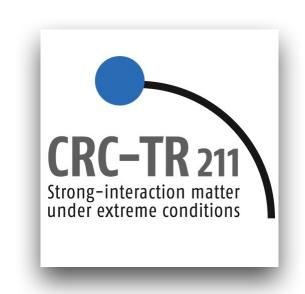
Finite-volume analysis and universal scaling near chiral phase transition in (2+1)-flavor QCD

Sabarnya Mitra

Faculty of Physics, Bielefeld University

The QCD phase diagram: From theory to experimental signatures

8-11 October, Dalian workshop 2025



THANKS to my collaborators

- Frithjof Karsch
- Christian Schmidt

Jishnu Goswami

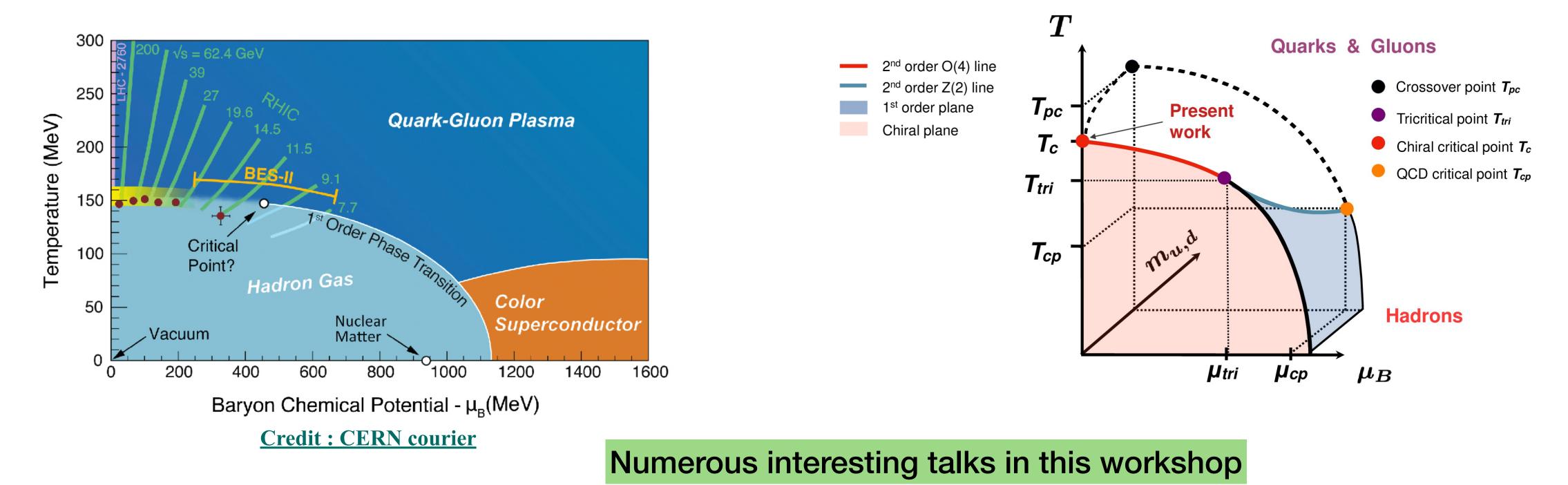
Bielefeld University, Germany

- Mugdha Sarkar (NTU, Taiwan)
- Sipaz Sharma (TuM Munich, Germany)

Contents

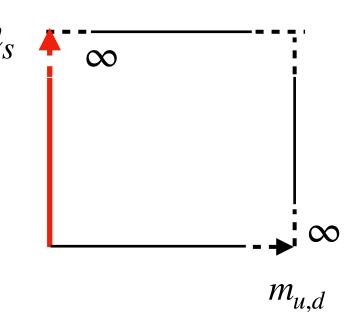
- Introduction and Motivation
- Improved order Parameter and scaling function
- Uniqueness and universality class
- Volume dependence and finite-volume effects
- Lattice setup and Results
- Conclusion and Outlook

Motivation and Introduction



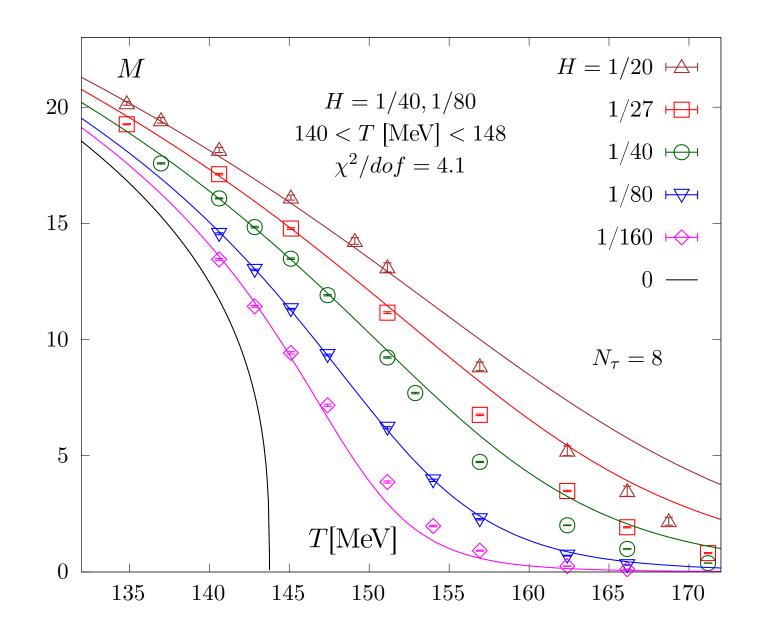
- For narrowing onto the QCD critical point, one needs knowledge of chiral phase transition (cPT).
- It is also important for constructing early universe QCD, explain heavy-ion experiments etc.
- This provides an upper bound on the QCD critical point temperature T_{cp} .

