

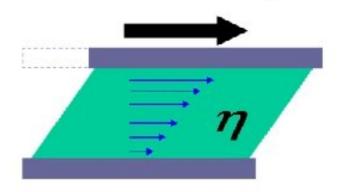
Transport properties and phase diagram of nuclear matter

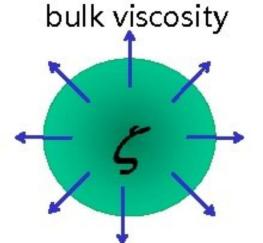
Jun Xu (徐骏)

Collaborators: Lei-Ming Hua

Transport properties of asymmetric nuclear matter in the spinodal region L.M. Hua and J. Xu*, Phys. Rev. C 109, 034614 (2024)
Shear viscosity of nuclear matter in the spinodal region L.M. Hua and J. Xu*, Phys. Rev. C 107, 034601 (2023)

Shear and bulk viscosity

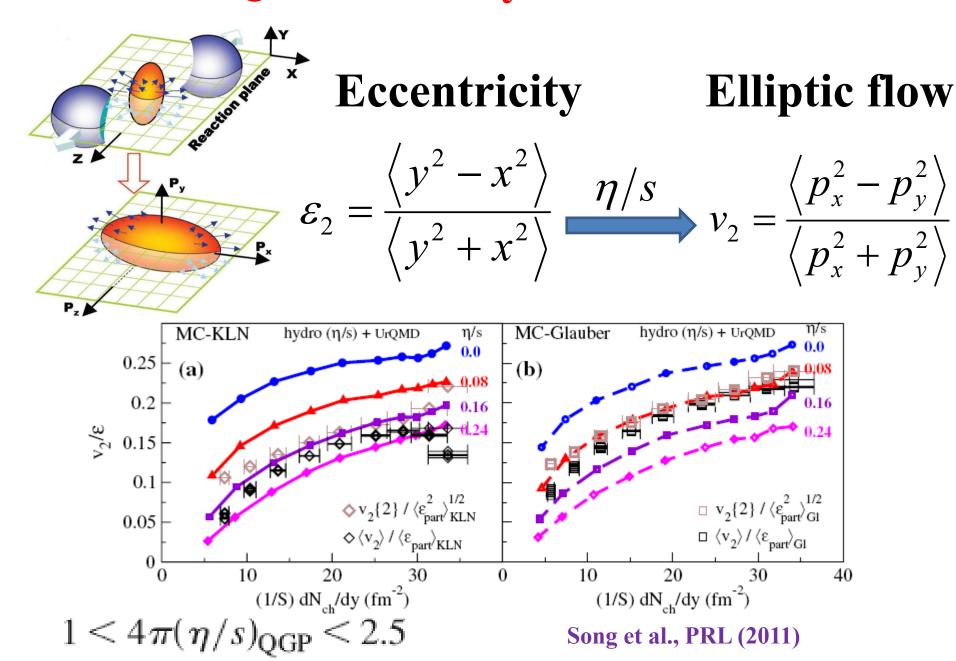




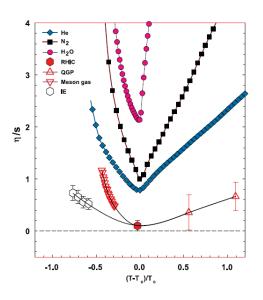
$$\tau = \frac{F}{A} = \eta \, \frac{\partial u}{\partial y}$$

