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FIG. 1. (Left) Contour plot of the distributions of M and R for observed 14 neutron stars. The

shaded regions are encircled by probability contours of 1� (i.e., 68.27%).a (Right) Two represen-

tatives of the neutron star data on the R-M plane.

a The original data is downloadable from http://xtreme.as.arizona.edu/NeutronStars/.

Here, we propose a new method to utilize the neural network in the deep learning machin-

ery to estimate the EoS from real observational M -R data, as an extension from Ref. [25].

Deep learning provides us with a way to find a regression function for complex nonlinear

systems, and there are many physics applications, which include QCD physics [26, 27], nu-

clear physics [28], and gravitational waves [29] (see also Ref. [30] and references therein).

As we explicate below, an advantage to employ the deep learning method lies in the fact

that the numerical implementation is straightforward, so we are relatively free from implicit

biases.

II. METHODS

A. Compilation of observational data

Ideally, with su�cient computational resources, machine learning would be capable of

directly dealing with full multidimensional data from the observation. Figure 1 (Left) shows

only a single contour for each neutron star, but the full data is available in the form of

the probability distribution as exemplified in Fig. 1 (Right) for (arbitrarily chosen) two
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Love number, we compute the binary tidal deformability as

⇤̃ :=
16

13

(12M2 + M1) M4
1
⇤1 + (12M1 + M2) M4

2
⇤2

(M1 + M2)
5

.

(6)
For any choice of M1,2 and R1,2, we then reject those EOSs
with ⇤̃ > 720 for a chirp mass Mchirp := (M1M2)3/5(M1+
M2)�1/5 = 1.186M� and q := M2/M1 > 0.73 as required
for consistency with LIGO/Virgo data for GW170817 (Ab-
bott et al. 2018).

3. RESULTS

In order to build the various PDFs, we discretize the cor-
responding two-dimensional space of solutions (e.g., in the
(M, R) space) in 700 ⇥ 700 equally spaced cells (either lin-
early or logarithmically), count the number of curves that
cross a certain cell and normalize the result by the maximum
count on the whole grid. Because the normalization is made
in two dimensions, slices along a fixed direction do not yield
normalized distributions.

Figure 1 shows the PDF of c2s as a function of the energy
density, with the purple region marking the 95% range of
maximum central energy densities, that is, the central en-
ergy density reached by any EOS by the star with the max-
imum mass M

TOV
. Stated differently, the right edge of the

purple region (vertical purple line) marks our estimate for
the largest possible energy density encountered in a neu-
tron star; in our sample, we obtain the median ec,TOV =
1064+399

�244
MeV/fm3 at 95% confidence.

Note that the PDF shows a steep increase to c2s & 1/3 for
e . 500 MeV/fm3, thus signalling a significant stiffening of
the EOS at these densities and a subsequent decrease of the
sound speed for larger energy densities. As a result, the PDF
illustrates how a nonmonotonic behaviour is most natural for
the sound speed, hence how the physical and observational
constraints favour scenario iii). Models for quarkyonic mat-
ter (see, e.g., McLerran & Reddy 2019)) typically show a
peak at low densities similar to the one in our PDF (Hippert
et al. 2021).

The orange line in Fig. 1 marks the region of the EOSs
that are sub-conformal, i.e., with c2s < 1/3, at all densi-
ties (the horizontal dashed line that marks c2s = 1/3). Note
that around 500 MeV/fm3, the orange contour spans a very
thin region, indicating that at these energy densities the sub-
conformal EOSs have an obvious upper bound c2s < 1/3,
but also a less-obvious lower bound c2s & 0.2. This is an
important feature that explains why these EOSs are so dif-
ficult to produce. Indeed, as revealed by the colormap, the
number of EOSs that fall in this region is very small and
amounts to only ' 5⇥10�5 of the total. The fraction of sub-
conformal EOSs increases slightly if we restrict the range of
densities to those that are admissible for neutron-star interi-
ors, becoming ' 3 ⇥ 10�4 of the total. The reason for this
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Figure 1. PDF of the sound speed squared as function of the energy
density. The purple region marks the 95%-interval of maximum
central energy densities, so that the vertical purple line represents an
estimate for the largest possible energy density in a neutron star. The
orange contour marks the region containing EOSs with c2s < 1/3.

increase is that many of the EOSs that are sub-conformal for
e . 300 MeV/fm�3, tend to stiffen at larger energy densi-
ties, thus becoming super-conformal.

The colormap of the PDF in Fig. 1 also reveals the presence
of a second peak at large energy densities, close to where the
perturbative QCD boundary conditions are imposed and re-
flects artefacts of the parametrization method, which allows
for large variations in the sound speed at very high energy
densities, where c2s is expected to be close to the asymptotic
value 1/3. Fortunately, the energy densities where this sec-
ond peak appears are far from those expected in the interior
of neutrons stars. It is also possible to reduce the extent of
this second peak by imposing a criterion that filters out EOSs
whose sound speeds vary strongly on small scales as done
by Annala et al. (2020). However, given the very poor knowl-
edge of the behaviour of the sound speed at these regimes,
we prefer to report the unfiltered results. What matters here
is that, when imposed, the filtering has no significant impact
on the PDF at the energy densities that are relevant for stellar
interiors (see the Appendix for a discussion).

Figure 2 shows the corresponding PDF of the pressure as
a function of the energy density with the same conventions
as in Fig. 1. In addition, we indicate with a gray line the
outer envelope of all constraint satisfying solutions, which is
very similar to the one found by Annala et al. (2020). How-
ever, an important difference with respect to Annala et al.
(2020), where no information on the distribution is offered,
is that the PDF reveals that the large majority of EOSs ac-

Altiparmak-Ecker-Rezzolla (2022)
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Figure 1. Probability density functions (PDFs) of the speed of sound (left panel) and trace anomaly (right panel) as functions
of the energy density. The red, dash-dotted lines show the averages of these quantities. Vertical lines show the median and 1�
credibility region for the position of the peak in c2s (green solid and dotted lines), values at the center of maximally massive
NSs (blue solid and dashed lines), and the position of the peak in �̂B (purple solid and dash-dotted lines). Horizontal, black
lines mark the conformal values of c2s = 1/3 (left panel) and � = 0 (right panel).

obtain nB,peak = 0.54+0.09
�0.07 fm�3 which corresponds to

µB,peak = 1.283+0.090
�0.070 GeV.

The behavior of the speed of sound shown in Fig. 1 is
very di↵erent from that obtained in QCD matter at finite
temperature [46, 47]. Based on the first principle lattice
QCD (LQCD) calculations, it is known that c2s never ex-
ceeds the conformal limit and exhibits a minimum at the
critical energy density ✏c = 0.42± 0.06 GeV/fm3, where
chiral symmetry is partially restored and quarks are de-
confined [48, 49]. Decrease of c2s with energy density
towards its minimum from the hadronic side is linked to
attractive interactions with resonance formation [49, 50].
Very di↵erent behavior in a cold nuclear matter of c2s is
due to the dominance of repulsive interactions which im-
plies increasing c2s with energy density towards its max-
imum [51]. Considering that quark deconfinement could
be linked to a non-monotonic behavior of c2s, one can
identify the maximum of c2s as being due to a phase
change from nuclear to quark or quarkyonic matter.

Phenomenologically, deconfinement can be linked to
the percolation of hadrons of a given size [35, 52–55].
Relating the peak in the speed of sound to the perco-
lation threshold in QCD, one can estimate the critical
density at which nucleons start to overlap. In percolation
theory of objects with constant volume V0 = (4/3)⇡R3

0
,

this critical density is given by nper
c = 1.22/V0 [35]. Re-

cently, the proton mass radius was extracted from the
experimental data of � photoproduction measured by
CLAS [56] and LEPS [57] collaborations. The average
from these experiments yields R0 = 0.80 ± 0.05 fm forp
s 2 [2.02, 2.29] GeV. [58] 1. Consequently, this yields

nper
c = 0.57+0.12

�0.09 fm�3, which is remarkably consistent

1 We note that the proton radius is still not well established and
can be as small as 0.55 fm (see, e.g., Fig. 9 in Ref. [58])

with nB,peak = 0.54+0.09
�0.07 fm�3 where c2s reaches its max-

imum.

The extracted parameters of the energy density and
particle density corresponding to the percolation thresh-
old in the NS EoS can be compared with the values ob-
tained in hot QCD matter at the chiral crossover tem-
perature Tpc = 156.5 ± 1.5 MeV, where quarks are de-
confined. From the discussion above, it is clear that the
energy density at the peak position of the speed of sound
is of the same order as the LQCD critical energy den-
sity ✏c = 0.42± 0.06 GeV/fm3 at deconfinement [48]. It
is interesting to note that ✏c corresponds to the energy
density inside the nucleon, ✏0 ' mN/V0. Indeed, con-
sidering the nucleon mass radius r0 ' 0.8 fm, one gets
✏0 ' 0.44 GeV/fm3.

Particle density nc in QCD matter at Tpc can be es-
timated based on the thermal model analyses of parti-
cle production in heavy ion collisions and experimental
data [59, 60]. There it was shown that in Pb-Pb col-
lisions at

p
s = 2.76 TeV hadrons are produced at the

QCD phase boundary at Tpc from the fireball of volume
V = 4175 ± 380 fm3 [35, 59, 60]. Taking the ratio of
number of hadrons per unit of rapidity Nt = 2486± 146,
measured by ALICE collaboration, and the above fire-
ball volume, one gets nc = 0.596 ± 0.065 fm�3. This
value is consistent with the critical percolation density
and the extracted density nB,peak at the peak position of
the speed of sound.

Following the above discussion, one can conclude that
the appearance of the maximum in speed of sound in
the interior of NSs can be attributed to the change of
medium composition, from hadronic to quark or quarky-
onic matter. Thus, purely hadronic NS EoS has limited
applicability up to the extracted critical percolation con-
ditions. These are of the same order as found in QCD
at finite temperature and vanishing or small baryon den-

Marczenko-McLerran-Redlich-Sasaki (2022)
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FIG. 2. Marginal Posterior probability distributions at the 95% and 68% level for the Gaussian (left) and Segments parametri-
sation (right) for the squared speed of sound c

2
s and pressure P as a function of energy density ". At each ", there exist 95% and

68% Posterior credible intervals for c
2
s(") and P ("). These intervals are connected to obtain the Prior credible bands. Similarly,

the medians of the marginal Posterior probability distributions at each " are connected (solid lines). Grey areas mark the 68%
credible intervals of the central energy densities of neutron stars with masses M = 1.4 M� (left columns) and 2.1 M� (right
columns) in each figure. The dashed black line indicates the value of the conformal limit for the speed of sound and the APR
EoS [106] for the pressure.

in the present work, highest density intervals were used,
these intervals would reach to smaller radii. There is
good agreement with the masses and tidal deformabili-
ties derived in Ref. [112] for the two neutron stars in the
merger event GW170817. Finally, if we use the NICER
data analyses by Riley et al. for the inference procedure
instead of the one by Miller et al., we find very similar
results. So we can restrict ourselves to the latter.
Tab. II shows medians and credible intervals for se-

lected properties of neutron stars with characteristic
massesM = 1.4M� or 2.1M�, including the central den-
sity, the energy density and pressure as well as the radius
and tidal deformability. Again these numbers demon-
strate agreement within uncertainties between the two
parametrisations.
At the 95% level (version S) the inferred radius of

a 1.4M� neutron star, R = 12.7+0.6
�0.9 km, agrees with

the values found in Ref. [39] for a piecewise polytrope
parametrisation and a speed of sound model similar to
our Gaussian parametrisation, while the authors addi-
tionally included constraints from modelling of the kilo-

nova AT2017gfo. The 68% credible intervals of the radius
and tidal deformability of a 1.4M� neutron star listed
in Tab. II agree within uncertainties with the results
in Ref. [49] which include a theory prediction and the
PREX II measurement of the 208Pb neutron skin thick-
ness. Our result for the 1.4M� radius also agrees with
the value found in Ref. [54], where the authors addition-
ally incorporated constraints on the EoS deduced from
relativistic heavy-ion collisions.
For a 2.1M� neutron star representative of the heav-

iest currently observed star, the inferred radius is R =
11.6 ± 1.0 km, the tidal deformability is ⇤ = 15+18

�10 and
the central density is nc = 4.8 ± 1.6n0. In the Bayesian
analysis of Ref. [12], no ChEFT constraint was included
at low densities. Their prediction for the radius of a
neutron star with mass M = 1.4M�, based on multiple
di↵erent parametrisations, agrees nonetheless with our
result at the 68% level. Their result for the radius of the
2.08M� neutron star is larger compared to our result
for the radius of a generic 2.1M� neutron star. How-
ever, within the 68% credible intervals the two results

Brandes-Weise-Kaiser 
(2022)

Supporting the peak!
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Measure of conformality:

Non-DerivativeDerivative

Δ =
1
3

−
p
ε

c2
s =

dp
dε

= c2
s, deriv + c2

s, non−deriv

c2
s, deriv = − ε

dΔ
dε

c2
s, non−deriv =

1
3

− Δ

Dominant at high density making a peak!

