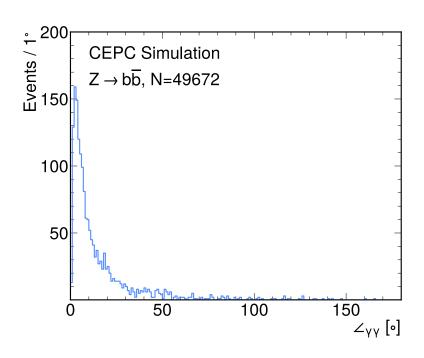
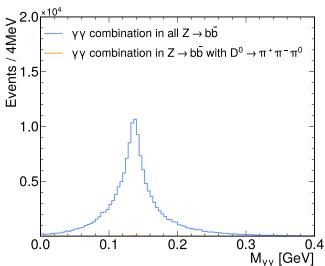
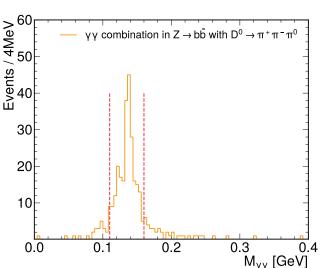

Study of $D^0/\overline{D}{}^0 o \pi^0\pi^+\pi^-$

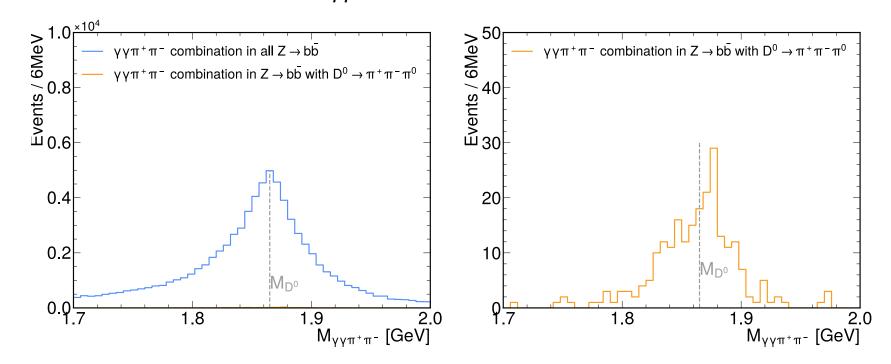

Jinfei Wu, Xinchou Lou, Yanping Huang, Shanzhen Chen

Introduction

- \triangleright I'm trying to select the process D^0/\overline{D}^0 → $\pi^+\pi^-\pi^0$ to check the performance of PID and vertex fit.
- The MC samples are updated to the new version, which are from $e^+e^- \rightarrow Z \rightarrow b\bar{b}$ at $\sqrt{S}=91.2$ GeV,
 - /cefs/higgs/zhangkl/Production/25035/E91.2_eebb/
 /Reco/rec_E91.2_eebb_*.root
- > The version of CEPCSW is **tdr.25.3.2**, and I tried to get the truth distributions of photons from π^0 .


 \succ The truth distributions of E_{γ} and $\angle_{\gamma\gamma}$ from π^0 in the process $D^0/\overline{D}{}^0 \to \pi^+\pi^-\pi^0$.




- > I only required the energy of leading photon $E_{\gamma 1} > 0.5$ GeV to suppress the possible backgrounds.
- ➤ I also required that the open angle between 2 photons is less than 20 degree.

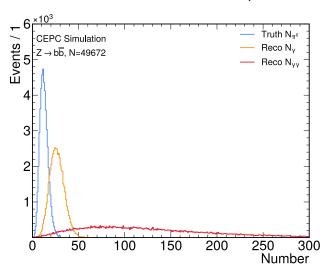
- > I tried to select the D^0 and D^* candidates by requiring the $M_{\pi^+\pi^-\gamma\gamma}$ and $M_{\gamma\gamma}$ closest to M_{D^0} and M_{π^0} simultaneously.
 - The combination with smallest $|M_{\gamma\gamma}-m_{\pi^0}|+|M_{\pi^+\pi^-\gamma\gamma}-m_{D^0}|$ is chosen to construct D^0 and π^0 candidates.
- ▶ I also required the energy of leading photon $E_{\gamma 1} > 0.5$ GeV and the open angle between 2 photons $\angle_{\gamma \gamma} < 20^{\circ}$ to suppress the possible backgrounds.
- > The distributions of $M_{\gamma\gamma}$, and the 0.11 < $M_{\gamma\gamma}$ <0.16 GeV is used to select π^0 candidate.

