(6)
$\Sigma^+ o p \gamma$	-0.652(56)(20)	-0.67	-0.74	-0.58(6)
$\Sigma^0 o n \gamma$			0.01	0.37(4)
$\Xi^0 o \Lambda \gamma$	-0.704(19)(64)	-0.97	-0.64	0.72(11)
$\Xi^0 o \Sigma^0\gamma$	-0.69(6)	-0.92	-0.52	0.33(4)
$\Xi^- o \Sigma^- \gamma$	1.0(13)	0.8	0.76	•••

- The WRHD provide low-energy constants constraints, that will bring inputs for Semi-leptonic decay and weak hadronic decay
- However, there is no one unified model to describe all WRHDs in a satisfied way.

Joint angular analysis for WRHD at e+e- collider

$$W = \sum_{\mu, \nu=0}^{3} \sum_{\mu', \nu', \rho=0}^{3} C_{\mu\nu} b_{\mu\mu'}^{\Xi} a_{\nu\nu'}^{\bar{\Xi}} b_{\mu'\rho}^{\Sigma} a_{\nu'0}^{\bar{\Lambda}} a_{\rho0}^{\Lambda}$$

For $J/\psi \to \Xi^0 \overline{\Xi}^-$

$$C_{\mu\nu} = \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta_{\Xi^{0}} & 0 & \beta_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} & 0 \\ 0 & \sin^{2}\theta_{\Xi^{0}} & 0 & \gamma_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} \\ -\beta_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} & 0 & \alpha_{\psi} \sin^{2}\theta_{\Xi^{0}} & 0 \\ 0 & -\gamma_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} & 0 & -(\alpha_{\psi} + \cos^{2}\theta_{\Xi^{0}}) \end{pmatrix}$$

For $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 0^-$ decay $(\Xi^0 \rightarrow \Lambda \pi^0)$

$$a_{\mu\mu'} = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \alpha\cos\phi\sin\theta & \gamma\cos\phi\cos\theta - \beta\sin\phi & -\beta\cos\phi\cos\theta - \gamma\sin\phi & \cos\phi\sin\theta \\ \alpha\sin\phi\sin\theta & \beta\cos\phi + \gamma\cos\theta\sin\phi & \gamma\cos\phi - \beta\cos\theta\sin\phi & \sin\phi\sin\theta \\ \alpha\cos\theta & -\gamma\sin\theta & \beta\sin\theta & \cos\theta \end{pmatrix}$$

For
$$\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 1^- decay (\Xi^0 \rightarrow \Sigma^0 \gamma)$$

$$b_{\nu\nu'} = \begin{cases} 1 & 0 & 0 & -\alpha \\ \alpha\cos\phi\sin\theta & 0 & 0 & -\cos\phi\sin\theta \\ \alpha\sin\theta\sin\phi & 0 & 0 & -\sin\theta\sin\phi \\ \alpha\cos\theta & 0 & 0 & -\cos\theta \end{cases}$$

WRHD process $\Sigma^+ \to p \gamma$

Double-tag method:

$$\begin{split} N_{ST} &= N_{J/\psi \to \Sigma^{+}\bar{\Sigma}^{-}} \times \mathcal{B}_{\bar{\Sigma}^{-} \to \bar{p}\pi^{0}} \times \varepsilon_{ST} \\ N_{DT} &= N_{J/\psi \to \Sigma^{+}\bar{\Sigma}^{-}} \times \mathcal{B}_{\bar{\Sigma}^{-} \to \bar{p}\pi^{0}} \times \mathcal{B}_{\Sigma^{+} \to p\gamma} \times \varepsilon_{DT} \\ \mathcal{B}_{\Sigma^{+} \to p\gamma} &= \frac{N_{DT}}{N_{ST}} \times \frac{\varepsilon_{ST}}{\varepsilon_{DT}} \end{split}$$

Modes	$\Sigma^+ o p\gamma$	$ar{\Sigma}^- o ar{p} \gamma$
ST Yield	2 177 771 ± 2285	2509380 ± 2301
ST Eff (%)	39.02	44.31
DT Eff (%)	21.16	23.20
Individual BF	$(1.007 \pm 0.032) \times 10^{-3}$	$(0.994 \pm 0.030) \times 10^{-3}$
Simultaneous BF	(0.997 ± 0.0)	$(022) \times 10^{-3}$