Gavai-Gupta-Mukherjee (2004)
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High-T — Non-Derivative Dominant   c2
s ≃ p/ε 2

FIG. 1. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite temperature and zero density.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

FIG. 2. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite density and zero temperature.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

For the moment let us discard the perturbative tail and work with � = 0.

The plots can be made in the same way as the finite temperature case, which look very di↵erent from Fig. 1. As

a function of dimensionless ⌘, the trace anomaly exhibits transitional change as in the left panel of Fig. 2 and the

sound velocity is dominated by the nonderivative contribution as shown in the right panel of Fig. 2.

−
Δ

η = ln(ε/ε0)

12

FIG. 7. Pressure divided by net baryon-number density versus nB/T
3 (left) and nB/n0 (right), respectively. Shown are results

for strangeness-neutral, isospin-symmetric matter at several values of T . In the left hand figure we compare results obtained
from the full Taylor series for the pressure with those obtained in O

�
µ̂4
B

�
only (dashed lines). In the right hand side the grey

bands show a comparison with O
�
g2
�
high-T perturbation theory. The bands shown in both figure are shown up to values of

nB/T
3 or nB/n0 corresponding to µ̂B = 2.5 for T < 200 MeV and µ̂B = 3 otherwise.
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FIG. 8. The µ̂B-dependent contribution to the trace anomaly
in (2 + 1)-flavor QCD for several values of µ̂B . The yellow
band shows the line �((✏� 3p)/T 4)(Tpc(µ̂B)).

with µ̂B(T, n̂B) taken from Eq. 34. Results for
�✏(T, n̂B)/nB and �s(T, n̂B)/nB as functions of n̂B are
shown in Fig 10.

3. Comparison of Taylor series and their resummation

using Padé approximants

As seen already in the analysis of the Taylor expansion
for the pressure and net baryon-number density, Padé ap-
proximants agree well with the Taylor series themselves
at low µ̂B up to the region where we estimated the latter
to provide reliable results [14]. We will extend this ap-
proach here to the analysis of Taylor series for the energy
and entropy densities.

We use Padé approximants for thermodynamic observ-
ables derived from the Taylor series of the pressure in two
ways. On the one hand we construct Padé approximants
based on the Taylor series for a given observable, e.g.

the energy and entropy density series given in Eqs. 13
and 14 can be resummed using Padé approximants simi-
lar to that of the pressure series given in Eq. 23 by just
replacing the expansion coe�cients P2k by ✏2k or �2k, re-
spectively. On the other hand we use the P-Padé , i.e.
appropriate derivatives of the Padé approximants for the
pressure, for the energy and entropy densities as given in
Eqs. 24 and 25.

In Fig. 11 (left) we compare 6th and 8th-order Tay-
lor series for �p̂ with corresponding [4,2], [2,4] and [4,4]
Padé approximants introduced in Eqs. 20-23. Corre-
sponding results for �✏̂ are shown in Fig. 11 (right). In
the figure for the pressure (top, left) we compare the
6th-order Taylor expansion results with the two possible
[n,m] Padé approximants that use up to 6th-order ex-
pansion coe�cients. As can be seen the [4,2] Padé agrees
with the Taylor series result while the [2,4] Padé di↵ers
from these two in the temperature interval 150 MeV .
T . 180 MeV. In the (bottom, left) figure shows a com-
parison of the 8th-order Taylor expansion results with
the [4,4] Padé approximant. They are in good agreement
with each other. Moreover, as can be seen from the inset,
for large values of µ̂B the [2,4] and [4,4] Padé approxi-
mants stay in much better agreement with each other
than the [4,2] and [4,4] Padé approximants or, equiva-
lently, the 6th and 8th-order Taylor series. Similar con-
clusions can be drawn for the energy density shown in
the right hand part of the figure.

In Fig. 12 we compare at fixed values of the temper-
ature 8th-order Taylor expansion results with the [4,4]
Padé approximant as well as the P-Padé results for pres-
sure, energy and entropy densities that we have discussed
above and in Sec. II C. We generally find that the P-
Padé results for bulk thermodynamic observables are in
better agreement with the Taylor series results than the
[4,4] or [3,4] Padé approximants. This may not be too
surprising, as both approaches are based on a thermody-
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Appendix A: Constrained partial derivatives

We summarize here relations for partial derivatives of
thermodynamic observables with respect to temperature,
keeping specific external conditions (x, y, z) fixed,

For any thermodynamic function f(T, µB , µQ, µS) we

have

✓
@f

@T

◆

(x,y,z)

=

✓
@f

@T

◆

(µB ,µQ,µS)

(A1)

+

✓
@f

@µB

◆

(T,µQ,µS)

✓
@µB

@T

◆

(x,y,z)

+

✓
@f

@µQ

◆

(T,µB ,µS)

✓
@µQ

@T

◆

(x,y,z)

+

✓
@f

@µS

◆

(T,µB ,µQ)

✓
@µS

@T

◆

(x,y,z)

.

Similarly one has for two thermodynamic functions
f(T, µB , µQ, µS) and g(T, µB , µQ, µS) the relation

✓
@f

@g

◆

(x,y,z)

=
(@f/@T )

(x,y,z)

(@g/@T )
(x,y,z)

(A2)

In Eqs. A1 and A2 the derivatives of the chemical po-
tentials are taken on lines of constant x(T, µB , µQ, µS),
y(T, µB , µQ, µS) and z(T, µB , µQ, µS) in the space of ex-
ternal parameters (T, µB , µQ, µS). In the lattice QCD
context we usually work in the parameter space (T, µ̂ ⌘

µ/T ). Moreover, we conveniently work with reduced, i.e.
dimensionless, thermodynamic observables, i.e. we want
to replace e.g. ✏̂ = ✏/T 4, etc.
Changing the partial derivatives @µB to @µB/T and

introducing reduced observables is straightforward, as
these derivatives are taken at fixed T . We have for an
observable that has dimension of Tn the relation,

@f

@µB

����
T

= Tn�1
@f̂

@µ̂B

�����
T

. (A3)

Rewriting the temperature derivatives one has to be a
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d

Speed of Sound

Hot QCD Collab. (2022)
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High Density — Derivative Peak ← Rapid Conformality

2

FIG. 1. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite temperature and zero density.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

FIG. 2. (Left) Normalized trace anomaly, I, as a function of dimensionless ⌘ for matter at finite density and zero temperature.
(Right) Sound velocity squared, c2s, as a function of ⌘ (thick solid line). The dotted and the dashed lines represent the non-

derivative (c2(0)s ) and the derivative (c2(1)s ) contributions to c2s.

For the moment let us discard the perturbative tail and work with � = 0.

The plots can be made in the same way as the finite temperature case, which look very di↵erent from Fig. 1. As

a function of dimensionless ⌘, the trace anomaly exhibits transitional change as in the left panel of Fig. 2 and the

sound velocity is dominated by the nonderivative contribution as shown in the right panel of Fig. 2.
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FIG. 15: Normalized trace anomaly as a function of the energy density. The blue and the red lines represent the
results from the previous (i.e., nNS = 14) and the present (i.e., nNS = 20) works, respectively. The red lines and
bands are the median values and the percentiles, respectively, and the blue ones are the mean values and the

standard deviations.

In reality, the above formula should be generalized to take account of randomness in the observation uncertainty:

PEoS(Y )dY →

∫
dP(ω)Pobs(!TOV(Y ,ω))

∣∣∣∣
d!TOV(Y ,ω)

dY

∣∣∣∣dY , (21)

where ω symbolically denotes the random variables involved in sampling M with observational errors. In this frame-
work, the inversion is incorporated in the pullback, so an explicit construction of the inverse mapping is unnecessary.
Historically speaking, this pullback method, in which one must explicitly compute the Jacobian, was the first approach
taken in the realm of Bayesian inference [52, 53].

Indeed, if the inversion were exact (i.e., !inv ↑ !TOV = idEoS and !TOV ↑ !inv = idMR), the above definition by
the pullback exactly reproduces eq. (4). In practice, however, the evaluation of the Jacobian is a nontrivial numerical
task, and our method presented in this work is computationally more straightforward.

G. Implication to the trace anomaly

Finally, we shall discuss a physics implication of our new analyses upgraded from nNS = 14 to nNS = 20. We
already showed the EoS comparison in figure 8. One interesting combination constructed with the energy density ε
and the pressure p is the trace anomaly, ε↓ 3p, or the dimensionless normalized trace anomaly defined by

” =
1

3
↓

p

ε
. (22)

This quantity measures how close to conformality the system is; ε = 3p and thus ” = 0 is realized in the conformal
limit [110]. In figure 15, we display the behavior of the normalized trace anomaly ” as a function of ε in the logarithmic
scale.
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Lattice results for QCD-like theories
* Diquark superfluid in QC2D 

To be compared with 
Lattice: Itou+ (2023-2024)

* Pion-condensed high-isospin matter 
To be compared with 
Lattice: Abbott+ (2023)
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Figure 11. The squared sound velocity at T = 40 MeV and T = 80 MeV. The cyan curve is the
prediction of ChPT given by Eq. (4.11). The horizontal line (orange) depicts the conformal bound,
c2s/c

2 = 1/3.

which has no free parameter once we fix the value of µc/mPS as 0.47. The ChPT analysis

is valid around the phase transition point, and indeed we can see that our lattice data are

consistent with the prediction as expected. In the high-density regime, on the other hand,

the curve given by the ChPT goes to unity, that is, the sound velocity approaches the

speed of light. Therefore, it is widely believed that the ChPT would fail at some point in

the high-density regime. Furthermore, in the high-density limit, it is believed that the EoS

matches with the relativistic free theory, so that c2s/c
2 should go to 1/3, corresponding to

e = 3p, as shown as an orange horizontal line. This line is called the conformal bound (or

holography bound) [74].

Our numerical results are consistent with the ChPT prediction until the sound velocity

exceeds the conformal bound. Such an excess over the conformal bound is a salient feature

unknown in any lattice calculations for QCD-like theories before our previous result at

T = 80 MeV [2] 5. Our new results at T = 40 MeV obtained in this work confirm the excess

over the conformal bound with a smaller statistical error. Now, the excess shows a more

than 7-ω deviation from the conformal bound. Furthermore, we found that the thermal

e!ects are negligibly small, which suggests that the di!erence between the definitions of

εp/εe|s=const. and εp/εe|T=const. as discussed below Eq. (4.9) is also negligibly small. Then,

we can safely conclude that the excess over the conformal bound in dense QC2D occurs at

su”ciently low temperature.

Note that the pressure itself does not exceed the free-theory limit as shown in Figure 9.

On the other hand, the pressure growth against the energy growth, corresponding to the

sound velocity, is higher than the one for the free-theory, which supports a sti! picture for

QCD(-like) matter in the superfluid regime.

5
For example, in finite temperature QCD at µ = 0, the sound velocity squared monotonically increases

and approaches 1/3 as the temperature increases in T > Tc [75, 76].

– 21 –
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FIG. 11. The ratio of the energy density of the many-pion
systems to the Stefan-Boltzmann prediction, Eq. (31), for the
A and B lattice ensembles. The blue (A) and red (B) shaded
regions represent interpolations of the LQCD results and their
uncertainties as discussed in Appendix C. Also shown are ex-
pectations from chiral perturbation theory (blue dashed line)
and perturbative QCD at next-to-leading order (NLO) [43]
(orange hatched region). The uncertainties on the perturba-
tive QCD result are obtained by varying the renormalization
scale ⇤ between µI/4 and µI .