$$P - P_0 = \zeta \nabla \cdot \vec{u}$$

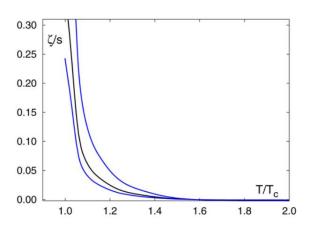
sQGP: a nearly ideal fluid



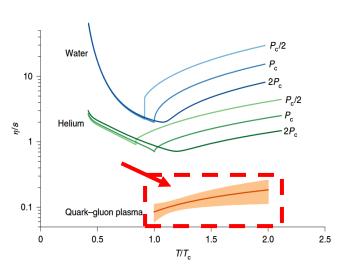
Viscosity and phase transition



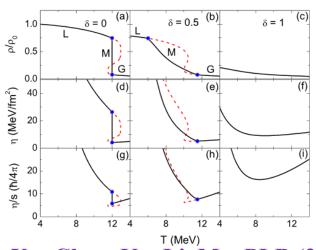
Lacey et al., PRL (2007)



Karsch, Kharzeev, Tuchin, PLB (2008)



Bernhard, Moreland, Bass, Nature Physics (2019)



Xu, Chen, Ko, Li, Ma, PLB (2013)

Viscosity calculation methods

- Classical method $\eta \sim 1/\sigma$
- Relaxation time approximation
- Champman-Enskog
- Green-Kubo (GK) method

Plumari, Puglisi, F. Scardina, V. Greco, PRC (2012)

$$\eta = \frac{1}{T} \int d^3r \int_{t_0}^{\infty} dt \langle \pi^{xy}(\vec{0}, t_0) \pi^{xy}(\vec{r}, t) \rangle_{\text{equil}} \qquad \pi^{xy} = \frac{1}{V_c} \sum_{i} \frac{p_i^x p_i^y}{E_i}$$

$$\zeta = \frac{1}{T} \int d^3r \int_{t_0}^{\infty} dt \langle \Delta \pi(\vec{0}, t_0) \Delta \pi(\vec{r}, t) \rangle_{\text{equil}} \qquad \Delta \pi = \pi - \pi_{\text{eq}}$$

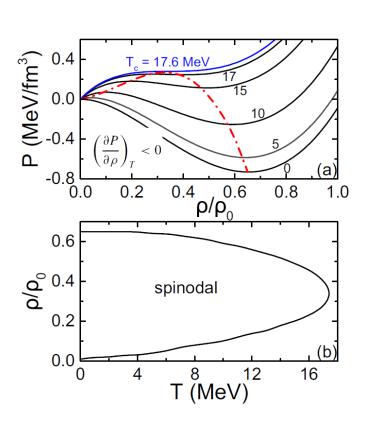
$$\pi = \frac{1}{3} (\pi^{xx} + \pi^{yy} + \pi^{zz})$$

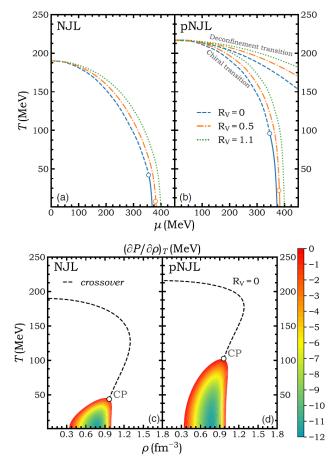
Symmetric nuclear matter (SNM) phase diagram

$$U(\rho) = \alpha \left(\frac{\rho}{\rho_0}\right) + \beta \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$

$$P = Ts - \epsilon + \mu \rho$$

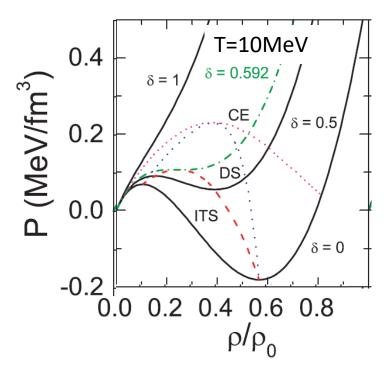
compared with Nambu-Jona-Lasinio model





Asymmetric nuclear matter (ANM) phase diagram

$$U_{n,p}(\rho,\delta) = \alpha \left(\frac{\rho}{\rho_0}\right) + \beta \left(\frac{\rho}{\rho_0}\right)^{\gamma} \pm 2E_{\text{sym}}^{\text{pot}} \left(\frac{\rho}{\rho_0}\right)^{\gamma_{\text{sym}}} \delta \qquad \delta = (\rho_n - \rho_p)/\rho$$