WRHD process $\Sigma^+ \to p \gamma$

$$\mathcal{L} = \prod_{i=1}^{N} \frac{\mathcal{W}_{i}(\xi, H)}{\mathcal{N}} \qquad \mathcal{N} = \frac{1}{N_{\text{MC}}} \sum_{j=1}^{N_{\text{MC}}} \mathcal{W}_{i}^{\text{MC}}(\xi, H)$$

- • \mathcal{W}_i : differential cross section
- $ullet \mathcal{N}$: normalization factor based on PHSP MC

$$\bullet H = \left(\alpha_{J/\psi}, \Delta \Phi_{\Psi}, \alpha_{\Sigma^+ \to p\gamma}, \alpha_{\overline{\Sigma}^- \to \bar{p}\pi^0}\right)$$

$$M_1(\cos heta_{\Sigma^+}) = rac{m}{N} \sum_{i=1}^{N_k} \cos heta^i_{ar p} \cos heta^i_p,$$

$$M_2(\cos\theta_{\Sigma^+}) = \frac{m}{N} \sum_{i=1}^{N_k} \sin\theta_p^i \sin\phi_p^i,$$

Parameter	value
$lpha_{\psi}$	-0.508 ± 0.006
$lpha_{\psi} \ \Delta \Phi$	-0.270 ± 0.012
$lpha_{\Sigma^+ o p\pi^0}$	-0.980 ± 0.017
$lpha_{\Sigma^+ o p\gamma}$	Iterated from this analysis

PRL130, 211901 (2023)

Processes	$\Sigma^+ \to p \gamma$	$ar{\Sigma}^- o ar{p} \gamma$
Individual fit	-0.587 ± 0.082	0.710 ± 0.076
Simultaneous fit	-0.651 =	± 0.056

WRHD process $\Sigma^+ \to p\gamma$

PRL130, 211901 (2023)

Mode	$\Sigma^+ o p \gamma$	$\bar{\Sigma}^- o \bar{p} \gamma$
$N_{ m ST}^{ m obs}$	2177771 ± 2285	2509380 ± 2301
$\varepsilon_{\mathrm{ST}}$ (%)	39.00 ± 0.04	44.31 ± 0.04
$N_{ m DT}^{ m obs}$	1189 ± 38	1306 ± 39
$\varepsilon_{\mathrm{DT}}$ (%)	21.16 ± 0.03	23.20 ± 0.03
Individual BF (10^{-3})	1.005 ± 0.032	0.993 ± 0.030
Simultaneous BF (10^{-3})	0.996 ± 0.0	21 ± 0.018
Individual α_{γ}	-0.587 ± 0.082	0.710 ± 0.076
Simultaneous α_{γ}	$-0.651 \pm 0.$	056 ± 0.020

- The accuracies of the BF and α_{γ} are improved by 78% and 34%
- The measured BF is lower than the world average value by 4.25
- The accurate result will provide input and constraints for ChPT

WRHD process $\Sigma^+ \to p \gamma$

PRL130, 211901 (2023)

Input for new physics in $\Sigma^+ o p l^+ l^-$

- Smoke screen of new physics in $\Sigma + \to p\mu + \mu \text{decay}$ PRL94 (2005) 021801, PRL120 (2018) 22, 22180
- Experiment results of WRHDs provide SM expectations on such decays narrowing the range for NP!

CP observables:

$$\Delta_{CP} = \frac{\mathcal{B}_{+} - \mathcal{B}_{-}}{\mathcal{B}_{+} + \mathcal{B}_{-}} = 0.006 \pm 0.011_{\text{stat.}} \pm 0.004_{\text{syst.}},$$

$$A_{CP} = \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = 0.095 \pm 0.087_{\text{stat.}} \pm 0.018_{\text{syst.}}.$$

- May be significantly enhanced by NP up to O 10 % (PRL109 (2012), 171801, JHEP 01 (2013) 027, JHEP 04 (2017) 027, JHEP 08 (2017) 09
- Extensive experimental studies on K, D and B meson radiative decays

SM on $\Sigma^+ o p\gamma$	Δ_{CP}	A_{CP}
PhysRevD.51.2271	$10^{-5} - 10^{-4}$	
Commun. Theor. Phys. 19.475		$10^{-5} - 10^{-4}$
arxiv:2312.17568	2×10^{-5}	

WRHD process $\Lambda \rightarrow n\gamma$

 $M_{\text{recoil}(\Lambda)}(\text{GeV}/c^2)$

> Dominant background:

$$\Lambda \rightarrow n\pi^0$$

- BKG A: photon candidate is from π^0 decay.
- BKG B: photon candidate is not from π^0 decay.
- **Sources of noise photons:**
- ☐ (Anti-)neutron-related secondary shower;
- ☐ Mis-identification of photons and neutron showers:
- **□** Noise showers from beam-BKG.