The speed of sound is shown as a function of the isospin
chemical potential in units of the pion mass in Fig. 12
where it is seen to exceed the ideal gas limit. As for
the energy density, close agreement is seen between the
results from the two lattice ensembles. A similar result
has been found in Ref. [10]; however a larger range of
µI/m⇡ is accessible in the current work. In particular,
c
2
s exceeds 1/3 for 1.5 . µI/m⇡ . 14, rising to a maxi-
mum of c2s,max ⇠ 0.6 at µI ⇠ 2m⇡ before decreasing back
to the ideal-gas limit for large µI . A maximum speed
of sound above the ideal-gas limit at intermediate values
of chemical potential is also seen in two-color QCD [50]
and quarkyonic models [51], but is in contradiction to
the predictions of leading-order chiral perturbation the-
ory in which cs rises monotonically to 1. This behavior
is indicative of additional degrees of freedom other than
in-vacuum pions becoming excited in the medium. From
the numerical results herein, it remains an open ques-
tion as to whether the speed of sound approaches the
free gas limit from below (as expected from perturbation
theory [43]) or from above (as expected from resummed
perturbation theory [52] or from the inclusion of power
corrections [53]).

Two additional quantities that provide information
about the nature of high-isospin-density matter are the
polytropic index [54] and the trace anomaly [55] defined
by

� =
✏

p
c
2
s, (33)

� =
1

3
�

p

✏
, (34)
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FIG. 12. The squared speed of sound computed as in Eq. (32)
as a function of the isospin chemical potential on ensemble A
(blue) and ensemble B (red). The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

respectively. The behavior of these two quantities is
shown in Figs. 13 and 14 and compared to the expec-
tations of a free gas, �PT and pQCD in each case. As
for cs, the behaviour of � and � is similar to that seen in
Ref. [10], but the current work extends the range of chem-
ical potential significantly which reveals additional inter-
esting features. In Ref. [54], it is suggested that the point
at which the polytropic index decreases below 1.75 is a
sign of quark degrees of freedom at large baryon chemical
potential, i.e., the BCS state. In the case of isospin chem-
ical potential, � decreases to this value at µI ⇠ 1.5m⇡,
corresponding approximately to the position of the peak
seen in the normalized energy density (Fig. 11). The
trace anomaly is clearly seen to be negative at interme-
diate µI in Fig. 14, as is suggested to be consistent with
neutron star observations in Ref. [55]. As for the quanti-
ties above, the results from the two lattice ensembles are
in agreement for both the trace anomaly and the poly-
tropic index. A robust conclusion from the study of these
transport quantities is that large isospin chemical poten-
tial is needed before the expected asymptotic behavior
sets in. At least for the case of isospin chemical poten-
tial, the use of pQCD to describe the behavior seen in
the LQCD calculations requires µI & 10m⇡ ⇠ 2 GeV at
a minimum.

VI. SUMMARY AND OUTLOOK

In this work, a new, more e�cient method of com-
puting maximal-isospin, multi-pion correlation functions
is presented. Using this method, we have calculated
all n-⇡+ correlation functions for n  6144, extending
such calculations of many-pion systems into regions of
larger isospin chemical potential than have been previ-

12

FIG. 13. The polytropic index, �, as a function of the isospin
chemical potential on the A(B) ensemble is shown as the
blue(red) region. The expectations in perturbative QCD (or-
ange hatched region), chiral perturbation theory (blue dashed
curve) and the Stefan-Boltzmann limit (orange dotted line)
are shown for comparison. In addition, the bound at � = 1.75
below which the medium is expected to correspond to quark
degrees of freedom [54] is indicated as the green horizontal
line.
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FIG. 14. The normalized trace anomaly, �, as a function
of the isospin chemical potential on the A(B) ensemble is
shown as the blue(red) region. This quantity is bounded as
�2/3 < � < 1/3 by causality. The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

ously achieved. Exploring such high-density and high-
energy correlation functions presents its own suite of chal-
lenges owing to the range of numerical scales spanned
by the correlation functions. Even on the same times-
lice, correlation functions can vary by many orders of
magnitude across configurations, leading to an e↵ective
breakdown of the applicability of the Central Limit The-
orem. The analysis presented here overcomes this by
making the empirically-driven assumption that the dis-

tributions of correlation functions across gauge configu-
rations are log-normal, which allows the incorporation of
more information about the LQCD data than just the
sample mean and variance of the correlation functions.
With this assumption, it becomes possible to extract en-
ergies and chemical potentials from the LQCD correla-
tion functions, which smoothly interpolate between the-
oretical predictions from chiral perturbation theory and
perturbative QCD for low- and high-isospin density sys-
tems, respectively. The speed of sound computed in this
medium exceeds the ideal gas limit over a large range
of µI , reaching a maximum of c2s ⇠ 0.6 at µI/m⇡ ⇠ 2.
This result is in agreement with the results of Ref. [10]
but extends over a larger range of chemical potential,
lower temperatures, and to a finer discretization scale.
The isospin chemical potential is implemented through
the grand canonical partition function in Ref. [10] and
therefore the systematic uncertainties in that calculation
are very di↵erent from those in this work, making the
broad agreement seen more significant. The speed of
sound and other properties of the medium indicate that
the asymptotic agreement with perturbative QCD ex-
pectations requires large values of the isospin chemical
potential, µI & 2 GeV.
In this exploratory study, calculations have been per-

formed at only a single set of quark masses and lattice
spacing. The results show qualitative agreement with
expectations, but understanding this system at a more
precise level will require the use of additional ensembles
with multiple lattice spacings, quark masses, and with
other spatial and temporal extents in order to properly
quantify the e↵ects of these parameters on the calcula-
tion. Lattice cuto↵ e↵ects are of particular concern since
the maximum chemical potential reached in the calcula-
tions presented here comes close to the lattice cuto↵ scale
used in this work.
Beyond systems of many pions, the methods devel-

oped here could also be used in applications to other
systems of mesons, including systems of kaons and/or
pions, and systems with non-zero momentum. The con-
cepts of symmetry and representation theory explored
here to construct the algorithm for many-pion contrac-
tions can potentially be applied more broadly to bary-
onic systems. In addition, the success of log-normality
in enabling analysis of many-pion systems points to the
general observation that there is more information in the
distributions of correlation functions than just their cen-
tral values [21–31, 56, 57], and using this information can
allow the extraction of physical results even when the dis-
tributions of correlation functions are far from the regime
of applicability of the Central Limit Theorem.
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— plausible but not satisfactory



October 8, 2025 @ Dalian, Liaoning

Quarkyonic Scenario

13

Idyllic Fujimoto-Kojo-McLerran (2024) 2

FIG. 1. Evolution of fB and fQ from the nuclear (dotted) to
Quarkyonic regime (solid). The saturation of quark states
drives baryons into the relativistic regime. Arrows in the
rightmost panels indicate increasing µB.

quarks with a given color and fB for baryons as (notation:∫
k →

∫
ddk
(2ω)d ) [48, 49].

[
fQ(q)

]
fε

=
∑

i=n,p,···

∑

ε→=→,↑

∫

k

[
ω
(
q ↑

k
Nc

)]iε
→

fε

[
fB(k)

]
iε→ , (1)

where ω is a single quark momentum distribution with
the flavor f and spin ε in a single baryon state of a species
i and spin ε↓. Collecting quark contributions from each
baryon leads to quark distributions in dense matter. In
this work, we limit ourselves to symmetric nuclear mat-
ter and include a spin-isospin degeneracy factor 4 in the
expressions of thermodynamic quantities, but elsewhere
we drop the spin-flavor indices f,ε. The extension for
multi-flavors and multi-baryon species will be discussed
in the forthcoming papers.
The normalization is

∫
q ω(q) = 1. The dual expression

of the baryon number readily follows from Eq. (1) as

nB = 4

∫

k
fB(k) = 4

∫

q
fQ(q) . (2)

The energy densities in terms of baryons and quarks are

ϑB[fB] = 4

∫

k
EB(k)fB(k) ,

ϑQ[fQ] = 4

∫

q
EQ(q)[NcfQ(q)] .

(3)

Remember fQ is defined for a fixed color, fQ → fR
Q

=

fG
Q

= fB
Q

with which nB = nR
Q

= nG
Q

= nB
Q
. A

single baryon is assumed to have the energy contri-
butions summed from Nc-confined quarks, EB(k) =
Nc

∫
q EQ(q)ω

(
q ↑ k/Nc

)
. Then a duality relation fol-

lows, ϑ = ϑB[fB] = ϑQ[fQ]. As quarks are confined in a
spatial domain of the baryon size ↓ !↔1

QCD
, quarks can

be energetic and ω(q) is spread to momenta of ↓ !QCD.
The mechanical pressure inside of a baryon is large.
In this work, going from low to high densities we keep

using the same ω determined in vacuum. Our main target

here is the transient regime from baryonic to quark mat-
ter, where using ω for localized quarks may not be so bad
approximation. The structural changes in baryons, such
as swelling, would possibly increase the low momentum
components of ω, but such modifications merely shift the
onset of quark matter formation to lower density.

Minimization of energy functional.—With duality (1)
as a constraint, we calculate the energy density ϑ for a
given nB. We consider energy functionals

ϑ = ϑB[fB]
∣∣
nB

= ϑQ[fQ]
∣∣
nB

, (4)

and minimize them by optimizing fB or fQ while holding
nB fixed. A novelty in our optimization program is that
the solutions are determined not only by the stationary
condition ϖϑ/ϖf = 0 but also by the boundary condi-
tions fB,Q = 0 or 1. The thermodynamic energy density
is obtained by substituting the optimized distributions,
ϑEOS(nB) = ϑB[f↗

B
]
∣∣
nB

= ϑQ[f↗
Q
]
∣∣
nB

.
In practice, one can find the f↗

B
and f↗

Q
by minimizing

ϑ̃ = ϑB[fB]↑ ϱBnB = ϑQ[fQ]↑ ϱQnQ , (5)

where ϱB = NcϱQ. It is tempting to identify the ϱ’s as
chemical potentials and ϑ̃ as the thermodynamic func-
tional. Unfortunately they do not satisfy the thermody-
namic relations if solutions are partly determined by the
boundary conditions. Hence we use ϑ̃ only to find f↗

B
and

f↗
Q
, and use them in computations of ϑEOS(nB).

Global constraints.—The constraints in our theory ap-
pear global, as fQ at a given momentum depends on fB
for the entire momentum range. The variation leads to

ϖϑ̃

ϖfB(k)
= EB(k)↑ ϱB ,

ϖϑ̃

ϖfQ(q)
= EQ(q)↑ ϱQ . (6)

At momenta with ϖϑ̃/ϖfB,Q < 0, greater fB,Q reduces
ϑ̃ and grows toward the boundary fB,Q = 1, while
ϖϑ̃/ϖfB,Q > 0 drives fB,Q to the other boundary, fB,Q =
0. We would get the optimized distributions

fvar

B
(k) = ”(kF ↑ k) , fvar

Q
(q) = ”(qF ↑ q) , (7)

where kF and qF are determined through ϱB = EB(kF)
and ϱQ = EQ(qF).

The above solutions are not usable everywhere. For
instance, fvar

Q
at large momenta is incompatible with the

sum rule (1); at large momenta (q ↔ k/Nc), the scaling
should be fQ(q) ↓ nBω(q). Another problem is that, if
we keep using fvar

B
in the regime !QCD ↗ kF ↗ Nc!QCD,

then fQ(0) ↓ nBω(0) ↓ k3
F
/!3

QCD
, violating fQ ↘ 1 at

q = 0. Our problem is to patch the candidates of solu-
tions, found from variational calculations and the bound-
ary conditions, into the form consistent with the duality
constraints, and then to minimize the energy.

Solvable model.—What makes the dual theory nontriv-
ial is its global nature. The di#culty lies in the recon-
struction of fB from a given fQ. At high density we have

nq ∼ μ3
q

nB ∼ μ3
B ∼ N3

c μ3
q≃

Dual

Suppression of nucleon distribution should 
be caused by quark saturation at short 
range due to quark exchanges.

N N

¼
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Important Observation
I realized this more than 15 years ago…

April 6 2010 at DM2010

Missing Piece in PNJL

PNJL at high baryon chemical potential

□ (Free) Constituent quarks with mass ~ 350MeV
□  

Statistical model at high chemical potential

□ (Free) Baryons with mass > 1GeV
 

Simple example of flaw in the PNJL model

∫ d 3
k e

−N c k 2Mq

2−q /T=
1

N c

3∫ d
3
k ' e

− k ' 2M N

2 −B /T

From Dirac determinant in the PNJL
in the confined phase where trL=0

Free baryon contribution

PNJL underestimates the baryon excitations by a factor 1/Nc
3

I thought this was a flaw, but… this is PHYSICS!
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FIG. 1. Evolution of fB and fQ from the nuclear (dotted) to
Quarkyonic regime (solid). The saturation of quark states
drives baryons into the relativistic regime. Arrows in the
rightmost panels indicate increasing µB.

quarks with a given color and fB for baryons as (notation:∫
k →

∫
ddk
(2ω)d ) [48, 49].