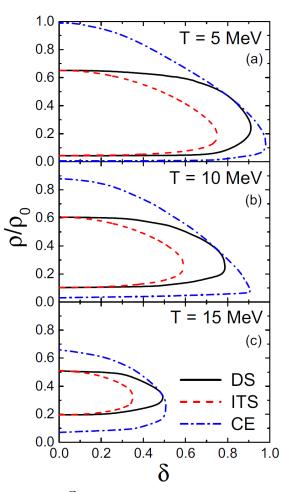


isothermal spinodal (ITS): $(\partial P/\partial \rho)_{T,\delta} < 0$ $(\partial \mu_n/\partial \delta)_{P,T} < 0$

diffusive spinodal (DS):

or $(\partial \mu_p/\partial \delta)_{P,T} > 0$

phase coexistence (CE): $(\mu_n, \mu_p, P, T)^L = (\mu_n, \mu_p, P, T)^G$



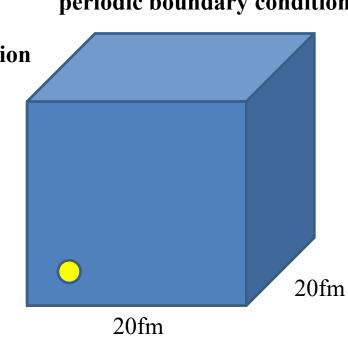
Box calculation of IBUU

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{m} \cdot \nabla_r - \nabla_r U \cdot \nabla_p\right) f(\vec{r}, \vec{p}; t) = \frac{1}{(2\pi\hbar)^6} \int d^3 p_2 d^3 p_3 d\Omega v_{rel} \frac{d\sigma_{12}}{d\Omega} (2\pi\hbar)^3 \delta(\vec{p} + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \times [f_3 f_4 (1 - f)(1 - f_2) - f f_2 (1 - f_3)(1 - f_4)].$$

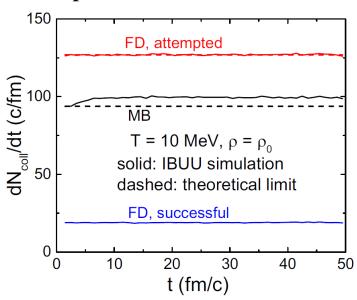
box system with periodic boundary condition equations of motion

 $\frac{dt}{d\vec{p}} = -\nabla U$

 $d\vec{r}_i = \vec{p}_i$



isotropic and constant $\sigma = 40 \ mb$



theoretical limit

$$\frac{dN_{coll}}{dt} = \frac{1}{2}V\rho^2\sigma \int d^3p_1d^3p_2v_{mol}\tilde{f}(p_1)\tilde{f}(p_2)$$

Nucleon-nucleon collisions

• Bertsch's approach (Phys. Rep. 160, 189 (1988))