 \triangleright The distributions of $M_{\pi^+\pi^-\gamma\gamma}$.

➤ Need further requirements to suppress the backgrounds.

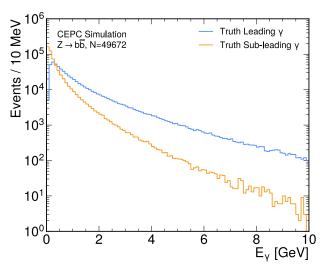
The efficiency is calculate by $\frac{N_{selected}(D^0 \to \pi^+ \pi^- \pi^0)}{N_{truth}(D^0 \to \pi^+ \pi^- \pi^0)}$. The purity is calculated by $\frac{N_{selected}(D^0 \to \pi^+ \pi^- \pi^0)}{N_{selected}(Z \to b \bar{b})}$, which is much smaller than previous result.

The main reason could be that the truth information of D^0 decay was employed to require the $N_{\pi^0 \, from \, D^0, truth} = 1$ and $N_{other \, neutral \, from \, D^0, truth} = 0$ in the previous

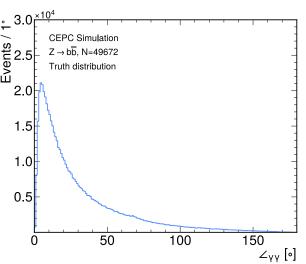

result.

Cuts	Efficiency [%]	Purity[%]
Vertex reconstructed	63	1e-2
charged pair	62	2e-2
Kinematic > 0	61	3e-2
Chi2 < 4	52	9e-2
PID	51	9e-2
$E_{\gamma 1} > 0.5 \; \mathrm{GeV}$	38	0.16
$\angle_{\gamma\gamma} < 20^{\circ}$	31	0.21
$0.11 < M_{\gamma\gamma} < 0.16 \; \mathrm{GeV}$	24	0.28
$1.8 < M_{\gamma\gamma\pi^{+}\pi^{-}} < 1.9 \; {\rm GeV}$	20	0.40

π^0 reconstruction in $Z o b \overline{b}$

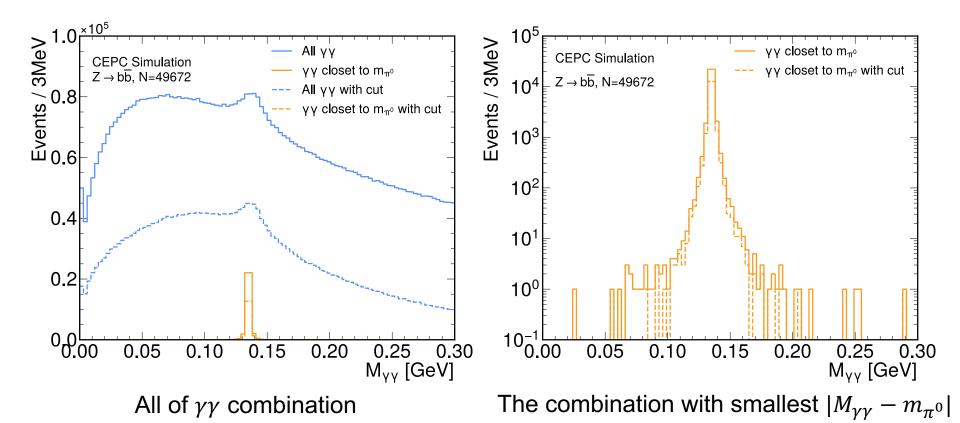

π^0 reconstruction in $Z o b \overline{b}$

 \succ The distributions of $N_{\pi^0,truth}$, $N_{\gamma,reco}$ and $N_{\gamma\gamma,reco}$.

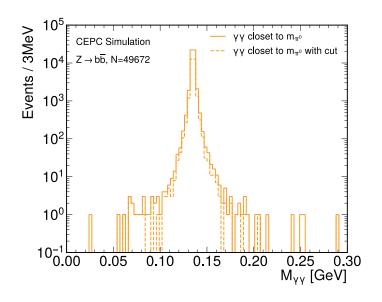


I tried to reconstruct all of π^0 in an event by forming a π^0 candidate with 2 photons.