[
fQ(q)

]
fε

=
∑

i=n,p,···

∑

ε→=→,↑

∫

k

[
ω
(
q ↑

k
Nc

)]iε
→

fε

[
fB(k)

]
iε→ , (1)

where ω is a single quark momentum distribution with
the flavor f and spin ε in a single baryon state of a species
i and spin ε↓. Collecting quark contributions from each
baryon leads to quark distributions in dense matter. In
this work, we limit ourselves to symmetric nuclear mat-
ter and include a spin-isospin degeneracy factor 4 in the
expressions of thermodynamic quantities, but elsewhere
we drop the spin-flavor indices f,ε. The extension for
multi-flavors and multi-baryon species will be discussed
in the forthcoming papers.

The normalization is
∫
q ω(q) = 1. The dual expression

of the baryon number readily follows from Eq. (1) as

nB = 4

∫

k
fB(k) = 4

∫

q
fQ(q) . (2)

The energy densities in terms of baryons and quarks are

ϑB[fB] = 4

∫

k
EB(k)fB(k) ,

ϑQ[fQ] = 4

∫

q
EQ(q)[NcfQ(q)] .

(3)

Remember fQ is defined for a fixed color, fQ → fR
Q

=

fG
Q

= fB
Q

with which nB = nR
Q

= nG
Q

= nB
Q
. A

single baryon is assumed to have the energy contri-
butions summed from Nc-confined quarks, EB(k) =
Nc

∫
q EQ(q)ω

(
q ↑ k/Nc

)
. Then a duality relation fol-

lows, ϑ = ϑB[fB] = ϑQ[fQ]. As quarks are confined in a
spatial domain of the baryon size ↓ !↔1

QCD
, quarks can

be energetic and ω(q) is spread to momenta of ↓ !QCD.
The mechanical pressure inside of a baryon is large.

In this work, going from low to high densities we keep
using the same ω determined in vacuum. Our main target

here is the transient regime from baryonic to quark mat-
ter, where using ω for localized quarks may not be so bad
approximation. The structural changes in baryons, such
as swelling, would possibly increase the low momentum
components of ω, but such modifications merely shift the
onset of quark matter formation to lower density.

Minimization of energy functional.—With duality (1)
as a constraint, we calculate the energy density ϑ for a
given nB. We consider energy functionals

ϑ = ϑB[fB]
∣∣
nB

= ϑQ[fQ]
∣∣
nB

, (4)

and minimize them by optimizing fB or fQ while holding
nB fixed. A novelty in our optimization program is that
the solutions are determined not only by the stationary
condition ϖϑ/ϖf = 0 but also by the boundary condi-
tions fB,Q = 0 or 1. The thermodynamic energy density
is obtained by substituting the optimized distributions,
ϑEOS(nB) = ϑB[f↗

B
]
∣∣
nB

= ϑQ[f↗
Q
]
∣∣
nB

.
In practice, one can find the f↗

B
and f↗

Q
by minimizing

ϑ̃ = ϑB[fB]↑ ϱBnB = ϑQ[fQ]↑ ϱQnQ , (5)

where ϱB = NcϱQ. It is tempting to identify the ϱ’s as
chemical potentials and ϑ̃ as the thermodynamic func-
tional. Unfortunately they do not satisfy the thermody-
namic relations if solutions are partly determined by the
boundary conditions. Hence we use ϑ̃ only to find f↗

B
and

f↗
Q
, and use them in computations of ϑEOS(nB).

Global constraints.—The constraints in our theory ap-
pear global, as fQ at a given momentum depends on fB
for the entire momentum range. The variation leads to

ϖϑ̃

ϖfB(k)
= EB(k)↑ ϱB ,

ϖϑ̃

ϖfQ(q)
= EQ(q)↑ ϱQ . (6)

At momenta with ϖϑ̃/ϖfB,Q < 0, greater fB,Q reduces
ϑ̃ and grows toward the boundary fB,Q = 1, while
ϖϑ̃/ϖfB,Q > 0 drives fB,Q to the other boundary, fB,Q =
0. We would get the optimized distributions

fvar

B
(k) = ”(kF ↑ k) , fvar

Q
(q) = ”(qF ↑ q) , (7)

where kF and qF are determined through ϱB = EB(kF)
and ϱQ = EQ(qF).

The above solutions are not usable everywhere. For
instance, fvar

Q
at large momenta is incompatible with the

sum rule (1); at large momenta (q ↔ k/Nc), the scaling
should be fQ(q) ↓ nBω(q). Another problem is that, if
we keep using fvar

B
in the regime !QCD ↗ kF ↗ Nc!QCD,

then fQ(0) ↓ nBω(0) ↓ k3
F
/!3

QCD
, violating fQ ↘ 1 at

q = 0. Our problem is to patch the candidates of solu-
tions, found from variational calculations and the bound-
ary conditions, into the form consistent with the duality
constraints, and then to minimize the energy.

Solvable model.—What makes the dual theory nontriv-
ial is its global nature. The di#culty lies in the recon-
struction of fB from a given fQ. At high density we have

Quarkyonic *requires* duality between baryons and quarks

Baryons — Less d.o.f. but more Phase Space 
Quarks  —  More d.o.f. but less Phase Space 

Quark saturation is 
realized earlier than 
baryon saturation, 
suppressing baryon 
distribution by .N−3

c
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FIG. 2. The momentum distribution functions of (a) con-
stituent (quark-like) fermions, fQ(k), and (b) (baryon-like)
three-body states, fB(K), at T/B = 0.2. kT =

→
2mT is the

momentum scale associated with the temperature T .

where we also introduced a function characterizing the
thickness of the momentum shell

!(Kth) →
√
K2

th
+ 2MBB ↑Kth . (17)

When K approaches Kth, the distribution approaches
the maximum, fT=0

B
(K ↓ Kth) ↓ 1; In dense limit,

K2

th
↔ 2MBB, the distribution at K = 0 vanishes as

fT=0

B
(0) ↓ 0.

In terms of the McLerran-Reddy model for quarky-
onic matter [6], this result can be interpreted as the
formation of the quark Fermi sphere up to k = kF
and the momentum-shell formation of baryonic excita-
tions. While in the duality model [7] the suppression of
fB(K < 3kF) is associated with the Pauli blocking e”ect
of quarks, this suppression in the present case is caused
by the negative scattering contributions that are neces-
sary to cancel the doubly-counted quark contributions in
baryonic terms. Since our methodology manifestly treats
three quarks in a baryonic state, the quark Pauli princi-
ple in the duality model is expected to be automatically
taken into account.
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sound speed c2s. In the nonrelativistic system, it can
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FIG. 1. Comparison of the EoS in this work (HDLpt) and
other EoSs. The blue and the orange bands represent our
results and the preceding results from Refs. [12, 23], re-
spectively, with ⇤̄ = µ � 4µ. The green band is from the
�EFT [24]. The red band shows the EoS inferred from the
Neural Networks in the machine learning analysis of the neu-
tron star observation [22]. The dashed black line is the APR
EoS extrapolated from the nuclear side [25].

extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument
for the inference analysis to identify the most likely EoS
based on the observational data [17–19] (see Ref. [20] for
a review). Recently, the Machine Learning technique has
been also advocated as a complementary method to infer
the EoS [21, 22]. It would be of utmost importance to
make a direct comparison of the inferred EoS candidates
and the QCD-based estimates. To this end, we are urged
to reduce uncertainty and widen the validity region of
the pQCD or HDLpt calculations.
In this Letter we will report the first successful at-

tempt to construct a better convergent EoS from the
HDLpt framework incorporating the strange quark mass
e↵ect. From the technical point of view, we adopt the
resummation schemes in the gluon sector as prescribed
in Ref. [4] and in the quark sector as in Ref. [15] with our
own extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as
in Ref. [7].

Central results: Since technical details are cumber-
some, we shall first present our central results in Fig. 1
and then proceed to technical details later. Not to
make the comparison on the figure too busy, we chose
only a few representative EoSs from the nuclear side;
namely, the EoS extrapolated from the chiral E↵ective
Field Theory (�EFT) calculation [24] by the green band,
the Neural Network output in the machine learning anal-
ysis [22] by the red band, and the Akmal-Pandharipande-
Ravenhall (APR) EoS [25] shown by the dashed line.
The orange band in the region, " > 103 MeV/fm3, rep-

FIG. 2. Baryon number density as a function of the quark
chemical potential. In the figure pQCD refers to the results
from Refs. [12, 23] and HDLpt to our results.

resents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [23]. Higher-order
corrections could be added, but the uncertainty band
is not much changed from Ref. [12]. The uncertainty
band width abruptly diverges, from which it has been
said that pQCD is reliable only at extreme high den-
sities far from reality. At a glance, indeed, we should
understand how di�cult it is to make a robust interpo-
lation between the nuclear and the pQCD EoSs. Now, a
surprise comes from a blue narrow band that represents
results from our HDLpt calculations. The uncertainty
band is drastically reduced and the HDLpt EoS appears
to be merged into the nuclear EoSs smoothly in the inter-
mediate density region. It should be noted that the APR
EoS overshoots ours, but this is due to a well-known flaw
in the APR EoS, i.e., superluminal speed of sound which
violates causality.
One may wonder what causes such a drastic di↵er-

ence on Fig. 1. We can qualitatively understand this
from Fig. 2 in which the baryon number density nB as
a function of the quark chemical potential µ is plotted.
Because the HDLpt sums the quark loops up, nB is the
most sensitive quantity a↵ected by the resummation in
the quark sector. It is an interesting and reasonable ob-
servation that nB is suppressed at fixed µ after the re-
summation: thermodynamic quantities are dominated by
quark quasi-particles, and in HDLpt, quark excitations
are more screened by self-energy insertions, as compared
to pQCD treatments. Therefore, on Fig. 1, the corre-
sponding µ for a given " becomes larger, and the corre-
sponding running coupling ↵s(⇤̄ = ⇠µ), where ⇠ = 1, 2, 4,
is smaller. This qualitative argument partially accounts
for the reduction of the uncertainty band, but not fully
yet. If we plot the pressure P and the energy density "
as functions of µ, respectively, the uncertainty bands are
not such narrow as in Fig. 1. Nevertheless, P (") with
⇤̄ = µ and that with ⇤̄ = 4µ happen to stay close, which

For X>2 the EOS hardly 
moves, and this is because 
conformality is almost 
realized.

Self-energy resummation 
cures the problem and 
even for X=1 the uncertainty 
is not large at all.

Conformality is suggested by pQCD, but the onset is 
located even earlier than the pQCD regime…?
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FIG. 4. The speed of sound (left) and the polytropic index � = d log p/d log ✏ (right). The solid red, dashed green, and
dot-dashed blue curves are the results for the single layer configuration in the WSS model, double layer configuration in the
WSS model, and the V-QCD model, respectively.

ment is interesting as it obtained in a completely di↵erent
approach, which is expected to be reliable at lower den-
sities. Moreover we compare our results to the di↵erent
approach of homogeneous nuclear matter derived in [50]
in appendix B, and mostly find qualitative agreement.