- Go into the C.M. frame of the two nucleons $\delta t = \alpha \Delta t$

$$\delta t = \alpha \Delta t$$

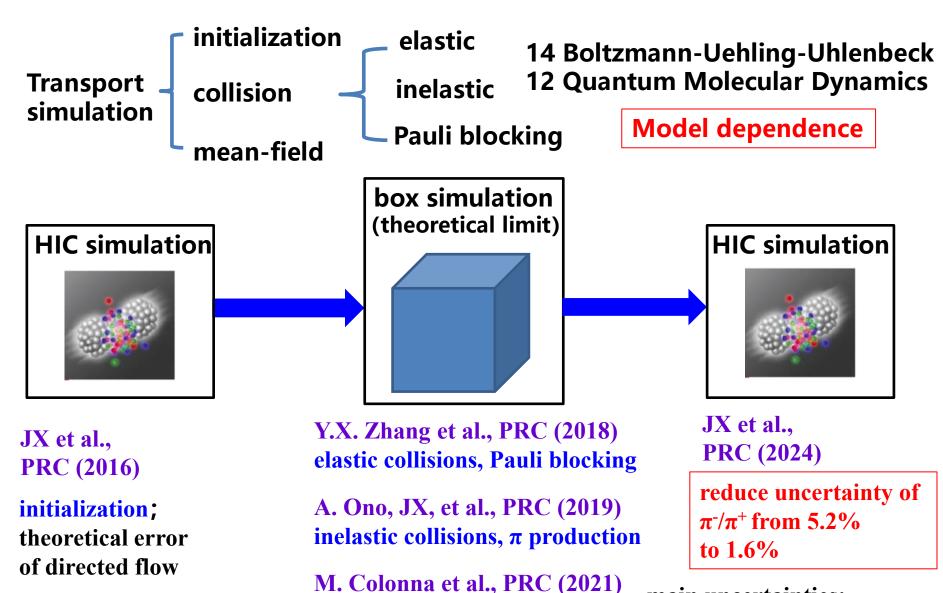
 $\alpha \approx 1/\gamma$

- Collision can happen if
$$b = \sqrt{(\Delta r)^2 - (\Delta r \cdot p/p)^2} < \sqrt{\sigma/\pi} \quad \text{and} \quad \left| \frac{\Delta r \cdot p}{p} \right| < \left(\frac{p}{\sqrt{p^2 + m_1^2}} + \frac{p}{\sqrt{p^2 + m_2^2}} \right) \delta t / 2$$

- If collision happen, change the direction of P_{cm} in the C.M. frame
- Boost the momenta of the two nucleons to lab frame
- Check phase space density; if Pauli blocked, return to the initial momenta
- Pauli blocking probability $1-(1-n_i)(1-n_i)$

Occupation probability
$$n_i = \frac{(2\pi\hbar)^3}{g_N V_r V_p} \int_{i \in V_r, V_p} f(\vec{r}, \vec{p}) d^3r d^3p$$

Transport Model Evaluation Project (TMEP)

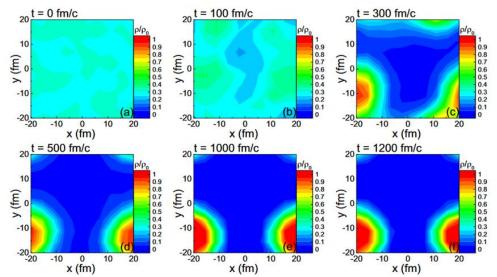


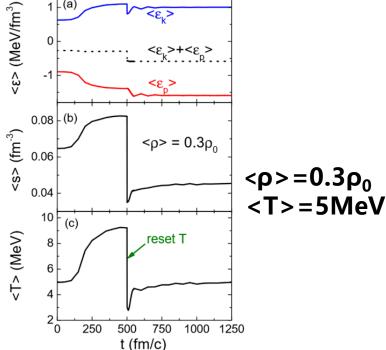
mean-field evolution

main uncertainties: mean-field, Pauli blocking

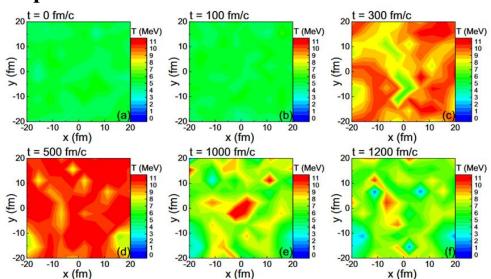
Preparation of dynamically equilibrated

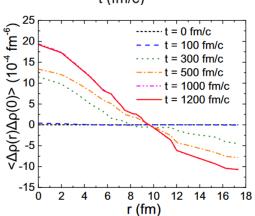
density evolution





temperature evolution





Validity of GK method in non-uniform system

$$\eta = \frac{1}{T} \int d^3r \int_{t_0}^{\infty} dt \langle \pi^{xy}(\vec{0}, t_0) \pi^{xy}(\vec{r}, t) \rangle_{\text{equil}} \quad \Longrightarrow \quad \eta = \frac{V}{T} \int_{t_0}^{\infty} dt \langle \Pi^{xy}(t_0) \Pi^{xy}(t) \rangle_{\text{equil}}$$