Decay mode	$\Lambda \to n \gamma$	$\bar{\Lambda} ightarrow \bar{n} \gamma$
$N_{\rm ST}~(\times 10^3)$	6853.2 ± 2.6	7036.2 ± 2.7
$\varepsilon_{\mathrm{ST}}$ (%)	51.13 ± 0.01	52.53 ± 0.01
$N_{ m DT}$	723 ± 40	498 ± 41
$\varepsilon_{\mathrm{DT}}$ (%)	6.58 ± 0.04	4.32 ± 0.03
BF ($\times 10^{-3}$)	$0.820 \pm 0.045 \pm 0.066$	$0.862 \pm 0.071 \pm 0.084$
	0.832 ± 0.0	038 ± 0.054
$lpha_{\scriptscriptstyle \gamma}$	$-0.13 \pm 0.13 \pm 0.03$	$0.21 \pm 0.15 \pm 0.06$
,	-0.16 ± 0	0.10 ± 0.05

PRL 129, 212002 (2022)

After further BDT selection

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 E_{γ} in Λ rest frame (GeV)

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

 E_{ν} in Λ rest frame (GeV)

WRHD process $\Lambda \rightarrow n\gamma$

PRL 129, 212002 (2022)

$$-\ln \mathcal{L} = -\sum_{i=1}^{i=N} \ln \frac{\omega(\xi, \alpha_{\gamma})}{S}$$

- □ Contributions of BKG A / B should be subtracted.
- ☐ BKG A and BKG B contributions are estimated by DIY MC with same numbers in data

 α_{ψ} (J/ ψ decay parameter) = 0.461, $\Delta\Phi$ (helicity phase) = 0.74, $\alpha_{1}(\Lambda \to p\pi^{-}) = 0.75$, $\alpha_{V}(\overline{\Lambda} \to \gamma \overline{n}) = ?$

- First measurement on α_{γ}
- 5.6σ deviation of BF from world average value

WRHD process $\Lambda \rightarrow n\gamma$

Unitarity Bounds:

- For the WRHD processes, $Im\ M(Y \to B\gamma)$ can be expressed in terms of the amplitudes of the $Y \to B\pi^0$ and of those of **pion photoproduction on nucleons** $(\gamma B \to \pi B')$
- However, the updated BF of $\Lambda \rightarrow n\gamma$, (0.832 \pm 0.038 \pm 0.054) \times 10⁻³, is close to the lower bounds.

Table 4.1 Comparison of estimates of πB contributions to the branching fractions of WRHD. (in units of 10^{-3})

	Zakharov ⁵²	Farrar ⁵³		Kogan ⁵⁴		Reid ^{55,56}
Process	lower bound	lower bound	full estimate	lower bound	full estimate	full estimate
$\Sigma^+ o \rho \gamma$	0.07±0.04	0.007	0.3±1.2			0.77 ^{+1.29} -0.49
$\Lambda \to n \gamma$	0.83	0.85	1.9±0.8			1.20 +0.46 -0.04
$\Xi^- \to \Sigma^- \gamma$	0.13	nazione o considera del mando del ma		0.10	0.17	
$\Omega^- \to \Xi^- \gamma$	•	and management		0.008	0.01	

WRHD process $\Xi^0 \to \Lambda \gamma$

Sci.Bull. 70 (2025) 454-459

Modes	$\Xi^0 o \Lambda \gamma$	$\bar{\Xi}^0 \to \bar{\Lambda} \gamma$	
ST Yield $arepsilon_{ST}$ (%) $arepsilon_{DT}$ (%) Individual BF Simultaneous BF	$ \begin{array}{r} 1400541 \pm 1989 \\ 17.61 \pm 0.01 \\ 4.43 \pm 0.02 \\ (1.391 \pm 0.093) \times 10^{-3} \\ $	$ \begin{array}{c c} 1611216 \pm 2111 \\ 19.77 \pm 0.01 \\ 4.77 \pm 0.02 \\ (1.344 \pm 0.099) \times 10^{-3} \\ 068) \times 10^{-3} \end{array} $	
Correction factor Corrected individual BF Corrected simultaneous BF	$ \begin{array}{ c c c c } \hline 1.032 \\ (1.348 \pm 0.090) \times 10^{-3} \\ \hline (1.347 \pm 0.00) \end{array} $	$ \begin{array}{ c c } \hline 1.014 \\ (1.326 \pm 0.098) \times 10^{-3} \\ 066) \times 10^{-3} \end{array} $	