 \triangleright The truth distributions of photons from π^0 .



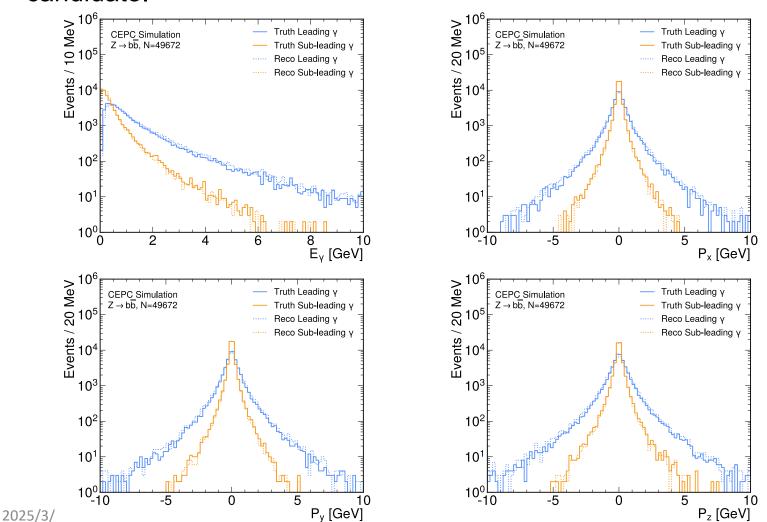
2025/3/26


π^0 reconstruction in $Z o b\overline{b}$

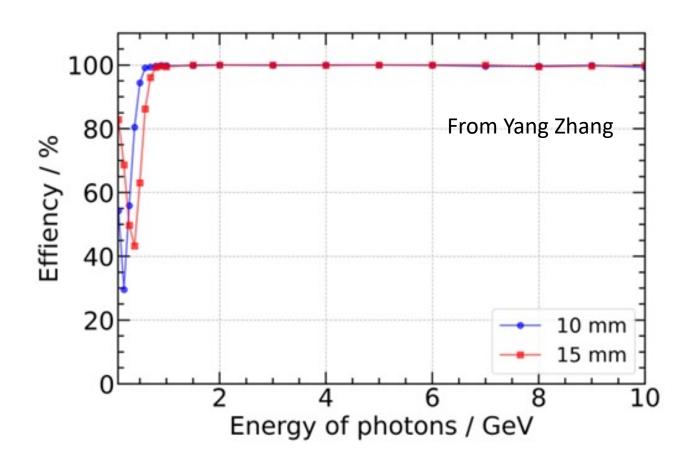
The distributions of $M_{\gamma\gamma}$ for all combinations. The cut means $E_{\gamma 1} > 0.5$ GeV and $\angle_{\gamma\gamma} < 20^{\circ}$.

π^0 reconstruction in $Z o b\overline{b}$

- > The combination with smallest $|M_{\gamma\gamma}-m_{\pi^0}|$ is employed to form a π^0 candidate.
- And I did a truth match by minimizing $\left|E_{\gamma 1}^{truth} E_{\gamma 1}^{reco}\right| + \left|Px_{\gamma 1}^{truth} Px_{\gamma 1}^{truth}\right|$ $\left|Px_{\gamma 1}^{reco}\right| + \left|Py_{\gamma 1}^{truth} - Py_{\gamma 1}^{reco}\right| + \left|Pz_{\gamma 1}^{truth} - Pz_{\gamma 1}^{reco}\right| + \left|E_{\gamma 2}^{truth} - E_{\gamma 2}^{reco}\right| + \left|Px_{\gamma 2}^{truth} - Px_{\gamma 2}^{reco}\right| + \left|Px_{\gamma 2}^{truth} - Px_{\gamma 2}^{reco}\right|$



Almost all of the reconstructed π^0 candidates can be matched with a truth π^0 .


$$\frac{49666}{49671} \approx 99.99\%$$

π^0 reconstruction in $Z o b \overline{b}$

> The combination with smallest $|M_{\gamma\gamma}-m_{\pi^0}|$ is employed to form a π^0 candidate.

Backup