$$\pi^{xy}(\vec{0}, t_0) = \frac{1}{N_c} \sum_{c_1} \left(\sum_{i_{c_1}} \frac{p_{i_{c_1}}^x p_{i_{c_1}}^y}{E_{i_{c_1}}} \right)_{t_0} = \frac{1}{V} \left(\sum_{i} \frac{p_{i}^x p_{i}^y}{E_{i}} \right)_{t_0} \frac{1}{V} \left(\sum_{j} \frac{p_{j}^x p_{j}^y}{E_{j}} \right)_{t}$$

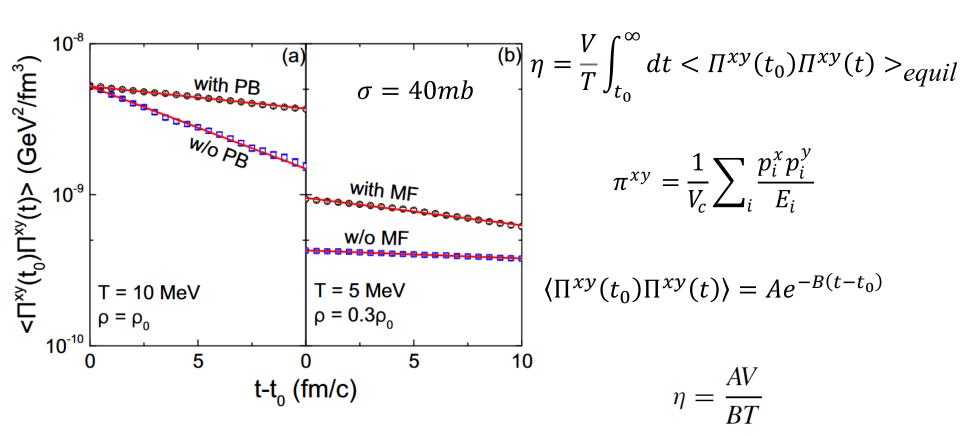
choosing different cell of r = 0 is identical to choosing different starting time t_0 or parallel events once the system has reached dynamic equilibrium

$$= \frac{1}{V} \left(\sum_{i} \frac{p_{i}^{x} p_{i}^{y}}{E_{i}} \right)_{t_{0}} \frac{1}{V} \left(\sum_{j} \frac{p_{j}^{x} p_{j}^{y}}{E_{j}} \right)_{t}$$

$$= \frac{1}{(N_{c} V_{c})^{2}} \left(\sum_{c_{1}} \sum_{i_{c_{1}}} \frac{p_{i_{c_{1}}}^{x} p_{i_{c_{1}}}^{y}}{E_{i_{c_{1}}}} \right)_{t_{0}} \left(\sum_{c_{2}} \sum_{j_{c_{2}}} \frac{p_{j_{c_{2}}}^{x} p_{j_{c_{2}}}^{y}}{E_{j_{c_{2}}}} \right)_{t}$$