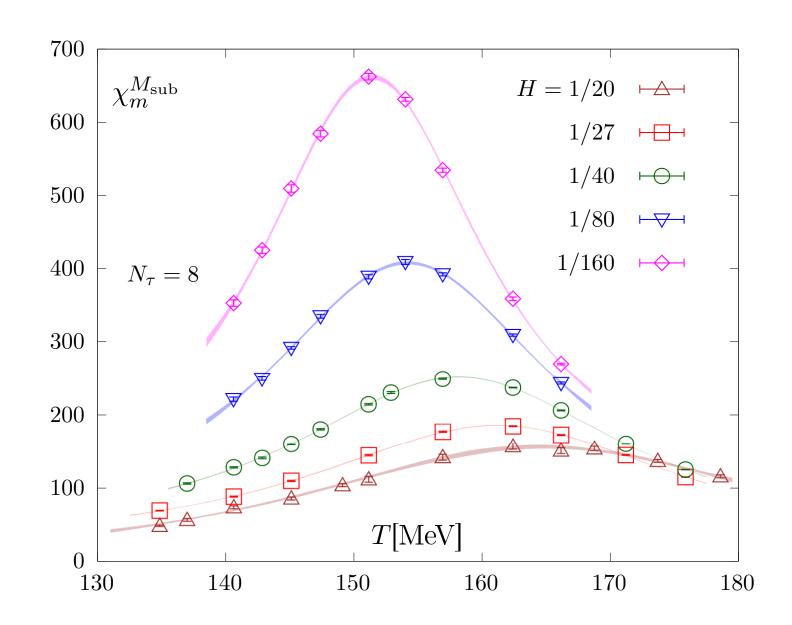
Chiral Phase Transition (cPT): Brief

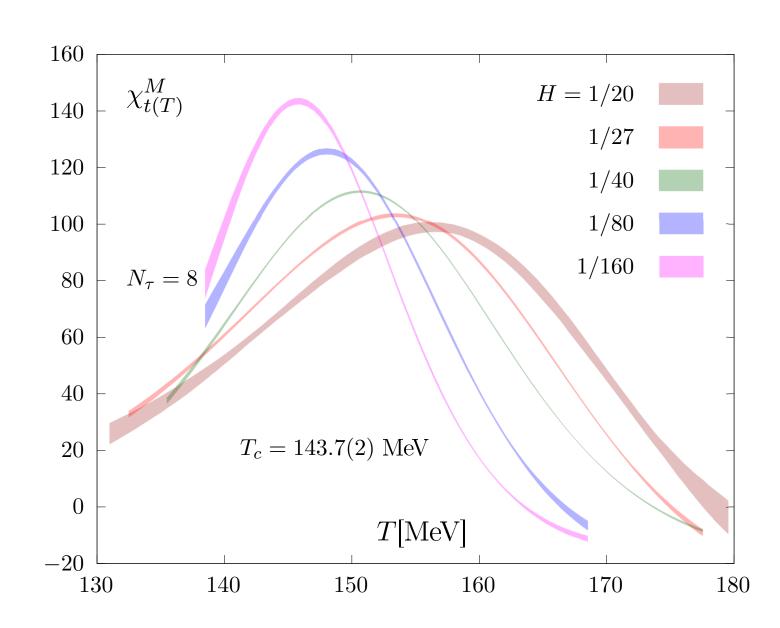


The "phase transition" between the high T - quark-gluon plasma (QGP) and the low T - hadronic phase

- In principle, this happens in the exact chiral limit $\left(m_u=m_d=m_{u,d}=0\right)$
- This is a second order phase transition, with spontaneous symmetry breaking of the chiral symmetry group $SU(2)_L \times SU(2)_R \to SU(2)_V$
- The order parameter $M_{u,d} \sim \partial_{m_{u,d}} f$ remains continuous, but non-differentiable across $T=T_c$, for which there are divergences in the chiral susceptibility $\chi_{u,d} \sim \partial_{m_{u,d}}^2 f$
- The universality class (UC) of this phase transition determines the fate of axial $U(1)_A$ symmetry (restored / broken) at $T=T_c$.







 $N_{
m f}=2$ m_s O(4) $U(2)_L\otimes U(2)_R/U(2)_V$ Z_2 O(4) O(4)

Cuteri et. al., JHEP 11 (2021) 141

 $m_{u,d}$

Ding et. al., PRD 109 (2024) 114516

Ding, Cuteri Lattice QCD (LQCD) $\xrightarrow{M, \chi}$ 2^{nd} order nature of cPT (increasingly)

- However, finite-volume effects (FVE's) are yet to be controlled, specially close to the chiral limit. Thus,
- Demanding a detailed finite-volume analysis (FVA) here, and re-estimate the cPT temperature T_c and the UC .

The focus of this work

Some quick basic theory first ...

Theory

Close to $(T = T_c, m_l = m_{u,d} = m_u = m_d = 0)$ for finite volumes, one can write:

$$M_{\ell}(T, H, L) = h_0^{-1/\delta} H^{1/\delta} f_G(z, z_L) + M_{\ell, reg}$$

 $\chi_{\ell}(T, H, L) = h_0^{-1/\delta} f_{\chi}(z, z_L) H^{1/\delta - 1} + \chi_{\ell, reg}$

