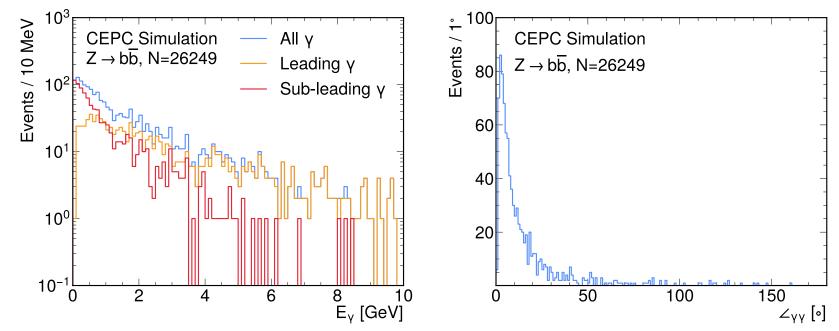


Institute of High Energy Physics, Chinese Academy of Sciences

Study of $D^0/\overline{D}{}^0 o \pi^0\pi^+\pi^-$

Jinfei Wu, Xinchou Lou, Yanping Huang, Shanzhen Chen

2025-03-20

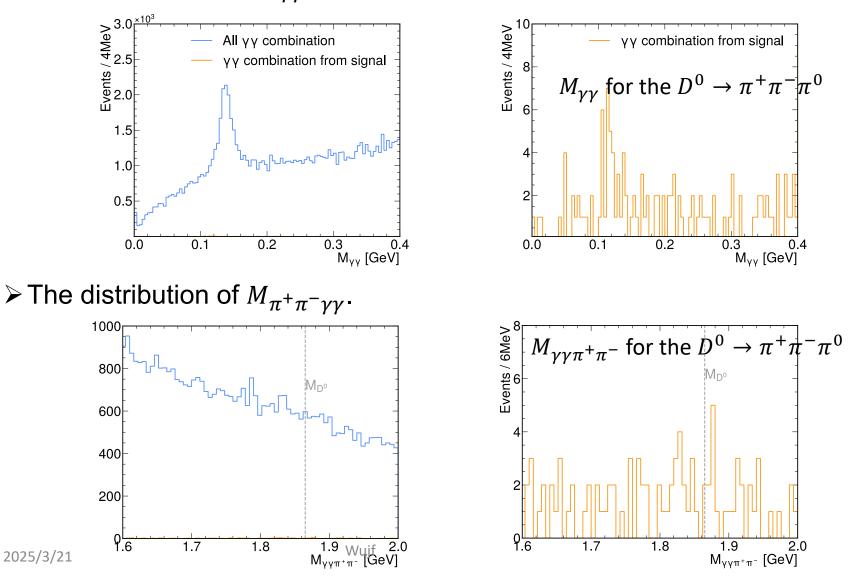

Introduction

- > I'm trying to select the process $D^0/\overline{D}^0 \to \pi^+\pi^-\pi^0$ to check the performance of PID and vertex fit.
- The MC samples are updated to the new version, which are from $e^+e^- \rightarrow Z \rightarrow b\bar{b}$ at $\sqrt{S} = 91.2$ GeV,
 - /cefs/higgs/zhangkl/Production/25035/E91.2_eebb/
 /Reco/rec_E91.2_eebb_*.root
- The version of CEPCSW is **tdr.25.3.2**, and I tried to get the truth distributions of photons from π^0 .
- I also tried to select the D^0 and D^* candidates by requiring the $M_{\pi^+\pi^-\gamma\gamma}$ and

 $M_{\pi^+\pi^-\gamma\gamma\pi^{\pm}}$ closest to M_{D^0} and M_{D^*} , respectively.

Preliminary results

≻ The truth distributions of E_{γ} and $\angle_{\gamma\gamma}$ from π^0 in the process $D^0/\overline{D}^0 \rightarrow \pi^+\pi^-\pi^0$.



> I required the $E_{\gamma} > 0.5$ GeV to suppress the possible backgrounds.

I also could require that the open angle between 2 photons is less than 20 degree for the next step.

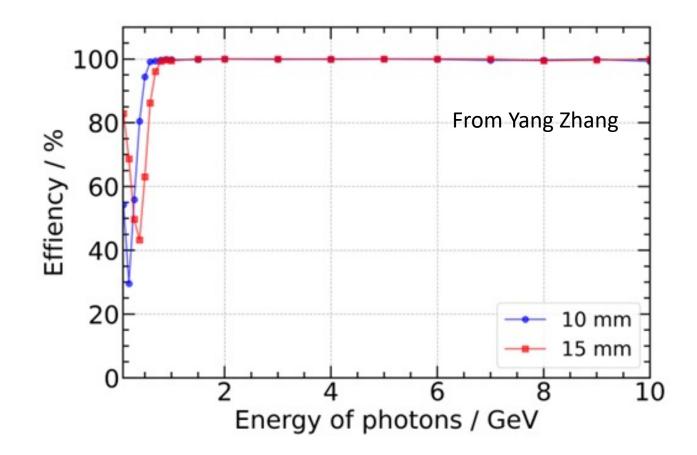
Preliminary results

> The distributions of $M_{\gamma\gamma}$ for all combinations.

4

Preliminary results

> The cut-flow is below, where we lose lots of efficiency after the $0.11 < M_{\gamma\gamma} < 0.15$


GeV.	Cuts	Efficiency [%]
	Vertex reconstructed	65
	charged pair	64
	Kinematic > 0	63
	Chi2 < 4	54
	PID	54
	$E_{\gamma} > 0.5~{ m GeV}, \Delta_{m_{\pi^0}} < 0.3~{ m GeV}, \Delta_{m_{D^0}} < 0.5~{ m GeV}, \ \Delta_{m_{D^*}} < 0.5~{ m GeV}$	25
	$0.11 < M_{\gamma\gamma} < 0.15 { m ~GeV}$	6

> The $\Delta_{m_{\pi^0}} = |M_{\gamma\gamma} - m_{\pi^0}|$, $\Delta_{m_{D^0}} = |M_{\gamma\gamma\pi^+\pi^-} - m_{D^0}|$, $\Delta_{m_{D^*}} = |M_{\gamma\gamma\pi^+\pi^-\pi^\pm} - m_{D^*}|$. I chose the cut points arbitrarily, and need to do some optimization.

Summary

- Discussed with Fangyi and Yang, the reconstruction efficiency for the photon with energy less than 1 GeV drops very fast.
 - 100%@1GeV, ~50%@0.5GeV, ~20%@0.2GeV
 - The energies of most photons are less than 1GeV in this analysis.
- ➤ The next step
 - We need to break down the cut-flow to check the main reason for efficiency drop.
 - We can try to optimize the selection of di-photon combination to reconstruct π^0 .
 - Lose the cut on E_{γ} , maybe only cut on the leading photon.
 - Use the open angle information of di-photons, maybe require the subleading photon around the leading photon
 - Maybe use the $D^0 \to K^+\pi^-\pi^0$ to increase the statistic.

Backup