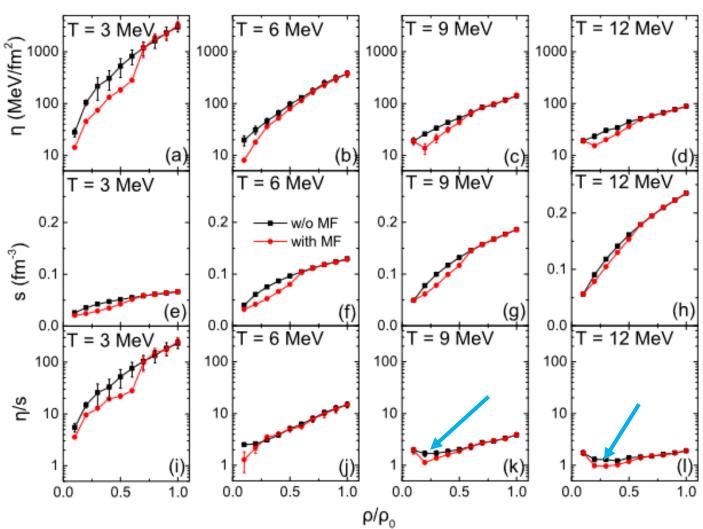
$$= \frac{1}{(N_{c} V_{c})^{2}} \sum_{c_{1}} \sum_{c_{2}} \sum_{c_{2}} \left(\sum_{i_{c_{1}}} \frac{p_{i_{c_{1}}}^{x} p_{i_{c_{1}}}^{y}}{E_{i_{c_{1}}}} \right) \left(\sum_{j_{c_{2}}} \frac{p_{j_{c_{2}}}^{x} p_{j_{c_{2}}}^{y}}{E_{j_{c_{2}}}} \right)$$

Shear viscosity from GK method



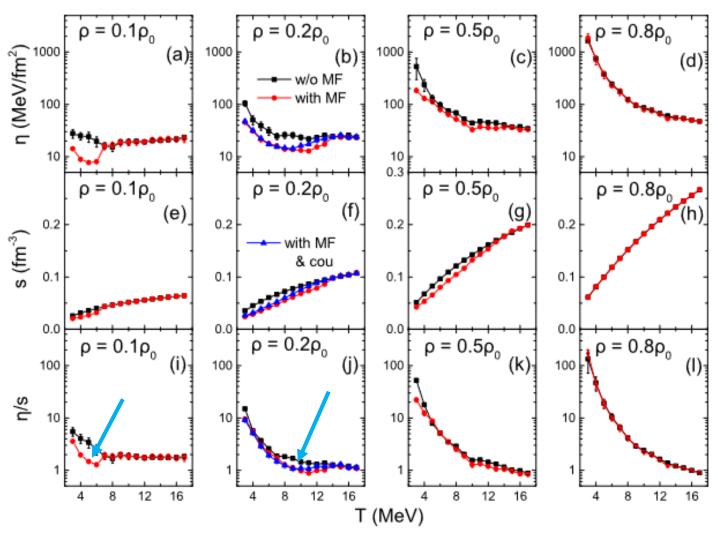
with MF (nonuniform): stronger initial correlations, more collisions

Results of shear viscosity I



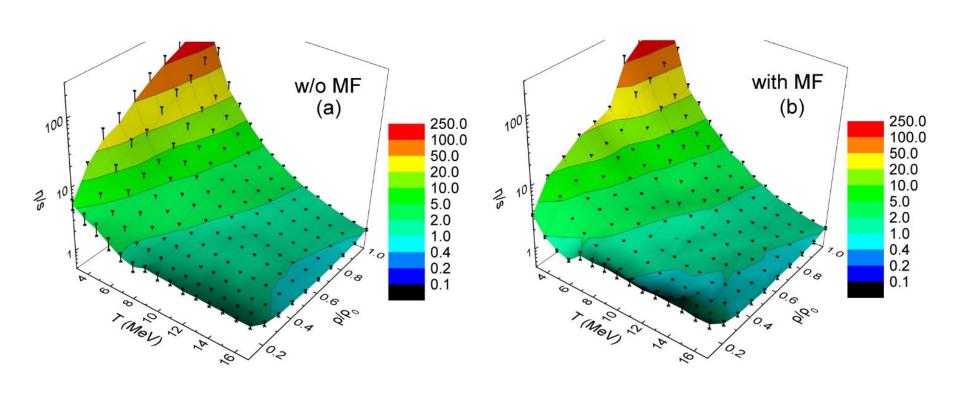
For a constant σ , clustering reduces η due to more collisions