Non-analytic singular and analytic regular terms

Scaling functions

Critical exponent δ

Scaling variables z, z_L : on $N_{\sigma}^3 \cdot N_{\tau}$ lattice

$$z = z_0 \left(\frac{T - T_c}{T_c}\right) H^{-1/\beta\delta}$$

$$= z_L = z_{L,0} \frac{N_\tau}{N_\sigma} H^{-\nu/\beta\delta}$$

$$H = m_\ell / m_s$$

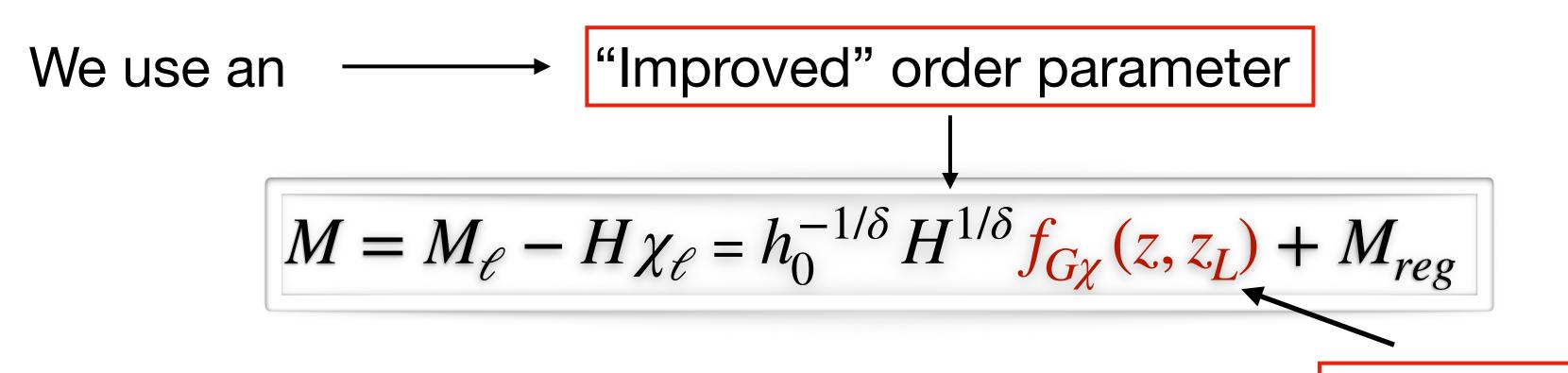
$$V$$
Non-universal constants h_0 , z_0 , $z_{L,0}$

$$H = m_{\ell} / m_{s}$$

Lattice volume V:

$$V \sim L^3$$
, $L = N_\sigma / N_\tau$

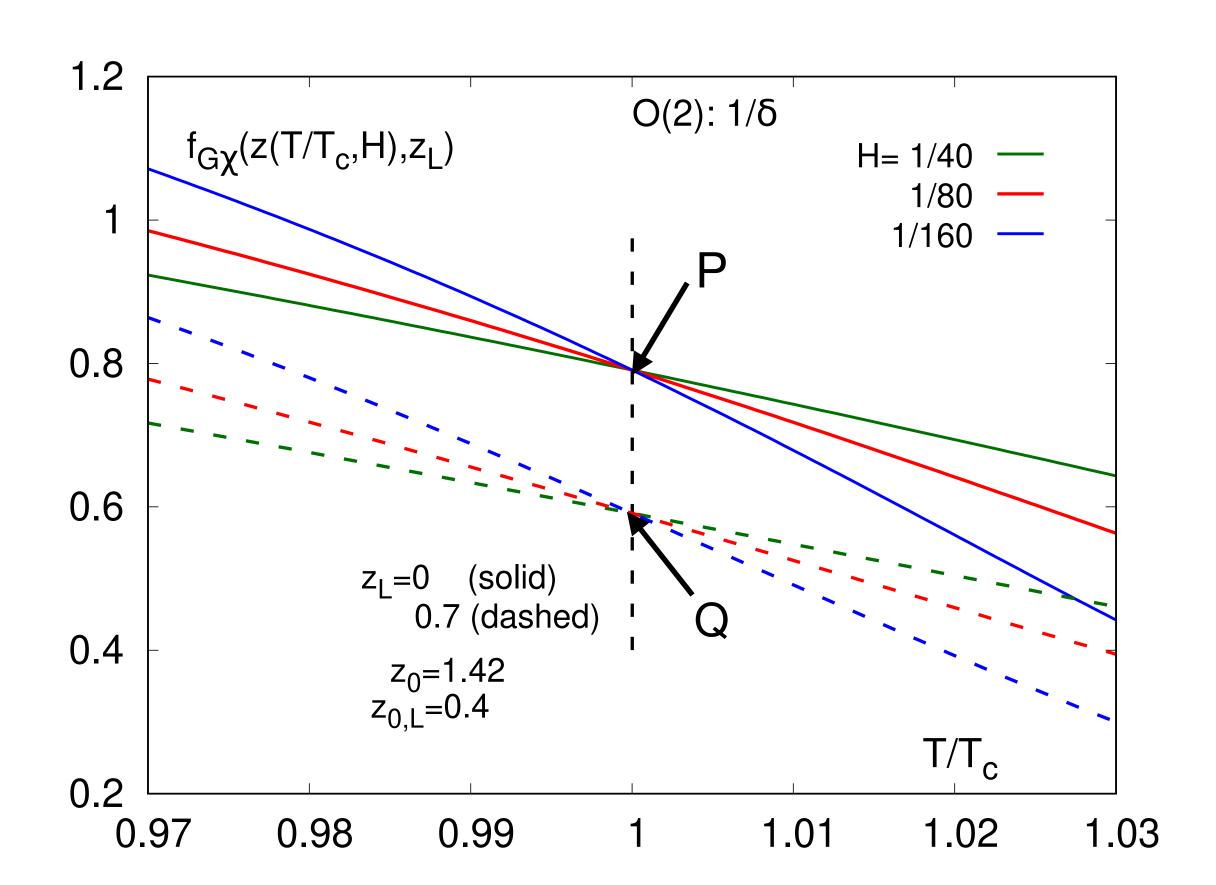
Improved order parameter and scaling function



"Improved" scaling function

$$f_{G\chi} = f_G - f_{\chi}$$

- This has no additive divergences.
- Therefore, it is well-defined in the continuum and chiral limits.
- This also has **reduced regular** (reg) contribution in H , $\mathscr{O}\left(H^3\right)<\mathscr{O}\left(H\right)$
- Augmenting singular behaviour \to making scaling analysis more convenient (relatively straightforward extraction of T_c and exponent δ)

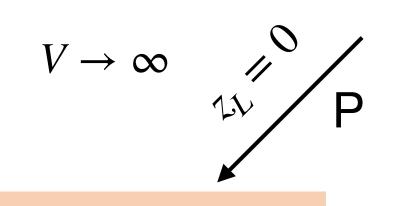


$$f_{G\chi}(z=0, z_L=0) = (1-1/\delta)$$

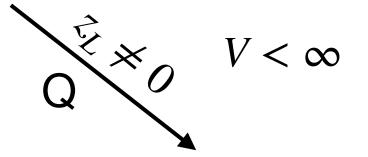
Here, we used δ of O(2)

$$f_{G\chi} = \left(1 - \frac{1}{\delta}\right) f_G + \frac{z}{\beta \delta} f_G^{(z)} + \frac{z_L \nu}{\beta \delta} f_G^{(z_L)}$$

A unique intersection point for all H lines at $T=T_{c}$



Obtain δ estimate directly



Not exact δ , finite-volume $\equiv \mathcal{O}(z_L)$ corrections

Encountered in

Lattice calculations

So ...