V. CONCLUSIONS

In this article, we analyzed nuclear matter using a ho-
mogeneous approach in two di↵erent holographic mod-
els: in the top-down WSS model and in the bottom-up
V-QCD model. We focused on two topics: the popcorn
transitions, where the layer structure of the nuclear mat-
ter changes in the bulk, and approach to conformal be-
havior at high densities. We found a second order pop-
corn transition in the WSS model, and signs of approach
to conformality in both holographic setups.
We have several remarks about our results. Firstly,

the results in the WSS and V-QCD models appeared to
be quite di↵erent: in particular, the popcorn transition
was only found to take place in the WSS model. This is
however not surprising at all and can be seen to follow
from the di↵erences in the geometry and the realisation
of chiral symmetry breaking between the models as we
now explain. Recall that in the WSS model, the geome-
try ends at the tip of the cigar in the confined phase as
shown in figure 1, and chiral symmetry breaking is re-
alised by the joining of the two branches of flavor branes
at the tip. In the V-QCD picture there is no cigar struc-
ture, and chiral symmetry breaking arises from a con-
densate of a bulk scalar field. In the WSS model, nuclear
matter at low densities is seen to arise from instantons
located at the tip, and it is not possible to assign such
instantons to be left or right handed. In V-QCD, how-
ever, nuclear matter is stabilized at a nontrivial value of
the holographic coordinate due to interaction with the
bulk scalar field [11], and by definition always contains

left and right handed components. Therefore, in V-QCD
separate configurations analogous the single and double
layer configurations of the WSS in figure 1 do not exist.
The configurations of this figure map to the same con-
figuration in V-QCD, which is what we called the single
layer configuration. The double layer configuration in V-
QCD defined in (38) would map to a more complicated
configuration in the WSS model where discontinuities of
the h field are found at two distinct values of z.
We found that the results for the equation of state near

the popcorn transition of the WSS model closely resem-
ble those obtained by the framework of [62, 64], where
e↵ective theory was used to analyse the transition of the
Skyrmion crystal to a crystal of half-Skyrmions. This
suggests that the transition in the holographic model
should be identified with the topology changing transi-
tion where half-Skyrmions appear.2 It is however dif-
ficult to say anything definite about this because the
holographic approach which we used does not contain
individual instantons. Moreover, in [50] it was argued
that the topology changing transition should not be iden-
tified as the transition between the single and double
layer solutions, but should take place between solutions
of qualitatively di↵erent behavior within the single layer
solution. Another point is that chiral symmetry should
be restored globally at the topology changing transition
(meaning that the averages of the condensate over large
regions should vanish). This however will not happen for
any of the configurations in the WSS approach because
the D8 brane action is treated in the probe approxima-
tion, and the embedding of the brane is independent of
the density. Nevertheless we remark that, as seen from
the expressions for the single and double layer configu-
rations in (20) and in (22), the bulk charge density has

2 We thank N. Kovensky and A. Schmitt for correspondence on
this question.
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Figure 12: Geometries in the confined and the deconfined phases. The roles of the (imaginary) time ⌧

and the extra coordinate x4 are swapped from one to the other phase.

3.5.3 Sakai-Sugimoto model

Another non-perturbative approach developed in the large-Nc limit is the holographic technique that
is becoming more and more familiar among QCD physicists nowadays. There are countless number of
works using the holographic QCD models, and it is not realistic to make an attempt to cover them all.
We will pay special attention to the phase diagram disclosed by the Sakai-Sugimoto model, following
the computational steps of Ref. [22].

The basic idea of the holographic approach is based on a hypothetical correspondence between a
gravity theory in higher dimensions and a field theory of our interest (see Ref. [191] for a review). The
original conjecture was made for the N = 4 supersymmetric Yang-Mills theory, which at large-Nc and
large-’t Hooft coupling may be equivalently described by the classical solution (anti-de Sitter metric)
of the super-gravity theory. For the investigation of QCD, however, supersymmetry and conformal
symmetry are unwanted and should be gotten rid of. To this end, one can compactify one extra direc-
tion and impose the anti-periodic boundary condition to fermionic super-particles, so that unphysical
particles become heavy and decouple from the low-lying dynamics (see Fig. 12). This extra direction is
denoted by the coordinate X4 here.

In this subsection, to simplify the notation, we use dimensionless variables rescaled by the radius of
the AdS space, R. That is,

t̃ =
t

R
, x̃ =

x

R
, x̃4 =

X4

R
, ũ =

u

R
, (96)

where the first (t,x) refer to the ordinary Minkowski coordinates, X4 is the compact direction, and u,
together with (t,x), spans the 5-dimensional AdS space, and the Minkowski space-time resides at the
UV edge, u = 1. In what follows, we omit writing the tilde for notational simplicity.

Deconfinement phase transition In the confined phase at low temperature, the bulk geometry
corresponding to the D4-brane background is expressed by the following metric,

(Confining geometry) ds
2 = u

3/2
⇥
�dt

2 + dx2 + f(u)dx2

4

⇤
+

du
2

u3/2f(u)
+ u

1/2
d⌦2

4
, (97)

where f(u) = 1 � (uKK/u)3 and uKK is fixed by the size of x4 compactification. This above geometry
is singular at u = uKK and to avoid the conical singularity at u = uKK, in the same way as the angle
variable in the polar coordinates, the period of x4 (denoted by �x4 here) is uniquely determined that is
translated to a mass scale called the Kaluza-Klein mass, i.e.

�x4 =
4⇡

3u1/2
KK

) MKK =
2⇡R�1

�x4

=
3

2

p
uKK R

�1
. (98)

The physical meaning of MKK is a cuto↵ scale above which super-particles could get excited and the
Sakai-Sugimoto model would be no longer a QCD dual. As we will see soon later, the deconfinement
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Figure 13: Flavor branes (D8 and D8 separated by the length parameter L) in the confined and the
deconfined phases. In the confined phase chiral symmetry is inevitably broken, while in the deconfined
phase both chiral broken and symmetric states are realized.

(DBI) action involving the gauge fields on the Nf D8-brane, after integrating over the four-dimensional
angular part ⌦4, as

S
DBI

D8
= �

N

V4

Z
dt d

3
x du u

1/4
q

� det(g↵� + F↵�) . (104)

Here the dilaton potential is already included in the action and the field strength tensor in the above
is rescaled to eliminate the string scale ls (see Refs. [23, 22] for details). The normalization constant
including the ⌦4 integration is given as N = V4 · (NcNf/3)R6

/((2⇡)5l6s) with V4 =
R
dt d

3
x.

In Euclidean space-time at finite T , integrating further over the Euclidean coordinates, we can
express the action in a form of the one-dimensional integration with respect to u. Hereafter we drop the
irrelevant normalization N from the action and then the action simplifies, respectively, in the confined
and the deconfined phases as

(Confining geometry) S
DBI

D8
=

Z
du u

4

r
f(u)x0

4
(u)2 +

1

u3

�
f(u)�1

� a
02
0

�
, (105)

(Deconfining geometry) S
DBI

D8
=

Z
du u

4

r
f(u)x0

4
(u)2 +

1

u3
(1� a

02
0
) , (106)

where a0(u) denotes the rescaled A0(u) that eventually translates to the (dimensionless) chemical po-
tential. It is convenient to use a “density” variable ⇢(u) = ��S

DBI

D8
/�a

0
0
(u), because ⇢(u) turns out to

be u-independent thanks to the equation of motion. Then, we can easily solve a0
0
(u) from the definition

of ⇢ to find,

(Confining geometry) a
0
0
(u) = ⇢

s
u3f(u)2x0

4
(u)2 + 1

f(u)(u5 + ⇢2)
, (107)

(Deconfining geometry) a
0
0
(u) = ⇢

s
u3f(u) x0

4
(u)2 + 1

u5 + ⇢2
, (108)

from which the quark chemical potential µq = a0(1) is obtained in respective phases.

Introduction of the density source Here we shall explain how to fix the lower boundary uc dis-
played on Fig. 13. If the system is in the deconfined and chiral symmetric phase at high T , D8 and
D8 are parallel and such a configuration can have a finite density without source, and thus uc is not
necessary and the u-integration starts simply from uT .

When chiral symmetry is spontaneously broken, on the other hand, there should be a source for the
density coming from the Chern-Simons action. To accommodate a finite density of baryonic matter,
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Figure 14: Phase diagram at finite temperature and density in the Sakai-Sugimoto model. The decon-
finement temperature is chosen at Td = 0.08 and the scale is set by L = 1 according to the choice of
Ref. [22]. The vertical dashed line represents the onset of baryon density.

It is quite interesting to notice that this sort of spatially inhomogeneous structure was once discussed
actively in the context of nuclear physics, and nowadays, is becoming one of the central issues in quark
matter research. Here, for a while, it should be worth revisiting the possibility of inhomogeneous
condensation in nuclear matter.

3.6 Inhomogeneity: pion condensation

In a medium at finite density there are collective excitations made from particle and hole (p-h) in the
same channel as pions. The interaction between N and ⇡ is, however, repulsive in the s-wave channel
and the pion self-energy is positive then. It was recognized later in Refs. [199, 200] that the p-wave
interaction is attractive, which causes a resonant state � in the channel of L = 1, J = 3/2, T = 3/2,
and it would render the pion energy decrease in matter. This attractive interaction is attributed to
underlying chiral symmetry.

The in-medium pion propagator can be written with the self-energy as

D
�1

⇡ (!,p) = !
2
� p2

�m
2

⇡ � ⇧(!,p) , (116)

where the self-energy ⇧(!,p) should involve the p-h and �-h contributions; ⇧ = �p
2[UN(!,p) +

U�(!,p)]. In the symmetric nuclear matter with Z = N that is of our main interest, the collective
mode is pushed down at finite p and there appears a condensate of ⇡0, while in neutron matter which
is relevant to the astrophysical application the collective ⇡

+ (Migdal’s ⇡
+

s ) and ⇡
� are spontaneously

generated [200].
When the ⇡0 condensation occurs in symmetric nuclear matter at the momentum pc, the expectation

value should behave as
h⇡

0(x,pc)i ⇠ cos(pc · x) . (117)

The physical implication of such condensate to nuclear matter has been discussed (see Ref. [201] and
other contributions in this volume).

One can find the critical density for the ⇡
0 condensation, for instance, adopting the linear sigma

model including p, n, and �’s. Once the density exceeds the threshold, however, the system is unstable
because only the attractive force is taken into account and the short-range (shorter than the pion
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Under coordinate transformation ⇠ = uT /u and using the
Fourier transformed variable ai(⇠,!), we can rewrite the
EoM as

⇠
�3/2 ⌦2

1� ⇠3
ai + @⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 . (18)

Here, we defined the dimensionless frequency as ⌦2 =
!
2
/uT .
As discussed in Ref. [48], we should impose the infalling

boundary condition near the blackhole horizon at u ⇠ uT

or ⇠ ⇠ 1. We can approximate the EoM near ⇠ ⇠ 1 and
identify the asymptotic form of the solution from

⌦2

3(1� ⇠)
ai � 3@⇠ai + 3(1� ⇠)@2

⇠ai = 0 , (19)

which is obtained from Eq. (18) near ⇠ ⇠ 1. We can easily
solve Eq. (19) using the asymptotic form, ai ⇠ (1� ⇠)�,
from which (⌦/3)2+�+�(��1) = 0 follows, leading to � =
± i⌦

3
immediately. The infalling direction corresponds to

� = � i⌦
3

and we can parametrize the solution as

ai(⇠) = (1� ⇠)�
i⌦
3 g(⇠) , (20)

where g(⇠) is a regular function near ⇠ ⇠ 1. The normal-
ization of ai(⇠) is conventionally chosen as the unity, i.e.,
ai(⇠ = 0) = 1 or g(⇠ = 0) = 1. We can then expand g(⇠)
for small ⌦, under the condition that g(⇠ = 1) is regular.
Up to the first order in ⌦ we can drop the first term in
Eq. (18) and the equation to be satisfied by ai is

@⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 , (21)

which can be solved as

ai(⇠) = C

Z ⇠

0

d⇠
⇠
1/2

1� ⇠3
+D =

C

3
ln

✓
1 + ⇠

3/2

1� ⇠3/2

◆
+D ,

(22)
where C and D are ⌦ dependent constants. We can then
write down a form of g(⇠) for small ⌦ as g(⇠) ' [1 +
i
⌦

3
ln(1 � ⇠)]ai(⇠). The condition of ai(⇠ = 0) = 1 fixes

D = 1, and the regularity of g(⇠ ! 1) fixes C = i⌦.
Therefore, we can conclude,

g(⇠) = 1 +
i⌦

3
ln


(1� ⇠)(1 + ⇠

3/2)

1� ⇠3/2

�
+O(⌦2) . (23)

In response to the boundary condition at the infrared
(IR) side, the behavior at the ultraviolet (UV) side near
⇠ ⇠ 0 is fixed, from which the physical information can
be extracted. That is,

ai(⇠) ' 1 +
2i⌦

3
⇠
3/2 + · · · (24)

Now, let us prescribe how to calculate the electric current
expectation value using the GKP-W relation [49, 50]. It
is the generating functional coupled to the gauge poten-
tial, which results from the on-shell action in the gravity

�/(CeT ) 1.1Tc 1.3Tc 1.5Tc

This work 0.206 0.243 0.281

Lattice-QCD [52] 0.201-0.703 0.203-0.388 0.218-0.413

TABLE I. Comparison between our estimates and the lattice-
QCD results from Ref. [52] for the dimensionless electric con-
ductivity for three di↵erent temperatures above Tc.

theory with the UV boundary condition of ai(⇠ ! 0) as
the physical vector potential in the gauge theory.
To calculate the electric current expectation value,

thus, we should take a functional derivative of the grav-
ity action with respect to ai on the UV boundary. Near
the UV boundary (⇠ ⇠ 0 or u ⇠ 1), the action has
asymptotic behavior as follows:

