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The QCD Phase Diagram: From Theory to Experimental Signatures

OUTLINE AND MOTIVATIONS

� To provide a field-theoretical justification for stochastic hydrody-
namics

� To determine the magnitude of the multiplicative noise and study its
effect.

� To reveal some unusual behavior (critical phenomena) through the
framework
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FLUID DYNAMICS FOR RELATIVISTIC QCD MATTER

Fluid dynamics is a universal effective field theory (EFT) of non-
equilibrium many-body systems with a stable equation of state and

○ Conservation of charge: ∂µJµ = 0
○ Conservation of energy and momentum: ∂µTµν = 0

Jµ = n uµ + vµ

Tµν = ε uµuν + p∆µν + πµν

∆µν = gµν + uµuν vµ = −κT∆µν∂ν
(µ
T

)
πij = −η

(
∂iuj + ∂jui − 23δij∇ · u

)
− ζδij∇ · u

The dissipation terms are described by the shear viscosity η, bulk
viscosity ζ and charge conductivity κ
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DYNAMICAL MODEL IN RHIC BEAM ENERGY SCAN

Additional factors must be considered, such as:

○ Finite size and finite expansion rate effects

○ Freeze-out, resonances, global charge conservation, and others

○ Non-dissipation effects

Ø The role of fluctuations is enhanced in nearly perfect fluids, i.e.,
long time tails

Ø Fluctuations are dominant near critical points
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FLUCTUATIONS IN HYDRO

○ The deterministic hydro equations do not lead to spontaneous fluc-
tuations

○ The occurrence of fluctuations is a consequence of the microscopic
dynamics and must persist at the coarse-grained hydro-level

Introducing non-linear dissipation with density dependent transport co-
efficients and random noises:

Jµ → Jµ + θµ

Tµν → Tµν + θµν

⟨θµ⟩ = 0 〈(θµ)2〉 ∼ LJ(x)δ(x − x′)(t − t ′)
⟨θµν⟩ = 0 〈(θµν)2〉 ∼ LT(x)δ(x − x′)(t − t ′)
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REPRESENTATION IN MSRJD FIELD THEORY

In terms of the slow variable (a conserved density), the free energy
of the fluid:

F[ψ] = ∫
d3x {12(∇⃗ψ)2 + r2 ψ(x, t)2 + λ3! ψ(x, t)3 + ... + h(x, t)ψ(x, t)}

The diffusion equation:

∂tψ(x, t) = ∇⃗
{
κ(ψ) ∇⃗

(
δF[ψ]
δψ

)} + θ(x, t)
where the Gaussian noise term θ(x, t) has a distribution

P[θ] ∼ exp (
−14

∫
d3x dt θ(x, t)L(ψ)−1θ(x, t))
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REPRESENTATION IN MSRJD FIELD THEORY, CONT.

The conductivity, κ(ψ), is field-dependent: κ(ψ) = κ0 (1 + λDψ)
The partition function is given as: ® Martin, Siggia and Rose,

PhysRevA.8:423(1973)

Z = ∫
Dψ P[θ] exp (

−iψ̃ (e.o.m [ψ, θ ] ))
= ∫

DψDψ̃ exp (
−

∫
d3x dt L(ψ, ψ̃))

The effective Lagrangian of this theory is:

L(ψ, ψ̃) = ψ̃
(
∂t − D0∇2) ψ − D0λ′2 (

∇2ψ̃)
ψ2 − ψ̃L(ψ)ψ̃

Note: D0 = rκ0 and λ′ = λ/r + λD.

The noise kernel is still unknown.

October 11, 2025@DUT, Dalian 6/30



The QCD Phase Diagram: From Theory to Experimental Signatures

TIME REVERSAL SYMMETRY

Stochastic theories must describe the detailed balance condition:
P (ψ1 Ï ψ2)
P (ψ2 Ï ψ1) = e−∆F/kBT

Definie the time-reversal symmetry: ® Janssen, ZPhyB.23:377(1976)

ψ(t) Ï ψ(−t) ψ̃(t) Ï −
[
ψ̃(−t) + δF

δψ

]
L Ï L + d

dtF

if we choose the noise kernel: L(ψ) = ∇⃗
[
kBTκ(ψ)] ∇⃗

Such TSR implies the fluctuation-dissipation relation〈
ψ(x1, t1) [

∇⃗κ(ψ)∇⃗ψ̃
] (x2, t2)〉 = Θ(t2 − t1) 〈

ψ(x1, t1)ψ̇(x2, t2)〉
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SIMPLER EXAMPLE OF MODEL B

○ Linearized propagator:

  ̃   

○ Vertex and new vertices: 1
2�

0k2

k

�Dk · q

q

k

○ Loop contributions:

We find that multiplicative noise contributes to the long-time tails of the density cor-
relation functions at leading order. ® JC and Schefer, JHEP01(2021)071
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1PI EFFECTIVE ACTION

Consider the generating functional with local source J, J̃:

W [J, J̃ ] = − ln ∫
DψDψ̃ e−

∫
dt d3x{L+Jψ+J̃ ψ̃}

Performing a Legendre transform to the 1PI effective action via
background field method with ψ = Ψ + δψ:Γ[Ψ, Ψ̃] = W [J, J̃ ] −