- On lattice, it is not possible to extract δ directly \leftarrow finite-volume corrections
- Hence, a careful finite-volume analysis is very much required.
- To enable $\underline{\text{reliable infinite }V-\text{ extrapolation}}$, and thus, determine T_c and δ
- Following a parameter-free approach directly from LQCD calculations (no prior assumption of the universality class required before conducting LQCD estimates)

A quick snippet into this parameter-free method

Mitra et. al., PoS Lattice2024 (2025) 187

Parameter-free method

LATTICE 2024 talk

In $V \to \infty$, construct



$$B(T, H_1, H_2) = \frac{\ln\left[\frac{M(T, H_1)}{M(T, H_2)}\right]}{\ln\left[\frac{H_1}{H_2}\right]} = \frac{1}{\delta} + \ln\left[\frac{f_{G\chi}(z_1(T, H_1))}{f_{G\chi}(z_2(T, H_2))}\right]$$

Fully from lattice

$$\circ B(T_c, H_1, H_2) = 1/\delta \text{ with } H_2 = cH, H_1 = H.$$

 $^{\circ}$ We see the unique intersection point $\mathbf{P}\left(T_c, \frac{1}{\delta}\right)$ in B vs T plane

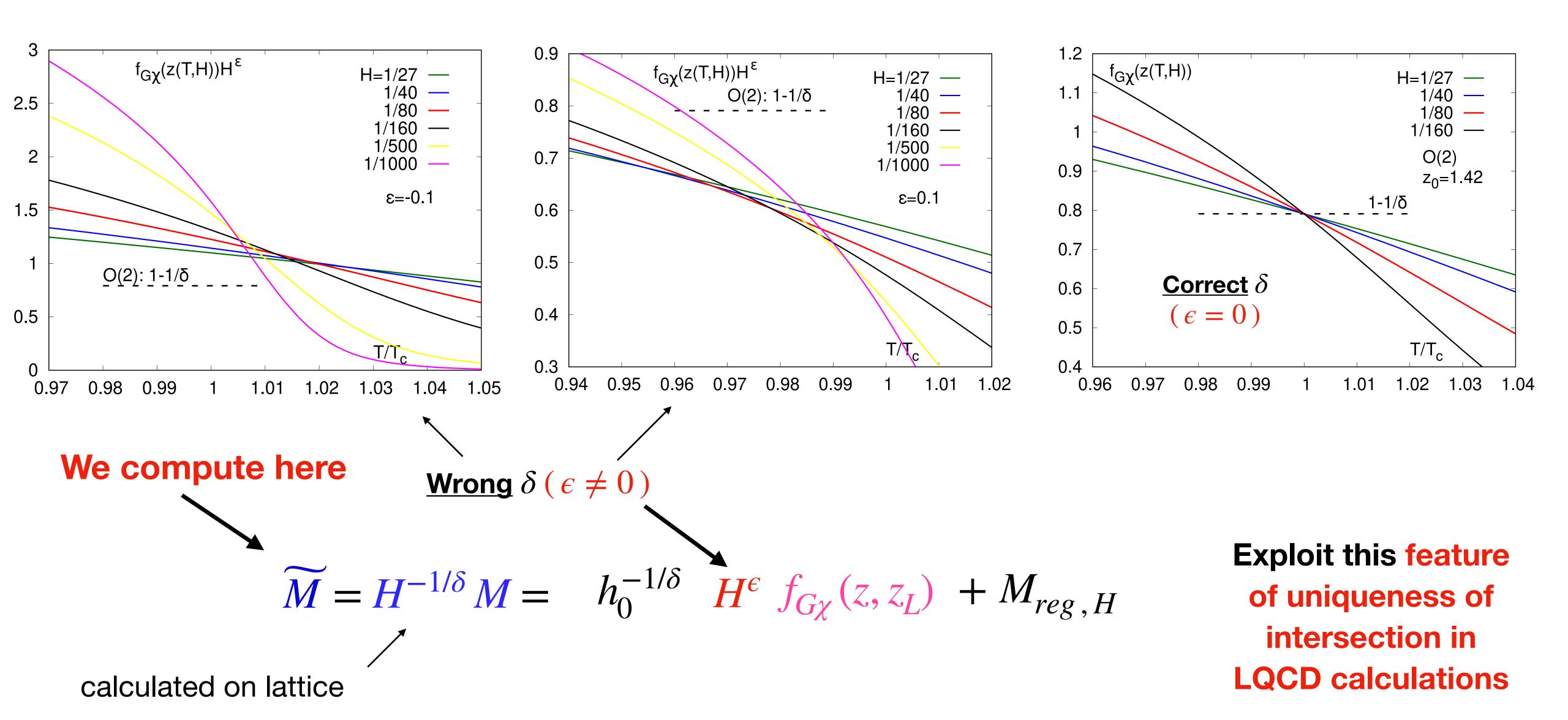
A way to extract T_c and δ from direct LQCD calculations

Feature of uniqueness important

In chiral limit $(H \rightarrow 0)$

As we will see now ...

Uniqueness as indicator



We use δ of O(2) in our LQCD estimates (educated ansatz)

But before that, ...