S ⇠ �N
Z

d
4
xduu

5/2 1

2
(f2

ux + f
2

uy + f
2

uz)

⇠ �Nu
3/2
T

2

Z
d
4
xd⇠ ⇠

� 1
2 (@⇠ai)

2
. (25)

Therefore, the dimensionless electric current is

ji =
�S

�@⇠ai(⇠ = 0)

= �2

✓
�Nu

3
2
T

2

◆
⇠
� 1

2 @⇠ai

���
⇠=0

= iN!uT . (26)

This is an expression in the dimensionless units. We note
that ji = �Ei translates to ji = i�!Ai in frequency
space (if � is a time-independent constant). We note
that our normalization is ai(⇠ ! 0) = 1 and we should
add the D8 contribution multiplying a factor 2. Plugging
uT = (4⇡/3)2R2

T
2 into ji, we can derive the electric

conductivity:

�

q2
= 2

✓
4⇡

3

◆2

N (2⇡↵0)2R�3
T

2 =
2�NfNcT

2

27⇡MKK

. (27)

Here, we retrieved 2⇡↵0 from Eq. (2) and also recovered
the electric charge q. This T 2 behavior is consistent with
preceding studies, see Ref. [30].
Once the t’ Hooft coupling, �, and the Kaluza-Klein

mass, MKK, are determined to reproduce the physical
quantities, we can express � in the physical units. More
specifically, the ⇢ meson mass, m⇢, and the pion decay
constant, f⇡, can fix these parameters as [19, 20, 51]

� = 16.63 , MKK = 0.95GeV . (28)

To make a quantitative comparison to the lattice-QCD
results for Nf = 2, we should consider normalized � by
the flavor factor, Ce = (2e/3)2+(�e/3)2 = 5e2/9. In our
calculation we simply treated the electric charge in the
normalization, which implies that the above expression
is already normalized. Then,

�

CeT
=

2�NcT

27⇡MKK

=
�

9⇡2

✓
T

Tc

◆
, (29)
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where we used the known relation Tc = MKK/(2⇡) in the
SSM. Table I shows the comparison between our SSM
estimates and the lattice-QCD results from Ref. [52], in-
dicating consistency. We note that the lattice results are
for massive quarks, while our calculations are in the chi-
ral limit. In view of Fig. 3 of Ref. [16] the quark mass
dependence of the electric conductivity is expected to be
minor (as compared to the large error bar in the lattice
data), and the comparison with di↵erent quark masses
makes sense. Our estimates are also consistent with the
lattice-QCD results with dynamical quarks in Ref. [53];
however, one should not take the quantitative compari-
son too seriously. The physical setups with and without
dynamical quarks are di↵erent. As we noted, the probe
approximation corresponds to the quench approximation,
and it could be justified in the Nc ! 1 limit, but QCD
has only Nc = 3, and Nf/Nc corrections are expected
beyond the probe approximation.

IV. FINITE MAGNETIC CASE

We can repeat the same procedures including full B
e↵ects. First, let us consider the transverse degrees of
freedom, i.e., the x and y directions perpendicular to B.
For ax,y, as seen from Eq. (7), there is no contribution
from the Chern-Simons term and the analysis is easier
than the longitudinal direction. The EoM for ax is,

� u
�1/2

f
�1B�1/2

@0f0x + @u

�
u
5/2

fB�1/2
a
0
x

�
= 0 . (30)

In the same way as the B = 0 case, in frequency space
and in terms of ⇠ = uT /u, we can rewrite the above into

⇠
�3/2 ⌦2

1� ⇠3
B�1/2

ax + @⇠

⇥
⇠
�1/2(1� ⇠

3)B�1/2
@⇠ax

⇤
= 0 .

(31)
Near ⇠ ⇠ 1, the asymptotic behavior is determined by
the singular part of the above EoM which is the same
as the B = 0 case. Then, we can take the form of the
solution to be ax(⇠) = (1 � ⇠)�

i⌦
3 g(⇠) and expand g(⇠)

for small ⌦. Some calculations similar to previous ones
lead us to the following solution:

ax(⇠) = C

Z ⇠

0

d⇠
⇠
1/2B1/2

1� ⇠3
+D . (32)

The integration is analytically possible but the expression
is highly intricate. Nevertheless, the previous exercise at
B = 0 tells us that C is fixed to cancel the singularity of
ln(1� ⇠) around ⇠ ⇠ 1, which requires,

C = i⌦B�1/2
0

, D = 1 , (33)

where B0 = 1+B
2
u
�3

T . Once these constants are known,
we can expand ax(⇠) near ⇠ ⇠ 0 as

ax(⇠) ' 1 +
2i⌦

3
B�1/2
0

⇠
3/2 + · · · (34)

Therefore, the correction due to B is simply B�1/2
0

and
the conductivity is, thus,

�? =
�(B = 0)q
1 +B2u

�3

T

, (35)

where �(B = 0) is given by Eq. (29). The transverse
conductivity is suppressed by large B, and this makes
physical sense. The external magnetic field restricts the
transverse motion of charged particles and the charge
transport along the transverse directions needs a jump
between di↵erent Landau levels. In the strong B limit,
therefore, the electric conductivity should be vanishing.
We note that the drift motion of charged particles under
B may change the scenario. In the probe approximation
of the SSM the drift motion e↵ect (whose time scale /
Nc/Nf) is negligible and our calculations are justified.
For the AC conductivity, for which the drift frequency
can be smaller than the electric frequency, the transverse
conductivity should not be vanishing even in the strong
B limit, see Ref. [32] for details.
Next, we shall find the longitudinal conductivity. To

this end we consider the constraints and then solve the
EoMs as we did for the B = 0 case. From Eq. (9) we
have

� @u(u
5/2B1/2

a
0
0
)� 4↵Ba

0
z = 0 , (36)

which means that u5/2B1/2
a
0
0
+4↵Baz is a u independent

constant. The chiral anomaly in Eq. (10) in the presence
of B 6= 0 reads,

@0(u
5/2B1/2

a
0
0
) + 4↵Bf0z = 0 . (37)

Because f0z = @0az (dropping @z), the above two equa-
tions are summarized into

u
5/2B1/2

a
0
0
+ 4↵Baz = c , (38)

where c is a t and u independent constant. We note
that, unlike the B = 0 case, a0 takes a nonvanishing
value. Physically speaking, u

5/2B1/2
a
0
0
is proportional

to the matter chirality, whilst Baz is the magnetic helic-
ity up to an overall factor. We can interpret the chiral
anomaly as a conservation law of the matter chirality
and the magnetic helicity. It should be noted that the
magnetic helicity plays an important role in the descrip-
tion of magneto-hydrodynamical evolutions [54]. Now it
is clear that c physically means a net chirality charge in
the system and it should be, in principle, fixed by an
initial condition.
The longitudinal EoM is

� u
�1/2

f
�1B1/2

@0f0z + @u(u
5/2

fB1/2
a
0
z) + 4↵Ba

0
0
= 0 ,
(39)

and we can eliminate a0 by combining Eqs. (38) and (39),
so that we can find a di↵erential equation for az only.
Then, we convert the equation into the one in frequency

Hawking-Page Transition
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Under coordinate transformation ⇠ = uT /u and using the
Fourier transformed variable ai(⇠,!), we can rewrite the
EoM as

⇠
�3/2 ⌦2

1� ⇠3
ai + @⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 . (18)

Here, we defined the dimensionless frequency as ⌦2 =
!
2
/uT .
As discussed in Ref. [48], we should impose the infalling

boundary condition near the blackhole horizon at u ⇠ uT

or ⇠ ⇠ 1. We can approximate the EoM near ⇠ ⇠ 1 and
identify the asymptotic form of the solution from

⌦2

3(1� ⇠)
ai � 3@⇠ai + 3(1� ⇠)@2

⇠ai = 0 , (19)

which is obtained from Eq. (18) near ⇠ ⇠ 1. We can easily
solve Eq. (19) using the asymptotic form, ai ⇠ (1� ⇠)�,
from which (⌦/3)2+�+�(��1) = 0 follows, leading to � =
± i⌦

3
immediately. The infalling direction corresponds to

� = � i⌦
3

and we can parametrize the solution as

ai(⇠) = (1� ⇠)�
i⌦
3 g(⇠) , (20)

where g(⇠) is a regular function near ⇠ ⇠ 1. The normal-
ization of ai(⇠) is conventionally chosen as the unity, i.e.,
ai(⇠ = 0) = 1 or g(⇠ = 0) = 1. We can then expand g(⇠)
for small ⌦, under the condition that g(⇠ = 1) is regular.
Up to the first order in ⌦ we can drop the first term in
Eq. (18) and the equation to be satisfied by ai is

@⇠

h
⇠
�1/2(1� ⇠

3)@⇠ai
i
= 0 , (21)

which can be solved as

ai(⇠) = C

Z ⇠

0

d⇠
⇠
1/2

1� ⇠3
+D =

C

3
ln

✓
1 + ⇠

3/2

1� ⇠3/2

◆
+D ,

(22)
where C and D are ⌦ dependent constants. We can then
write down a form of g(⇠) for small ⌦ as g(⇠) ' [1 +
i
⌦

3
ln(1 � ⇠)]ai(⇠). The condition of ai(⇠ = 0) = 1 fixes

D = 1, and the regularity of g(⇠ ! 1) fixes C = i⌦.
Therefore, we can conclude,

g(⇠) = 1 +
i⌦

3
ln


(1� ⇠)(1 + ⇠

3/2)

1� ⇠3/2

�
+O(⌦2) . (23)

In response to the boundary condition at the infrared
(IR) side, the behavior at the ultraviolet (UV) side near
⇠ ⇠ 0 is fixed, from which the physical information can
be extracted. That is,

ai(⇠) ' 1 +
2i⌦

3
⇠
3/2 + · · · (24)

Now, let us prescribe how to calculate the electric current
expectation value using the GKP-W relation [49, 50]. It
is the generating functional coupled to the gauge poten-
tial, which results from the on-shell action in the gravity

�/(CeT ) 1.1Tc 1.3Tc 1.5Tc

This work 0.206 0.243 0.281

Lattice-QCD [52] 0.201-0.703 0.203-0.388 0.218-0.413

TABLE I. Comparison between our estimates and the lattice-
QCD results from Ref. [52] for the dimensionless electric con-
ductivity for three di↵erent temperatures above Tc.

theory with the UV boundary condition of ai(⇠ ! 0) as
the physical vector potential in the gauge theory.
To calculate the electric current expectation value,

thus, we should take a functional derivative of the grav-
ity action with respect to ai on the UV boundary. Near
the UV boundary (⇠ ⇠ 0 or u ⇠ 1), the action has
asymptotic behavior as follows:

S ⇠ �N
Z

d
4
xduu

5/2 1

2
(f2

ux + f
2

uy + f
2

uz)

⇠ �Nu
3/2
T

2

Z
d
4
xd⇠ ⇠

� 1
2 (@⇠ai)

2
. (25)

Therefore, the dimensionless electric current is

ji =
�S

�@⇠ai(⇠ = 0)

= �2

✓
�Nu

3
2
T

2

◆
⇠
� 1

2 @⇠ai

���
⇠=0

= iN!uT . (26)

This is an expression in the dimensionless units. We note
that ji = �Ei translates to ji = i�!Ai in frequency
space (if � is a time-independent constant). We note
that our normalization is ai(⇠ ! 0) = 1 and we should
add the D8 contribution multiplying a factor 2. Plugging
uT = (4⇡/3)2R2

T
2 into ji, we can derive the electric

conductivity:

�

q2
= 2

✓
4⇡

3

◆2

N (2⇡↵0)2R�3
T

2 =
2�NfNcT

2

27⇡MKK

. (27)

Here, we retrieved 2⇡↵0 from Eq. (2) and also recovered
the electric charge q. This T 2 behavior is consistent with
preceding studies, see Ref. [30].
Once the t’ Hooft coupling, �, and the Kaluza-Klein

mass, MKK, are determined to reproduce the physical
quantities, we can express � in the physical units. More
specifically, the ⇢ meson mass, m⇢, and the pion decay
constant, f⇡, can fix these parameters as [19, 20, 51]

� = 16.63 , MKK = 0.95GeV . (28)

To make a quantitative comparison to the lattice-QCD
results for Nf = 2, we should consider normalized � by
the flavor factor, Ce = (2e/3)2+(�e/3)2 = 5e2/9. In our
calculation we simply treated the electric charge in the
normalization, which implies that the above expression
is already normalized. Then,

�

CeT
=

2�NcT

27⇡MKK

=
�

9⇡2

✓
T

Tc

◆
, (29)
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Recent analysis by Yamauchi (Hiroshima U.)
y’ = y - a cos(ky)

𝑎 = 2.5

結果2.  α = 0.1のとき
∆𝑞𝑦 = ∆𝑞𝑥 = 10MeV

200,000event

𝐶2(Δ𝑞𝑦)
𝐶2(0)

 w/mod
𝐶2(Δ𝑞𝑦)
𝐶2(Δ𝑞𝑥)
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𝐶 2
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𝑞 𝑦
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𝐶 2
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𝑞 𝑥
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Source distribution: 
generated by AMPT 
modulated by hand

Previous (2023)

4

FIG. 4. Two-particle correlation from the AMPT data with

the spatial modulation. The tilting angle is fixed as ωn = 20
→
.