Results of shear viscosity II

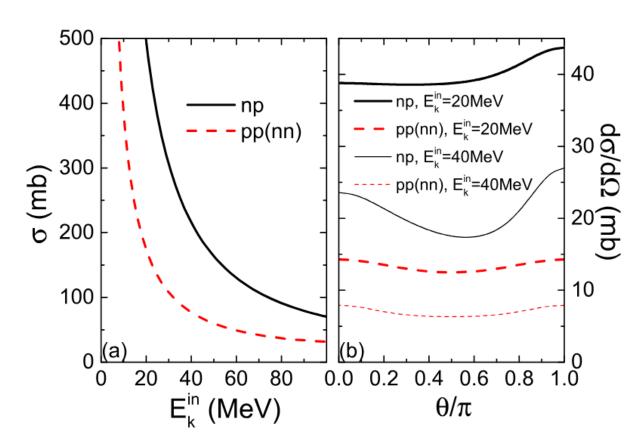


For a constant σ , clustering leads to a minimum η/s in dilute NM

Results of shear viscosity III



Energy- and angular-dependent σ

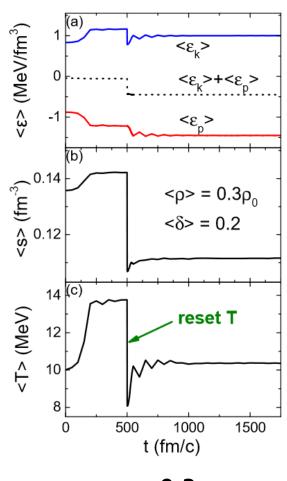


from proton-proton and proton-neutron phase-shift data

Arndt, Hackman, Roper, PRC (1977)