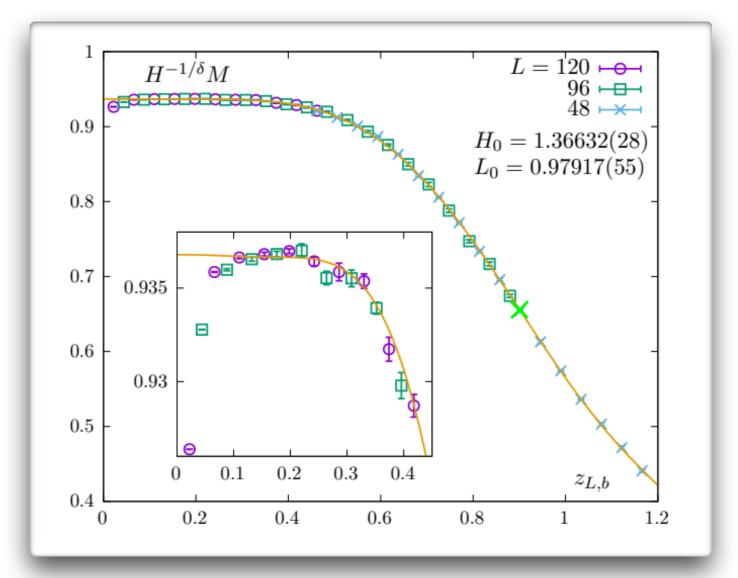
Volume dependence in scaling function

Taylor expansion of $f_{G\gamma}$ around $z_L=0$ Karsch et. al. , PRD 108, 014505

$$f_{G\chi}(z, z_L) = f_{G\chi}(z, 0) + \sum_{n=0}^{n_u} \sum_{m=3}^{m_u} \left(1 - \frac{1}{\delta} + \frac{n + m\nu}{\beta \delta} \right) a_{nm} z^n z_L^m$$

$$z_{L,b} = L^{-1} H^{-\nu/\beta\delta}$$

Infinite volume scaling function



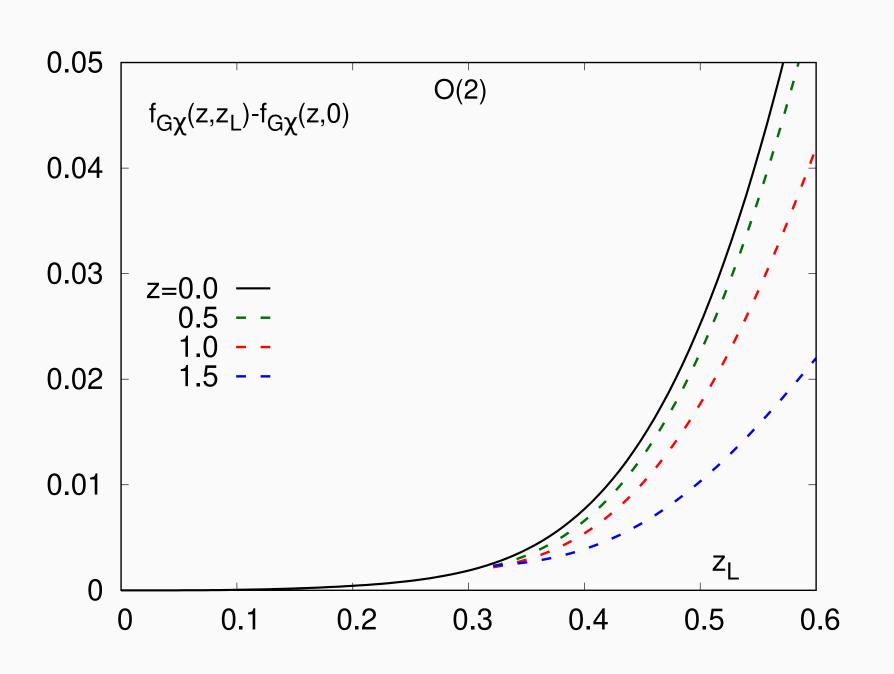
Karsch et. al., PRD 108, 014505

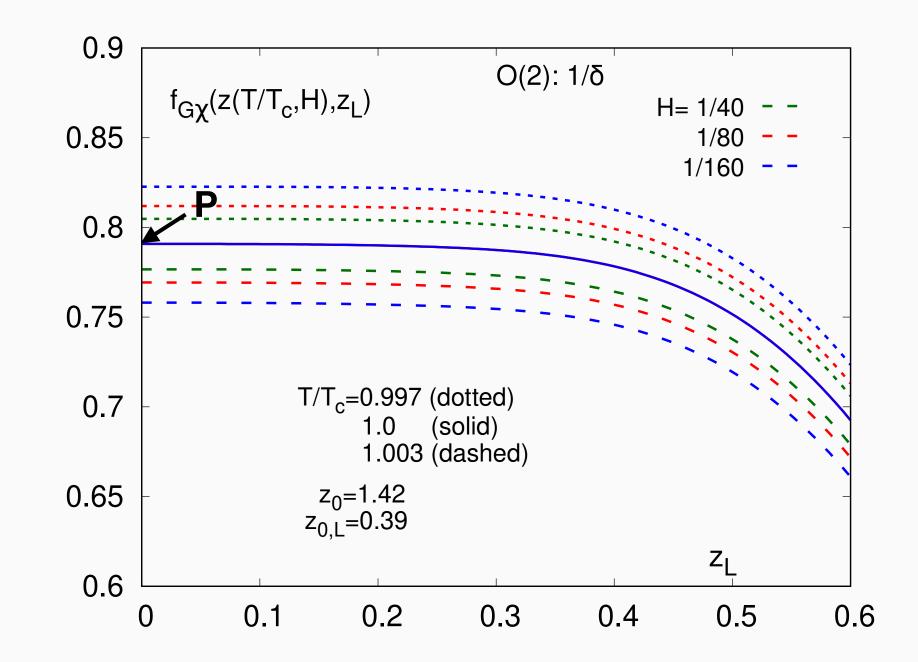
- $m_l = 3$, as Leading order correction $\sim \mathcal{O}(1/V)$
- $n_u = 5$, $m_u = 8 \leftarrow$ best fit to Monte-Carlo data on different lattices
- $\beta \sim 0.35$, $\delta \sim 4.78$, $\nu = \beta (\delta + 1)/3 \in 3$ -d O(2) universality class

$$\circ f_{G\chi}(0,0) = (1 - 1/\delta)$$
, at $T = T_c$, $V^{-1} = 0$

Some FVE observations ...