WRHD process $\Xi^0 \to \Lambda \gamma$

$lpha_\Psi$	0.514
$\Delta\Phi$	1.168
$lpha_{\Xi^0 o\Lambda\gamma}$	this analysis
$lpha_{ar{\Xi}^0 ightarrow ar{\Lambda} \gamma}$	this analysis
$lpha_{\Xi^0 ightarrow \Lambda \pi^0}$	-0.375
$\Delta\Phi_{\Xi^0 o\Lambda\pi^0}$	0.005
$\alpha_{\bar{\Xi}^0 ightarrow \bar{\Lambda}\pi^0}$	0.379
$\Delta\Phi_{ar{\Xi}^0 oar{\Lambda}\pi^0}$	-0.005
$lpha_{\Lambda}$	0.755
$lpha_{ar{\Lambda}}$	-0.745

Sci.Bull. 70 (2025) 454-459

$$A_{\mathrm{CP}} = rac{lpha_{\gamma} + ar{lpha}_{\gamma}}{lpha_{\gamma} - ar{lpha}_{\gamma}} = -0.120 \pm 0.084_{\mathrm{stat.}} \pm 0.029_{\mathrm{syst.}}$$

HWRD at fix-target experiments

• Fixed target experiments govern the results in 1965-2010 (~23 papers from over 5 experiments)

$\Sigma^+ o p \gamma$				
时间	实验名或实验方案	分支比(×10 ⁻³)	$lpha_{\gamma}$	
2023	BESIII	$0.996 \pm 0.021 \pm 0.018$	$-0.652 \pm 0.056 \pm 0.020$	
1995	E761	1.20 ± 0.08	-	
1992	SPEC	-	-0.720 ± 0.086	
1989	CNTR	1.45 ± 0.31	-	
1987	CNTR	1.23 ± 0.20	-	
1985	CNTR	1.27 ± 0.18	-	
1980	HBC	1.09 ± 0.20	-0.53 ± 0.36	
1969	HBC	1.1 ± 0.2	-	
1969	HBC	1.42 ± 0.26	-1.03 ± 0.52	
1965	HBC	1.9 ± 0.4	-	
$\Lambda o n \gamma$				
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}	
2022	BESIII	$0.846 \pm 0.039 \pm 0.052$	$-0.160 \pm 0.101 \pm 0.046$	
1994	E761	1.75 ± 0.15	-	
1992	SPEC	1.78 ± 0.24	-	

$\Xi^0 o \Lambda \gamma$				
时间	实验名或实验方案	分支比(×10 ⁻³)	$lpha_{\gamma}$	
2010	NA48	-	-0.704 ± 0.064	
2004	NA48	1.17 ± 0.09	-0.78 ± 0.18	
2000	NA48	1.91 ± 0.34	-	
1990	SPEC	1.06 ± 0.18	-0.43 ± 0.44	
		$\Xi^0 o \Sigma^0 \gamma$		
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}	
2010	NA48	-	-0.729 ± 0.076	
2001	KTEV	3.34 ± 0.09	-0.63 ± 0.09	
2000	NA48	3.16 ± 0.76	-	
1989	SPEC	3.56 ± 0.42	0.20 ± 0.32	
		$\Xi^- \to \Sigma^- \gamma$		
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}	
1994	E761	0.122 ± 0.023	-	
1987	SPEC	0.227 ± 0.102	-	
$\Omega^- o \Xi^- \gamma$				
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}	
1994	E761	< 0.46	-	
1984	SPEC	< 0.22	-	
1979	SPEC	< 0.31	-	

HWRD at fix-target and e^+e^- and Experiments

- Hyperons at e^+e^- : less statistics compare with large flux hyperon beam with polarization, but with better precision, charge-conjugate channels
- The power of quantum correction and joint angular analysis!

Summary

- The precision of hyperons decays are limited by the **non-pQCD issues**: the $\Delta I = 1/2$ rule, S/P wave puzzle and Hara theorem are reported.
- Experimental measurement of hadronic weak decay and weak radiative decay of Hyperon are **improved at BESIII with its unique data**, and more attempts are ongoing.
- A unified picture of theoretical description for these decays is needed to understand the non-pQCD at these extreme low q² regions.