Preparation of dynamically equilibrated

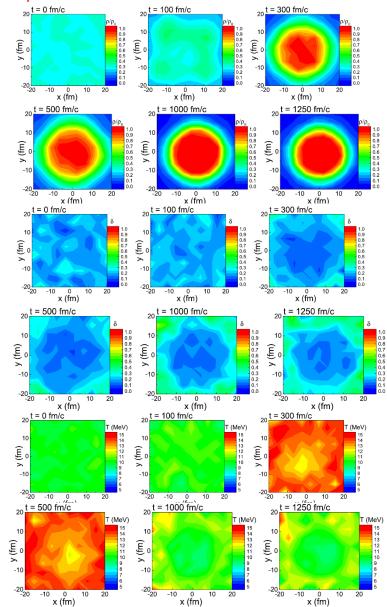
ANM system



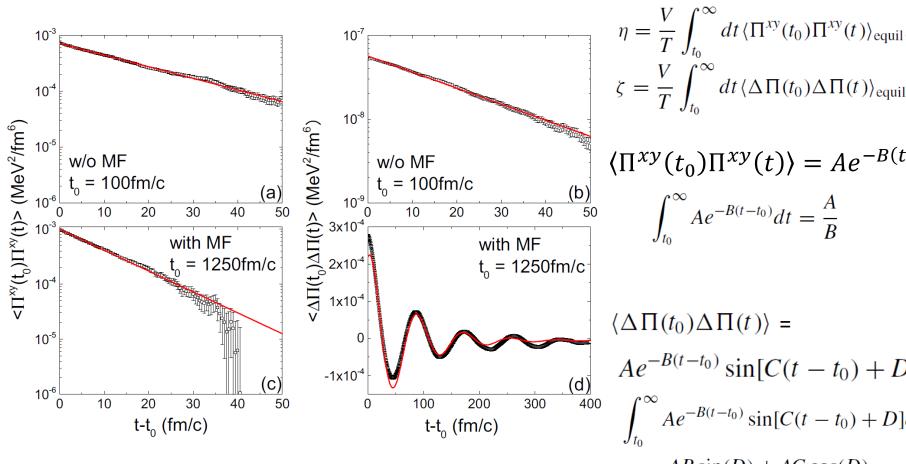
density evolution

δ evolution

 $<\rho> = 0.3\rho_0$ temperature $<\delta> = 0.2$ evolution <T> = 10MeV



Shear and bulk viscosity from GK method



$$\eta = \frac{V}{T} \int_{t_0}^{\infty} dt \langle \Pi^{xy}(t_0) \Pi^{xy}(t) \rangle_{\text{equil}}$$

$$\zeta = \frac{V}{T} \int_{t_0}^{\infty} dt \langle \Delta \Pi(t_0) \Delta \Pi(t) \rangle_{\text{equil}}$$

$$\langle \Pi^{xy}(t_0) \Pi^{xy}(t) \rangle = Ae^{-B(t-t_0)}$$

$$\int_{t_0}^{\infty} Ae^{-B(t-t_0)} dt = \frac{A}{B}$$

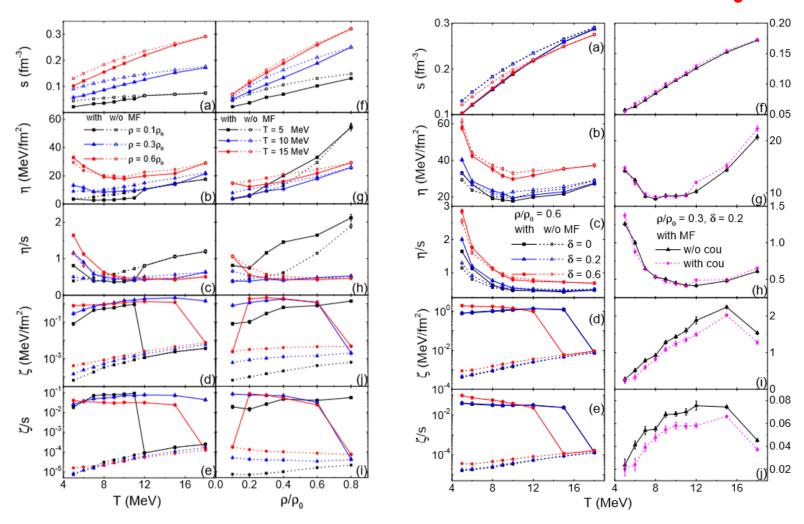
$$\langle \Delta \Pi(t_0) \Delta \Pi(t) \rangle =$$

$$Ae^{-B(t-t_0)} \sin[C(t-t_0) + D]$$

$$\int_{t_0}^{\infty} Ae^{-B(t-t_0)} \sin[C(t-t_0) + D] dt$$

$$AB \sin(D) + AC \cos(D)$$

Results of shear and bulk viscosity



For a more realistic σ , clustering reduces or enhances η due to competitions between initial correlations and collisions, and the minimum of η/s is shifted; Bulk viscosity is more sensitive to the phase diagram but less sensitive to σ .

Conclusions

- Clustering enhances $\langle \pi^{xy}\pi^{xy} \rangle$ correlations and collisions, and reduces η and η /s for a constant σ
- Minimum of η /s (T) appears at low densities
- Minimum of η /s (T) depends on σ (E)
- Clustering significantly enhances $<\pi\pi>$ correlations and thus ζ and ζ /s
- ζ /s (T) is more sensitive to clustering than to σ (E)

Outlook

- In-medium NN cross section
- Other hadronic system
 - hadron resonance gas
 - hot neutron-star matter
- Partonic system
 - NJL transport in spinodal

Thank you!

junxu@tongji.edu.cn