In the upper panel C(0)
2 is the correlation without!q cut. The

bottom panel show the correlation normalized by C(0)
2 .

baryon number (such as the ω meson), but the analy-
sis simply goes in the same manner (with more statistics
required). The particle distribution,

ε(p, r, t) =
∑

n

ϑ(p→ pn) ϑ(r → rn)ϑ(t→ tn) (4)

with (pn, rn, tn) the phase-space point of n-th particle
emulated by AMPT, is shifted as ε(p, r→ eya cos(ky), t)
in our simple Ansatz to implement the 1D modulation.
The modulation parameter, k, has the same meaning as
our Gaussian approach and let us choose k = 0.4 fm→1

again. The amplitude a is not dimensionless and we set
a = 5 fm in this work. This parameter of a is the least
known part in the whole discussions and should be re-
lated to the magnetic strength. In the future, we should
proceed to systematic investigations. It would be an in-
triguing question what a is the sensitivity bound for de-
tectability.
We mention that we mix 1000 events to make pairs.

Here, we consider the ϖ+-ϖ+ pairs and there are 416824
ϖ+’s from 1000 events (with the pre-selection of pz <
1GeV). Therefore, one event produces ↑ 400 ϖ+’s. If
we make pairs within each event, ↑ 8 ↓ 107 pairs are
possible from 1000 events. Since we mix 1000 events, the
number of possible pairs is ↑ 8↓ 1010, which e!ectively
corresponds to 1M events.
For the evaluation of ↔cos(q · r)↗ in the transport model

calculation, S(r) is approximated into the decomposed
form of s(r1)s(r2). Then, we should make a large number
of pairs, i and j, and make q = pi → pj and r = ri → rj
to take the average of cos(q · r). We note that the boost
e!ect to the rest frame is included but negligibly small.
The momentum filter is

√
q2x + q2z ↘ ”q . (5)

First, we shall consider the 1D limit of the analyses.
It is nearly impossible to find pairs with q ≃ n, i.e.,

qx = qz = 0, which corresponds to ”q = 0. Thus, we
emulate the 1D limit by computing ↔cos(qyry)↗ instead
of ↔cos(q · r)↗. Then, we see a bumpy signal in Fig. 4.
For reference, Fig. 4 also shows the two-particle corre-

lation for no ”q cut denoted by C(0)
2 which gives the

baseline not detecting the modulation.

We have numerically found that the signal is easily
washed out unless ”q is su#ciently small. In Fig. 4,
the middle curve between the 1D limit (upper) and
the no-modulation case (lower) represents the results for
”q = 3MeV. We have numerically constructed 3 ↓ 105

pairs from 416824 ϖ+’s that satisfy Eq. (5) and took the
average with the 2MeV bin in terms of Qinv =

√
|q2|.

Because qx and qz are much smaller than qy and the
boost e!ect to the pair rest frame is also small, the plots
are hardly changed if the horizontal axis is replaced from
Qinv to qy as in Fig. 3. In Fig. 4 the smoothed curves
over 20 data points (corresponding to the 40MeV bin)
are overlaid. We see that the signal is suppressed, but
still the deviation from the no-modulation case is signif-
icant. Therefore, in this scenario, we can conclude that
the HBT signature for the inhomogeneous state is su#-
ciently detectable in non-central collisions.

Finally, we mention that we have numerically checked
the ϱn dependence. Figure 3 shows strong suppression
for ϱn ⇐= 0, but we have found that the final signal can
survice. More specifically, we tilted the y-axis with ϱ =
15↑ and repeated the same calculation as in Fig. 4, and
then we confirmed that the signal (middle curve in Fig. 4)
is hardly a!ected. We also tested the signal for ϱn = 30↑,
and in this case the peak disappears. These observations
are understandable; as long as a peak is prominent at
the level in the 1D limit as seen in Fig. 3, the peak can
persist if ”q is su#ciently small.

V. CONCLUSION

We discussed a possibility of clustered substructures
in hot and dense matter along the axis parallel to the
magnetic field. Even if the magnetic field lives short,
the pseudo one-dimensional nature in the early dynam-
ics can favor the primordial inhomogeneity. We proposed
a novel approach to probe the inhomogeneous state us-
ing the HBT measurement. Our analytical calculation in
the Gaussian formalism exhibits a pronounced peak at
the relative momentum corresponding to the wave num-
ber of spatial modulation. To assess the feasibility we
adopted the phase-space distribution of particles gener-
ated by AMPT and computed the two-particle correla-
tion with the spatial modulation. We found that the sig-
nal peak could be suppressed but still persist under the
appropriate momentum filter. Our results are promising
enough and the HBT correlations should deserve further
systematic investigations.

Now in progress

Signal?

結果1. 𝑦′ = 𝑦 − 𝑎 cos(𝑘𝑦) : 
𝐶2(Δ𝑞𝑦)
𝐶2(Δ𝑞𝑥)

∆𝑞𝑦 = ∆𝑞𝑥 = 30MeV
𝜋+ ∶ 100,000events

𝐶2 = 1 +< cos(𝑞 ∙ 𝑟) >

Δ𝑞𝑦 ≥ 𝑞𝑥
2 + 𝑞𝑧

2 

Δ𝑞𝑥 ≥ 𝑞𝑦
2 + 𝑞𝑧

2

𝑞𝑖𝑛𝑣 = |Δ𝐸2 − 𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2 |

𝐶 2
(∆

𝑞 𝑦
) /

𝐶 2
(∆

𝑞 𝑥
)

[My Study]

𝑦′ = 𝑦 − 𝑎 cos(𝑘𝑦)
𝑎 = 2.5fm

w/o mod
w/ mod
w/ mod Fix 20°
w/ mod σ=20°

Clear Signal!

HBT detects clusters?
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Nuclear matter 
cannot be well 
described, but 
high-density 
states are fairly 
good enough. 

Overall scale was 
treated as a fitting 
parameter.



October 8, 2025 @ Dalian, Liaoning

Witten-Sakai-Sugimoto

28

Fukushima-Jarvinen-Okutsu-Watanabe (in progress)

Overall scale was 
chosen to fit the 
peak position in the 
speed of sound.

3

FIG. 2. The speed of sound and its decomposition (6) cal-
culated from (7) as shown in the inset plot. The horizontal
axis is the logarithmic energy ⌘ normalized to the value at
the saturation point, "0 = 150MeV/fm3.

� ⇠ 0 at intermediate ", well below the asymptotic den-
sity. Here, we elucidate that this quick approach to con-
formality causes a prominent peak in v2s . We emphasize
that, even if the behavior toward � ! 0 is monotonic in
", v2s > 1/3 can be induced.
The minimal parametrization of monotonically de-

creasing � is

� =
1

3
�

1

3
·

1

e�(⌘�⌘c) + 1

✓
1�

A

B + ⌘2

◆
. (7)

The crossover density to conformal matter is character-
ized by ⌘c and the width of the crossover region is 1/.
Equation (7) has the correct limit � ! 1/3 for ⌘ ⌧ ⌘c
and � ⇠ (A/3)/(B + ⌘2) ! 0 for ⌘ � ⌘c. Nonzero A
and B represent the pQCD logarithmic tails that are not
well constrained from the NS data. One parameter set
that fits the observational data reads,

 = 3.45, ⌘c = 1.2 A = 2, B = 20 . (8)

The fit together with data is shown in the inset plot in
Fig. 2. We show v2s computed from Eq. (5) with the help
of Eq. (7) in Fig. 2. In the high density region for ⌘ & 2,
v2s is dominated by v2s, non-deriv approaching the conformal

value, 1/3. At low density for ⌘ . 1, v2s goes to zero.
The most interesting is the behavior of v2s around 1 .

⌘ . 2. This density region corresponds to the energy
scale of the transitional change from non-relativistic to
relativistic degrees of freedom. There, v2s develops a peak
whose height can become larger than the conformal value.
The dashed and the dash-dotted lines in Fig. 2 show

v2s,deriv and v2s,non-deriv, respectively. Because � is a

monotonic function, v2s,non-deriv smoothly increases with

increasing ⌘. Thus, v2s,deriv exhibits the peak structure.
From this decomposition we clearly recognize that the

peak in v2s is not caused by the violation of the confor-
mal bound, but it is a signature of the steep approach to
the conformal limit!
We stress that this is quite di↵erent from high-T QCD

where the normalized trace anomaly itself has a peak
around Tc, which causes a minimum in the sound ve-
locity. Along the T axis conformality is restored only
at temperatures far above Tc. One might have an im-
pression that conformality in QCD should be associated
with the weak coupling, but it is not necessarily the case.
What we find from Fig. 1 is that conformality quantified
by � is quickly restored around 1 . ⌘ . 2 and the peak
in v2s should be interpreted as a signature of conformality.
The peak position may well be identified as the point of
the slope change as observed in Ref. [54]. Around this
peak ↵s is not yet small and the state of matter for ⌘ & 2
should be regarded as “strongly-coupled conformal mat-
ter”.
We note that v2s ! 1/3 generally occurs at lower den-

sity than � ! 0. We can illustrate this in a simple model
with the vector interaction between the currents whose
energy density is given by

"(n) = mNnB +
C

⇤2
n2
B , (9)

where mN = Nc⇤QCD is the baryon mass, and C and
⇤ are the typical interaction strength and the scale of
the system, respectively. This can be thought of as the
generalization of the mean-field quantum hadrodynam-
ics [55]. Note that µB = mN + 2(C/⇤2)nB, and P =
(C/⇤2)n2

B. This means that ⇥ = mNnB � 2(C/⇤2)n2
B

and v2s = 2(C/⇤2)nB/[mN + 2(C/⇤2)nB]. The confor-
mal point � ! 0 is reached when nB ⇠ Nc⇤3

QCD/(2C).
The condition of v2s ! 1/3 is reached earlier at nB ⇠

Nc⇤3
QCD/(4C). So in this model the density at which v2s

surpasses the conformal limit is always lower than that
for the trace anomaly.

Strongly-coupled conformal matter: In Fig. 1 we over-
lay the currently available ab initio calculations of
�EFT [45] and pQCD [11] on the observational data that,
however, do not constrain � beyond "/"0 ⇠ 101. We uti-
lized the Gaussian process for the interpolation using NS
data from the machine learning [44] up to the density
"/"0 . 4 (a) and using all data up to "/"0 ⇠ 8 (b). De-
tails about the choice of the kernel and the noise will be
reported elsewhere.
In the conservative inference in (a) � stays positive or

slightly negative after quickly approaching zero, which
implies a possible bound, � � 0. Once the conformal
limit of the trace anomaly is saturated, the underlying
theory becomes approximately scale invariant and the
EoS drastically simplifies. Baryons are strongly interact-
ing, and yet the resultant EoS of strongly-coupled con-
formal matter is P ⇡ "/3.

If the mean value from the machine learning infer-
ence is extrapolated, the Gaussian process prefers (b).
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Big Surprise!

This model has a 
scale  
so not conformal 
at all…

MKK ∼ 1 GeV

Strongly correlated 
conformal window 
of quark matter!?
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Why this is so conformal??? 
5d configuration of baryonic instanton  —Ai ∼ σih(z) 8
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FIG. 2. The profile of the gauge field h(z) (left) and the bulk charge density ⇢(z) (right) for the single layer (solid curves) and
double layer (dashed curves) configurations for various values of the charge density. The vertical dashed lines in the left hand
plot denote the discontinuities of the double layer solutions at z = zc.