Finite-volume improved scaling function





- FVE's are more severe (sharp rise) as one goes towards $T_c\,$ i.e. lower z (greater sensitivity)
- Well-controlled finite-volume effects (FVE's) for $z_L \le 0.4$, for $T \to T_c$ Karsch et. al., PRD 108, 014505
- One unique line for $T=T_c\,(\,z=0\,)$, whereas no such uniqueness for $T\neq T_c$.

Note: No LQCD here, these are model-driven results,

- This translates to unique intersection point in T plane for $T=T_c$.
- H- dependence for $T \neq T_c$: ordering reversal for z < 0 ($T < T_c$) $\iff z > 0$ ($T > T_c$)

Going towards the lattice: Plan forward

- Use δ of O(2) in the pre-factor $H^{-1/\delta}$
- Use the finite-volume dependent form of the scaling function $f_{G\chi}$ (shown before)
- Thus, compare the lattice data with these benchmarks, and
- Try to improve the finite-volume analysis and its systematics.

Lattice setup ...

Lattice setup

- We use highly improved staggered quarks / fermions (HISQ).
- Staggered fermions retain only O(2) part of the full chiral symmetry

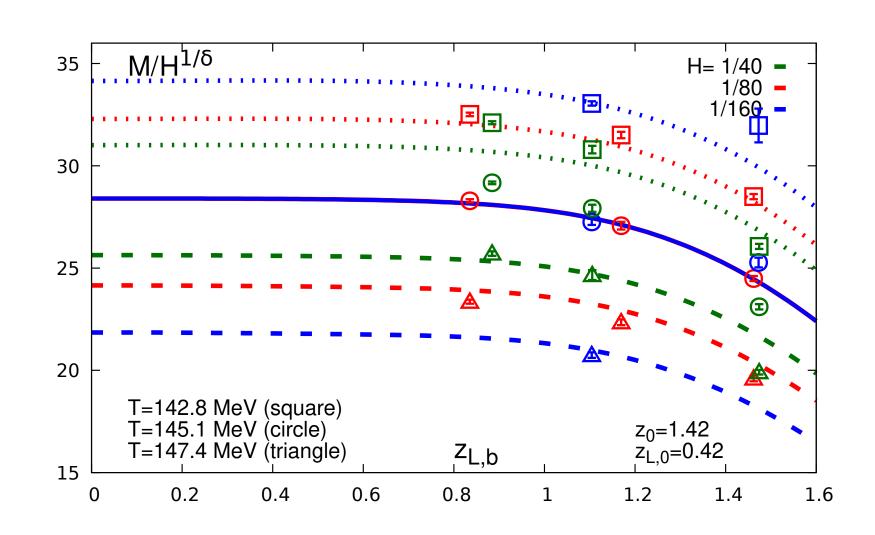
- All our simulations are done presently on $N_{\tau}=8$ lattices.
- We use $\underline{\delta}$ of 3-d O(2) universality class , for finite $V \sim L^3$ calculations here
- We use $T_c = 145.1$ MeV

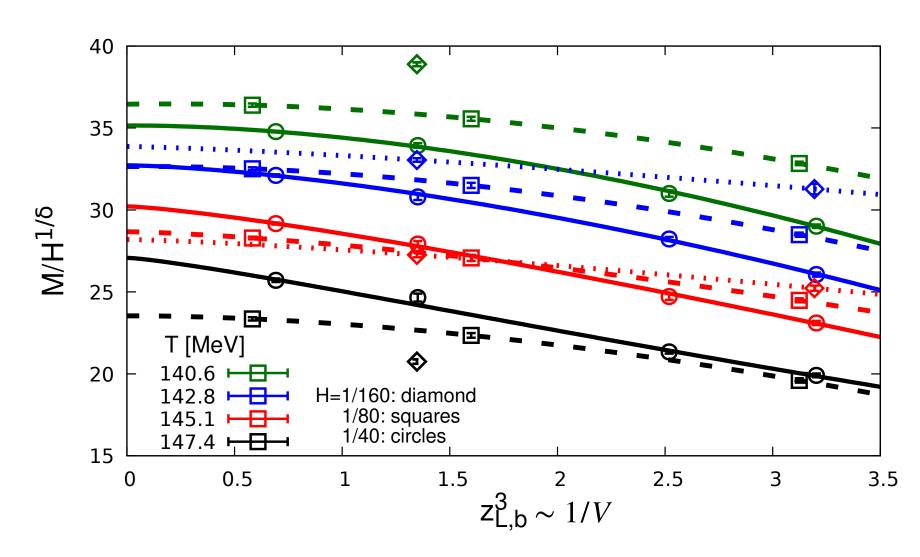
The parameters T, H, L are tuned as follows:

- $^{\circ}$ We vary T close to T_c , following $T \in (0.99 \, T_c \, , \, 1.01 \, T_c)$
- ° With physical $m_{\scriptscriptstyle S}$, $m_{\scriptscriptstyle \mathcal{C}}$ is varied with $1/240 \leq H \leq 1/27$
- ° Different spatial volumes on $N_{\tau}=8$: $L=N_{\sigma}/N_{\tau}\in(3,10)$

$$0.4 < z_L < 1$$

Lattice Results





Better agreement between Lattice data $\iff O(2)$ benchmarks:

- For lower $z_{L,b} \iff$ closer to infinite V limit $\left(z_{L,b} = 0\right)$
- For lower H values \iff approaching chiral limit $(H \to 0)$

Bare scaling variable

$$z_{L,b} = z_L/z_{L,0} = \frac{N_{\tau}}{N_{\sigma}} H^{-\nu/\beta\delta}$$

Ongoing $\longrightarrow H = 1/160$, on $78^3 \cdot 8$ lattices for T = 142.8, 145.1, 147.4 MeV

