

Trigger simulation and algorithm for cepc reference detector

Boping Chen On behalf of CEPC TDAQ Group

中國科學院為能物記術完所 Institute of High Energy Physics Chinese Academy of Sciences

Mar. 21th, 2025, CEPC Day

Outline

- Introduction
- MC Simulation
 - Physics requirement
 - Detection response
- Trigger Algorithm
- Efficiency Performance
- Summary and outlook

Introduction

TDAQ overall design:

- Level 1 hardware trigger(L1) + High level trigger(HLT)
- Provide both normal and fast trigger menu
- L1: Calorimeter+Muon+(Tracker?)
- HLT: Full detector information

Physical event rate

- Higgs mode (240GeV) bunch crossing rate: 1.33 MHz
 - Higgs boson production rate: ~0.017Hz
 - qq rate: 5Hz
- Z mode (91GeV) bunch crossing rate: 12/39.4 MHz
 - Visible Z rate: 10.5/41.9 kHz
- Cosmic ray: ~56 Hz
- Di-photon processes: relatively high rate
- Generated by BesTwoGam(only for Di-photon), Whizard(for all other processes)
- Detector simulation using CEPCSW tdr25.3.6

Table 12.1:	CEPC baseline parameters
-------------	--------------------------

Operation phase	Ι		II	III	
Run mode	ZH	Z	W	Z	$t\bar{t}$
SR power per beam (MW)	50	10	50		
Bunch number	446	3978	2162	13104	58
Bunch spacing (ns)	277 (x12)	69.2 (x3)	138.5 (x6)	23.1 (x1)	2700.0 (x117)
Train gap (%)	63	17	10	9	53
Bunch crossing rate(MHz)	1.33	12	6.5	39.4	0.17
Luminosity per IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	8.3	26	26.7	95.2	0.8
Run time (years)	10	1	1	2	5
Event yields [2 IPs]	4.3x10 ⁶	2.9x10 ¹¹	2.1x10 ⁸	2.0×10^{12}	6x10 ⁵

Table 12.2: Expected event rate at the ZH mode for 50 MW

Processes	Cross section (fb)	Event rate (Hz)	
ZH	203.66	0.017	
Two Fermions background (exclude Bhabha)	$6.4 imes 10^4$	5.3	
Four Fermions background	$1.9 imes 10^4$	1.6	
Bhabha	1.0×10^{6}	80	
$\gamma\gamma ightarrow bb$	$1.6 imes 10^6$	128	
$\gamma\gamma \rightarrow cc$	2.1×10^6	168	
$\gamma\gamma \to qq$	59.8×10^6	4784	

Table 12.3: Expected event rate at the Z mode for 10 MW

Processes	Cross section (fb)	Event rate (Hz)	
qq	31×10^{6}	7970	
$\mu\mu$	$1.5 imes 10^6$	400	
ΤΤ	$1.5 imes 10^6$	396	
Bhabha	$6.6 imes 10^6$	1714	
$\gamma\gamma ightarrow bb$	$2.8 imes 10^5$	73	
$\gamma\gamma \rightarrow cc$	$5.1 imes 10^5$	132	
$\gamma\gamma \rightarrow qq$	34.7×10^{6}	9011	

MC simulation at Higgs mode

- Physical processes:
 - Higgs: ee→ZH
 - Z→ee, μμ, ττ, νν
 - H \rightarrow bb, WW, $\tau\tau$, cc, ZZ, $\chi\chi$, Z χ , $\mu\mu$...
 - 2/4 fermions: ee→qq, μμ, ττ, ZZ, WW...
 - Di-photon: ee→ee+¼¼→ee+bb/cc/qq
- Background:
 - Beam induced background(10000 events by Haoyu)
 - Each event contains 10 BX(safe factor 10)
 - Detector noise and other background(to be studied)

Signal MC simulation: $ee \rightarrow ZH$

- ZH sample presented in this talk
 - Z→vv
 - H→bb, WW, ττ, ZZ, $\gamma\gamma$, Z γ , μμ
 - Final state: jet, photon, and muon
 - bb, $\gamma\gamma$ and $\mu\mu$ will be shown as example
 - 5000 events for each process

Table 11.3: The branching ratios and the relative uncertainty for a SM Higgs boson with $m_H = 125 \text{ GeV}$ [39, 40].

Decay channel	Branching ratio	Rel. uncertainty
$H \to \gamma \gamma$	2.27×10^{-3}	2.1%
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$
$H \to W^+ W^-$	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H ightarrow bar{b}$	5.82×10^{-1}	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar{c}$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$
$H \to Z\gamma$	1.53×10^{-3}	$\pm 5.8\%$
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$\pm 1.7\%$

Calorimeter module

- Basic module for ECal: ~1.5x1.5x40cm³
 - Cluster modules into 40x40cm² supercell
 - Use supercell as trigger input
 - $15(Z)x32(\varphi)$ in Z- φ plane
- Basic module for HCal: Barrel-Box(240/280/320 x 646mm²)
 - Combine two in φ and split into two in Z
 - 20(Z)x32(φ) in Z-φ plane

Barrel supercell energy distribution

- Large energy deposition(>10GeV) for signal(H→ɣɣ, H→bb)
- Very tiny energy deposition(<0.5 GeV) for beam background, mostly from pair production
 - One beam background event contains 10 BX

Endcap supercell energy distribution

Y axis

Y axis

- Similar to barrel for signal
- Relatively large energy deposition(~5GeV) for beam background

Maximum energy distribution

- Maximum energy for each sub-detector
- Beam induced background contributes little(<1GeV) on calorimeter, except ECal Endcap
- A baseline set of energy threshold
 - Background efficiency is less than 0.5%
 when any single threshold is used alone
 - A blue line shows the value for Endcap