1. Vacuum for µ < µc with µc ' 0.205.

2. Single layer phase for µc < µ < µl with µl ' 0.342

3. Double layer phase for µ > µl.

The phase transition at µ = µc (µ = µl) is of first (sec-
ond) order. Here the second order transition (at the
higher value of the chemical potential, µ = µl), is iden-
tified as the popcorn transition. Notice that in the ap-
proach of [50], which used a di↵erent variation of the
homogeneous approach, both the vacuum to nuclear and
popcorn transitions were of first order. Even though we
are not attempting a serious comparison to QCD data, we
note that setting MKK = 949 MeV as determined by the
mass of the ⇢meson [46], we have (for the quark chemical
potential) µc ' 195 MeV and µl ' 325 MeV, i.e., num-
bers in the correct ballpark. We note that µl/µc ' 1.67.
Denoting the density of the single layer configuration at
µ = µc as ⇢c (i.e., the analogue of the saturation den-
sity), the density ⇢l at the second order transition satis-
fies ⇢l/⇢c ' 3.4.

Here we are mostly interested in the second order tran-
sition from the single to double layer phase. We show the
relevant configurations in figure 2 for a choice of densi-
ties ⇢0 around the critical value ⇢l ' 2.52⇥ 10�4. Recall
that the single layer configuration is unique for fixed ⇢0,
whereas the double layer configuration also depends on
zc. We show here the double layer profiles which mini-
mize the free energy. They are separate from the single
layer configuration only for ⇢0 > ⇢l (the three highest
values in the figure), where they have lower free energies
than the single layer solutions. Interestingly, the single
and double layer solutions at the same ⇢0 are close: The
functions h(z) deviate by at most a few percent in the
region z > zc. The deviations for ⇢(z) are slightly higher,

and the single layer solution can be viewed as a smoothed
out version of the double layer solution. That is, even if
we were not considering the double layer solutions explic-
itly, their presence could be guessed from the single layer
solutions. In both cases, deviation is largest close to zc.
We also remark that the single layer profiles h(z) appear
to be qualitatively similar to the solutions found in the
approach of [50] (see figure 4 in this reference), up to a
shift by a constant.

B. Analysis of configurations in V-QCD

We construct the double layer and single layer solution
by the procedure which is outlined in appendix A 2. The
essence of the procedure is the minimization of the free
energy density at fixed ⇢0 depending on the free parame-
ters. In the case of the single layer, there is only one pa-
rameter: rc or equivalently h2, and it is straightforward
to solve the equation of state in this case. For the dou-
ble layer solution, there are four parameters which would
make the numerical minimization procedure challenging
in contrast to single layer solution. Therefore, while we
perform minimization of single layer solution for large
domain of ⇢0 values, we investigate presence of lower the
free energy density of the double layer solution only for
solutions obtained by gluing together single layer solu-
tions for some representative values of ⇢0 changing from
0.8 to 2.5.
Denoting �hi = Disc h(rci), we investigate three qual-

itatively di↵erent configurations: we consider �h1 < 0
and �h1 > 0 for double layer solution and �h1 > 0
, �h2 > 0 for a triple layer solution. For bound-
ary baryon number charge we consider the values of
⇢0 = 0.5, ⇢0 = 0.8 and ⇢0 = 2.5, which will correspond to

Plateau or density gap appears in IR… a sort of saturation?
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FIG. 2. The profile of the gauge field h(z) (left) and the bulk charge density ⇢(z) (right) for the single layer (solid curves) and
double layer (dashed curves) configurations for various values of the charge density. The vertical dashed lines in the left hand
plot denote the discontinuities of the double layer solutions at z = zc.

1. Vacuum for µ < µc with µc ' 0.205.

2. Single layer phase for µc < µ < µl with µl ' 0.342

3. Double layer phase for µ > µl.

The phase transition at µ = µc (µ = µl) is of first (sec-
ond) order. Here the second order transition (at the
higher value of the chemical potential, µ = µl), is iden-
tified as the popcorn transition. Notice that in the ap-
proach of [50], which used a di↵erent variation of the
homogeneous approach, both the vacuum to nuclear and
popcorn transitions were of first order. Even though we
are not attempting a serious comparison to QCD data, we
note that setting MKK = 949 MeV as determined by the
mass of the ⇢meson [46], we have (for the quark chemical
potential) µc ' 195 MeV and µl ' 325 MeV, i.e., num-
bers in the correct ballpark. We note that µl/µc ' 1.67.
Denoting the density of the single layer configuration at
µ = µc as ⇢c (i.e., the analogue of the saturation den-
sity), the density ⇢l at the second order transition satis-
fies ⇢l/⇢c ' 3.4.

Here we are mostly interested in the second order tran-
sition from the single to double layer phase. We show the
relevant configurations in figure 2 for a choice of densi-
ties ⇢0 around the critical value ⇢l ' 2.52⇥ 10�4. Recall
that the single layer configuration is unique for fixed ⇢0,
whereas the double layer configuration also depends on
zc. We show here the double layer profiles which mini-
mize the free energy. They are separate from the single
layer configuration only for ⇢0 > ⇢l (the three highest
values in the figure), where they have lower free energies
than the single layer solutions. Interestingly, the single
and double layer solutions at the same ⇢0 are close: The
functions h(z) deviate by at most a few percent in the
region z > zc. The deviations for ⇢(z) are slightly higher,

and the single layer solution can be viewed as a smoothed
out version of the double layer solution. That is, even if
we were not considering the double layer solutions explic-
itly, their presence could be guessed from the single layer
solutions. In both cases, deviation is largest close to zc.
We also remark that the single layer profiles h(z) appear
to be qualitatively similar to the solutions found in the
approach of [50] (see figure 4 in this reference), up to a
shift by a constant.

B. Analysis of configurations in V-QCD

We construct the double layer and single layer solution
by the procedure which is outlined in appendix A 2. The
essence of the procedure is the minimization of the free
energy density at fixed ⇢0 depending on the free parame-
ters. In the case of the single layer, there is only one pa-
rameter: rc or equivalently h2, and it is straightforward
to solve the equation of state in this case. For the dou-
ble layer solution, there are four parameters which would
make the numerical minimization procedure challenging
in contrast to single layer solution. Therefore, while we
perform minimization of single layer solution for large
domain of ⇢0 values, we investigate presence of lower the
free energy density of the double layer solution only for
solutions obtained by gluing together single layer solu-
tions for some representative values of ⇢0 changing from
0.8 to 2.5.

Denoting �hi = Disc h(rci), we investigate three qual-
itatively di↵erent configurations: we consider �h1 < 0
and �h1 > 0 for double layer solution and �h1 > 0
, �h2 > 0 for a triple layer solution. For bound-
ary baryon number charge we consider the values of
⇢0 = 0.5, ⇢0 = 0.8 and ⇢0 = 2.5, which will correspond to

2

FIG. 1. Evolution of fB and fQ from the nuclear (dotted) to
Quarkyonic regime (solid). The saturation of quark states
drives baryons into the relativistic regime. Arrows in the
rightmost panels indicate increasing µB.

quarks with a given color and fB for baryons as (notation:∫
k →

∫
ddk
(2ω)d ) [48, 49].

[
fQ(q)

]
fε

=
∑

i=n,p,···

∑

ε→=→,↑

∫

k

[
ω
(
q ↑

k
Nc

)]iε
→

fε

[
fB(k)

]
iε→ , (1)

where ω is a single quark momentum distribution with
the flavor f and spin ε in a single baryon state of a species
i and spin ε↓. Collecting quark contributions from each
baryon leads to quark distributions in dense matter. In
this work, we limit ourselves to symmetric nuclear mat-
ter and include a spin-isospin degeneracy factor 4 in the
expressions of thermodynamic quantities, but elsewhere
we drop the spin-flavor indices f,ε. The extension for
multi-flavors and multi-baryon species will be discussed
in the forthcoming papers.

The normalization is
∫
q ω(q) = 1. The dual expression

of the baryon number readily follows from Eq. (1) as

nB = 4

∫

k
fB(k) = 4

∫

q
fQ(q) . (2)

The energy densities in terms of baryons and quarks are

ϑB[fB] = 4

∫

k
EB(k)fB(k) ,

ϑQ[fQ] = 4

∫

q
EQ(q)[NcfQ(q)] .

(3)

Remember fQ is defined for a fixed color, fQ → fR
Q

=

fG
Q

= fB
Q

with which nB = nR
Q

= nG
Q

= nB
Q
. A

single baryon is assumed to have the energy contri-
butions summed from Nc-confined quarks, EB(k) =
Nc

∫
q EQ(q)ω

(
q ↑ k/Nc

)
. Then a duality relation fol-

lows, ϑ = ϑB[fB] = ϑQ[fQ]. As quarks are confined in a
spatial domain of the baryon size ↓ !↔1

QCD
, quarks can

be energetic and ω(q) is spread to momenta of ↓ !QCD.
The mechanical pressure inside of a baryon is large.

In this work, going from low to high densities we keep
using the same ω determined in vacuum. Our main target

here is the transient regime from baryonic to quark mat-
ter, where using ω for localized quarks may not be so bad
approximation. The structural changes in baryons, such
as swelling, would possibly increase the low momentum
components of ω, but such modifications merely shift the
onset of quark matter formation to lower density.

Minimization of energy functional.—With duality (1)
as a constraint, we calculate the energy density ϑ for a
given nB. We consider energy functionals

ϑ = ϑB[fB]
∣∣
nB

= ϑQ[fQ]
∣∣
nB

, (4)

and minimize them by optimizing fB or fQ while holding
nB fixed. A novelty in our optimization program is that
the solutions are determined not only by the stationary
condition ϖϑ/ϖf = 0 but also by the boundary condi-
tions fB,Q = 0 or 1. The thermodynamic energy density
is obtained by substituting the optimized distributions,
ϑEOS(nB) = ϑB[f↗

B
]
∣∣
nB

= ϑQ[f↗
Q
]
∣∣
nB

.
In practice, one can find the f↗

B
and f↗

Q
by minimizing

ϑ̃ = ϑB[fB]↑ ϱBnB = ϑQ[fQ]↑ ϱQnQ , (5)

where ϱB = NcϱQ. It is tempting to identify the ϱ’s as
chemical potentials and ϑ̃ as the thermodynamic func-
tional. Unfortunately they do not satisfy the thermody-
namic relations if solutions are partly determined by the
boundary conditions. Hence we use ϑ̃ only to find f↗

B
and

f↗
Q
, and use them in computations of ϑEOS(nB).

Global constraints.—The constraints in our theory ap-
pear global, as fQ at a given momentum depends on fB
for the entire momentum range. The variation leads to

ϖϑ̃

ϖfB(k)
= EB(k)↑ ϱB ,

ϖϑ̃

ϖfQ(q)
= EQ(q)↑ ϱQ . (6)

At momenta with ϖϑ̃/ϖfB,Q < 0, greater fB,Q reduces
ϑ̃ and grows toward the boundary fB,Q = 1, while
ϖϑ̃/ϖfB,Q > 0 drives fB,Q to the other boundary, fB,Q =
0. We would get the optimized distributions

fvar

B
(k) = ”(kF ↑ k) , fvar

Q
(q) = ”(qF ↑ q) , (7)

where kF and qF are determined through ϱB = EB(kF)
and ϱQ = EQ(qF).

The above solutions are not usable everywhere. For
instance, fvar

Q
at large momenta is incompatible with the

sum rule (1); at large momenta (q ↔ k/Nc), the scaling
should be fQ(q) ↓ nBω(q). Another problem is that, if
we keep using fvar

B
in the regime !QCD ↗ kF ↗ Nc!QCD,

then fQ(0) ↓ nBω(0) ↓ k3
F
/!3

QCD
, violating fQ ↘ 1 at

q = 0. Our problem is to patch the candidates of solu-
tions, found from variational calculations and the bound-
ary conditions, into the form consistent with the duality
constraints, and then to minimize the energy.

Solvable model.—What makes the dual theory nontriv-
ial is its global nature. The di#culty lies in the recon-
struction of fB from a given fQ. At high density we have

5d coordinate z corresponds 
to the renormalization scale, 
and the gap should be related 
to the saturaion in the 
quarkyonic scenario.

We can confirm this 
speculation by calculating 
the Dirac spectra on top of 
the 5d backgrounds.
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Summary

Experimental Signatures 
□ Speed of sound at high density exceeds the conformal 

value making a peak. 
□ Conformal symmetry is rapidly restored already at 

intermediate densities (3-5 times normal nuclear). 

Theory 
□ Baryons have larger phase space, and quarks feel Pauli 

blocking earlier, suppressing the baryon distribution. 
□Witten-Sakai-Sugimoto model is QCD at low energy, 

demonstrating emergent conformality!
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