A third blue point for three T

$$z_{L,b} \sim 0.8 , z_{L,b}^3 \sim 0.5$$

Closer

Conclusions

- We work with an improved order parameter M having well-defined continuum and chiral limits, reduced regular contributions and no additive divergences.
- Uniqueness is an important signature to identify correct δ (essence of a unique point)
- We find good agreement between the expected O(2) singular behaviour and the Lattice QCD results. (An increasingly convincing indication about the O(2) nature of cPT universality class).
- This agreement improves as expected for smaller H (chiral limit), and smaller $z_{L,b}$ (infinite-V limit)
- More well-controlled finite-volume effects for $z_{L,b} < 1 \Rightarrow$ need for higher N_{σ} , for smaller H (demanding more computational expansivity)

Still a lot going on, and a lot to do

Outlook

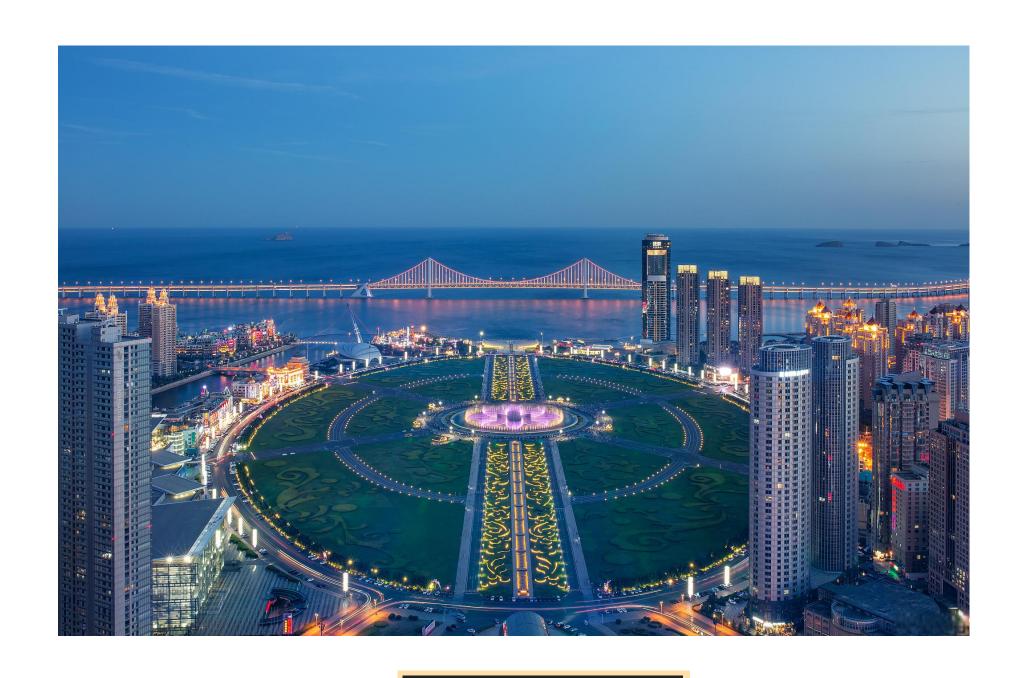
- Come up with the results of the new H=1/240 data point
- Quantify regular contributions and analyse their volume dependence.
- Continue with our finite-volume work \Rightarrow infinite V extrapolation \Rightarrow parameter-independent way of extraction of δ from direct LQCD calculations Mitra et. al., PoS Lattice2024 (2025) 187
- Add more (T, m_ℓ) data points to attain higher precision, with the goal to distinguish between δ of O(2) and that of O(4) (in continuum).
- Approach continuum limit and re-estimate volume corrected, continuum estimate of T_c (how different is it ??) . Ding et. al. , PRL123 (2019) 6, 062002