Subdetector	Threshold(GeV)
ECAL Barrel	0.38
ECAL Endcap	7.7
HCAL Barrel	0.05
HCAL Endcap	0.33

Efficiency vs threshold

- Threshold value can be modified for different physics requirement
- A group of sets are tested based on the baseline set, by multiply a "threshold factor" to all the four threshold
- Only the ZH production with an efficiency below 99%, the di-photon processes and background are shown
- Signal processes are affected if the final state contains only neutrinos and muon

Efficiency for baseline threshold

- For most of the signal events, efficiency > 0.99
- µµ too forward⁻
 - Efficiency up to 0.935 if at least one muon inside calorimeter
- Three 4-fermions contain only neutrinos and muon at final state
 - Neutrinos energy > 200GeV

Process	Efficiency	Process	Efficiency	Process	Efficiency
Two Fermions				6) 2	
Bhabha	0.998	$\mu^+\mu^-$	0.852	$\tau^+\tau^-$	0.958
Higgs production					
$Z(\nu\bar{\nu})H(\gamma\gamma)$	>0.999	$Z(\nu\bar{\nu})H(\gamma Z)$	0.999	$Z(\nu\bar{\nu})H(b\bar{b})$	>0.999
$Z(\nu\bar{\nu})H(\mu^+\mu^-)$	0.979	$Z(\nu\bar{\nu})H(\tau^+\tau^-)$	0.996	$Z(\nu\bar{\nu})H(W^+W^-)$	>0.999
$Z(\nu\bar{\nu})H(W^+W^-)$ lep	0.995	$Z(\nu\bar{\nu})H(ZZ)$	>0.999	$Z(\nu\bar{\nu})H(ZZ)$ lep	0.992
Four Fermions					
sw_10mu	0.997	sw_10tau	>0.999	sw_sl	>0.999
sze_10e	>0.999	sze_10mu	0.877	sze_10nunu	0.998
sze_10tau	0.994	sze_sl	>0.999	szeorsw_1	>0.999
sznu_10mumu	0.621	sznu_10tautau	0.933	ww_h0ccbs	>0.999
ww_l	0.988	ww_sl0muq	>0.999	ww_sl0tauq	>0.999
wwbosons	>0.999	zz_h0dtdt	>0.999	zz_104mu	0.900
zz_104tau	0.988	zz_10mumu	0.658	zz_10taumu	0.971
zz_10tautau	0.950	zz_sl0mu_down	>0.999	zz_sl0mu_up	>0.999
zz_sl0nu_down	>0.999	zz_sl0nu_up	>0.999	zz_sl0tau_down	>0.999
zz_sl0tau_up	0.998	zzbosons	0.958	zzorww_h0cscs	>0.999
zzorww_10mumu	0.925	zzorww_10tautau	0.992		
Di-photon process					
$\gamma\gamma ightarrow bar{b}$	0.888	$\gamma\gamma \to c\bar{c}$	0.846	$\gamma\gamma ightarrow qar q$	0.533
Background	Veto rate				
Beam Background	0.982			с. [.]	

Table 12.8: Calorimeter threshold efficiency at the ZH mode for 50 MW

Muon detector

- **Top: signal Z(νν)H(μμ)**
- Bottom: beam background
 - Black hits: hits for all 2000 events
 - Color hits: hits for single events
- Count number of muon hit inside a small cone(baseline radius)
 - Barrel: dR<0.05
 - Endcap: dR<0.007

Number of hit

- Red line: baseline cut for the number of hit
 - Barrel > 3
 - Endcap > 5
- Background efficiency: 0.0119
- H→µµ efficiency: 0.9648

Combine efficiency

- Z(νν)H(μμ): Combine: 0.994; Calo: 0.979; Muon: 0.965
- ee→µµ: Combine: 0.96; Calo: 0.935; Muon: 0.854
- Beam bkg: Combine: 0.030; Calo: 0.019; Muon: 0.012

Tracker: Vertex

Tracker: ITK

- Left: Ζ(νν)Η(μμ); Right: Beam background
- Less hits than vertex
 - Only 3 layers(+1 layers for OTK), difficult to do tracking

Software trigger

- Offline track reconstruction
- Build "CompleteTracks" from all tracking subdetector
- Beam background:
 - ~1s / event for both ZH and Z mode
 - Efficiency: ~20%(N track > 0)

Summary and Outlook

- Trigger simulation & algorithm results are shown in this talk
 - L1: use Calorimeter&Muon(Track to be studied)
 - HLT: apply offline track reconstruction algorithm
- Future:
 - Detail calorimeter cluster algorithm: radius/depth/location/CoM...
 - Tracking algorithm for L1
 - ML(BDT, DNN, CNN...)
 - Optimize different sets of threshold
 - Detector noise

Crystal ECAL option compatible with PFA Updated: crystal granularity

- A new option: R&D activities started since ~2020
- Compatible for PFA: Boson mass resolution (BMR) < 4%
- Optimal EM performance: $\sigma_E/E < 3\%/\sqrt{E}$
- Minimal longitudinal dead material: orthogonal arranged bars
 - 3D positioning with two-sided readout for timing

CEPC Electromagnetic Calorimeter

- Total depth of 24 X_0 with 18 longitudinal layers
- Modularity: 32-sided polygons in azimuthal angle

- BGO bars in 1.5 \times 1.5 \times ~40 cm³
- Effective granularity 1.5×1.5 cm²
- Modules with cracks not pointing to IP (with an inclined angle of 12 degrees)

####