THANK YOU

for your

PATIENCE and

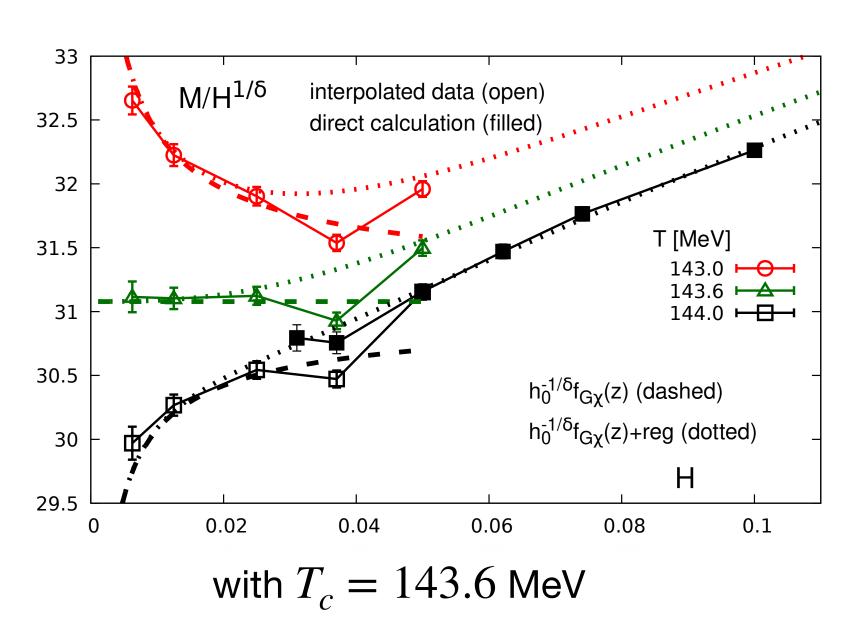
ATTENTION



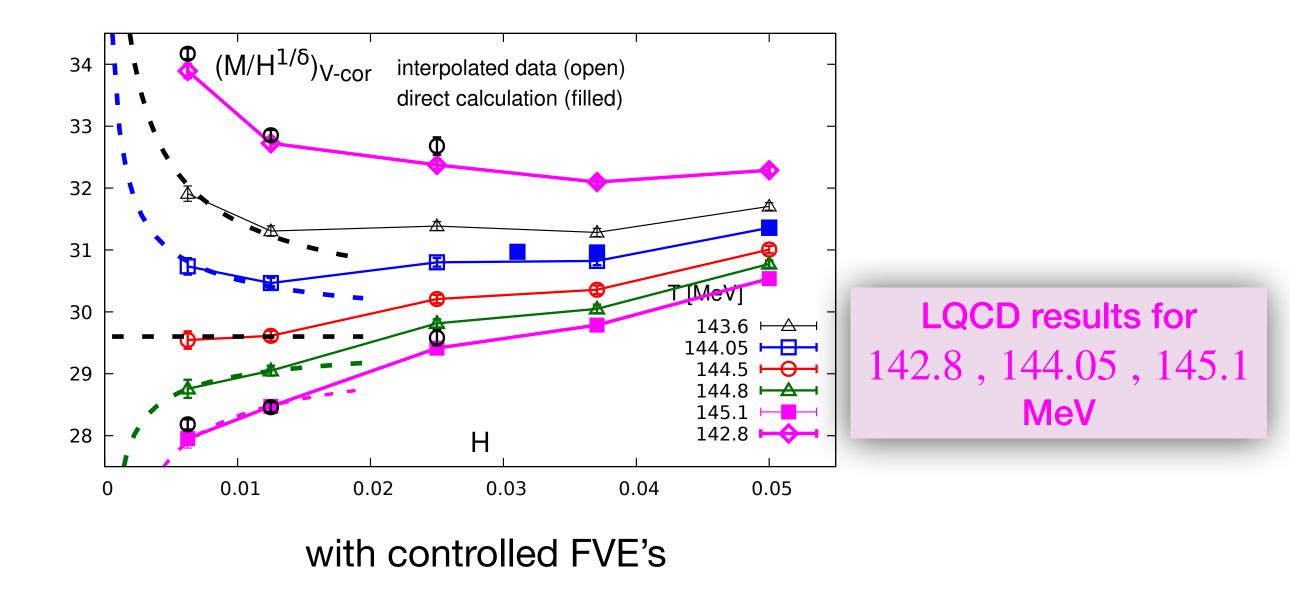
Credit: Organisers

Backup slides

Lattice QCD results



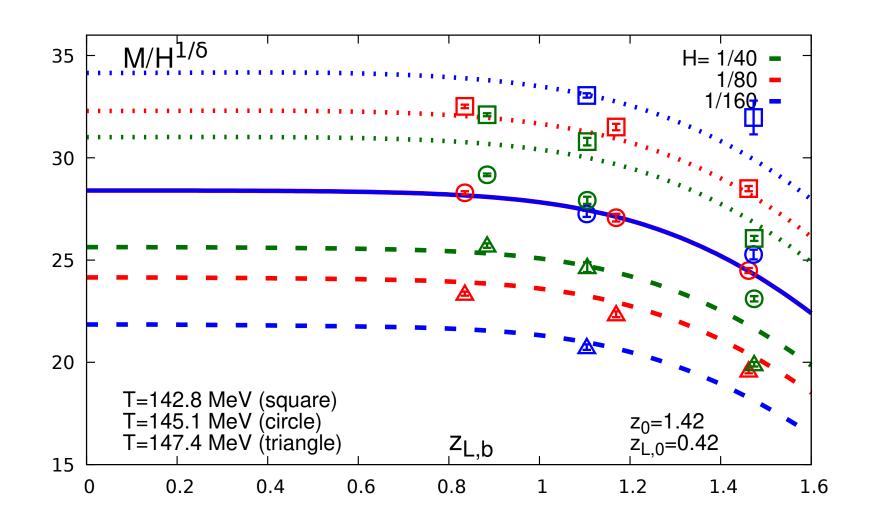
- Good agreement with universal (singular) behaviour apparent for sufficiently low H < 1/40 = 0.025 (expected in chiral limit)
- Also, visible deviations from this for "heavier" $m_{\mathcal{C}} \equiv \text{higher } H$
- Regular contributions still to be quantified

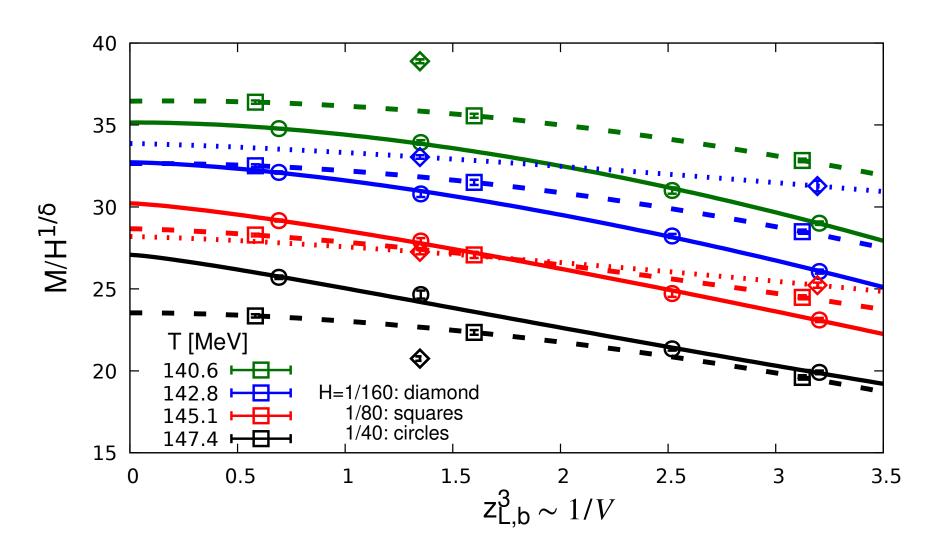


- Similar story of agreement and deviations, offering universal manifestations in small H.
- More control on FVE's on lowest $H=1/160\,\mathrm{data}$ point , with two lattice data values computed

Causing new estimate of $T_c = 144.5 > 143.6 \,\mathrm{MeV}$

More Work on higher N_{σ} in Progress ...





$$f(x) = a + b x^{4/3} + c x^{5/3} + \mathcal{O}\left(z_{L,b}^6\right)$$

$$x = z_{L,b}^3$$