∫
dt d3x (

JΨ + J̃Ψ̃)
Taking the derivative of the 1PI effective action w.r.t. the classical

field Ψ yields the e.o.m. encoded the long time tails in the evolution of
the density:

(∂t − D∇2)Ψ − κλ232 ∇2Ψ2 + ∫
d3x′ dt ′ Ψ(x′, t ′)Σ(x, t; x′, t ′) = 0
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DOUBLE LEGENDRE TRANSFORMATION

Z nPI effective action ÍÑ e.o.m. for n-point functions

✓ Couple a bi-local source 12ψaKabψb to the system ® Cornwall,

Jackiw and Tomboulis, PhysRevD.10:2428 (1974)

✓ Plug in the 1-loop 1PI effective action

✓ Sum beyond 1-loop terms

✓ Apply the stationary conditions:

δW
δJa

= ⟨ψa⟩ = Ψa ,
δW
δKab

= 12⟨ψaψb⟩ = 12 [ΨaΨb + Gab]
Γ[Ψa, Gab] = W [Ja, Kab] − JAΨA − 12KAB [ΨAΨB + GAB]
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2PI EFFECTIVE ACTION

The 2PI effective action is given by:

Γ[Ψa, Gab] = S[Ψa] + 12 δ2S
δΨAδΨB

GAB − 12 Tr [log(G)] + ΓF [Ψa, Gab]
The higher order fluctuations are:

exp(−ΓF [Ψa, Gab]) = 1√det(G)
∫

D(δψa) exp {
− 12δψA(G−1)ABδψB

−
[
S3[Ψa, δψa] − J̄AδψA − K̄AB(δψAδψB − GAB)] }

with

J̄a = 12 δ3S
δΨaδΨBδΨC

GBC + δΓF
δΨa

, K̄ab = δΓF
δGab
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DSE IN MIXED REPRESENTATION

The loop diagrams generated by ΓF use the full propagator Gab:

Taking the derivative w.r.t G, obtain the DS equation (ψ̃, ψ = 1, 2):


Σ11 Σ12

Σ21 Σ22

 =





In time-momentum mixed representation

Σ(t, k2) = (κλ3)2 ∫
d3k′ k2(k + k′)2C(t, k′)GR(t, k + k′) ,

δD(t, k2) = (κλ3)22
∫

d3k′ k4C(t, k′)C(t, k + k′)
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NUMERICAL SIMULATIONS IN HYDRO LIMIT

δ
G

R

1 2 3 4 5

0.005

0.010

0.015

0.020

0.025

0.030

t
δ

C

1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

0.06

t
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® JC and Schefer, JHEP06(2023)057
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LONG-TIME BEHAVIOR
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The long-time behavior of the diffusion cascade is conjectured to be ∼
n! exp(−Dk2t/n) because of the n-loop terms (shown but not reached).

® Delacretaz, SciPostPhys.9:034(2020)
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MODE COUPLING THEORY (MCT)

• For non-critical fluids, the gradient expansion method is used with
kξ ≪ 1

• For critical fluids, their behaviors are characterized by the trans-
port coefficients in the MCT ( = Poisson bracket terms + the critical
transport coefficients )

By applying a naive approximation within the MCT, the well known
retarded function G−1(ω, k) = iω − Γk of the diffusion mode is modified
to:

Γk = T6πη0ξ3K(kξ) with K(kξ = x) = 34 [1 + x2 + (x3 − x−1) arctan(x)]
η0 is the bare shear viscosity. ® Kawasaki, AnnPhys.61:1(1970)
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MODEL H

○ Linearized propagator:
π⊥π̃⊥ π⊥π⊥

○ Vertices and new vertices:
i
wkj

j

�im2

�q
kj

q

k
j

i
wkj

l

l

j

○ Mode-coupling loop contributions:

Z The contribution of multiplicative noise is sub-leading order com-
pared to that induced by mode couplings.
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SCALING FORMS OF THE TRANSPORT COEFFICIENTS

Four modified critical transport coefficients:

D → Dc(ω, k, ξ) = D (kξ0)xDFD (ωξz, kξ)
κ → κc(ω, k, ξ) = κ (kξ0)xκFκ (ωξz, kξ)
η → ηc(ω, k, ξ) = η (kξ0)xηFη (ωξz, kξ)
γ → γc(ω, k, ξ) = γ (kξ0)xγFγ (ωξz, kξ)

• These coefficients differ from the hydrodynamic limit, in which D =
κm2 and γ = η/w no longer hold, where w is enthalpy.

• The dynamical exponent z is determined as z = 4 − η̃ + xD for the
diffusion mode in the regime where k ≫ ξ−1.
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CRITICAL DYNAMICS IN MODEL H

• self-consistent calculation with ansatz: z = 3.054 ® Ohta and Kawasaki,
(1976)

• renormalization group (RG) theory: z = 3.036 ® Siggia, Halperin, and
Hohenberg (1976)

• real-time fRG approach:
z = 3.0507 for d = 3 ® Chen, Tan and Fu [2406.00679]
z = 3.051 ® Roth, Ye, Schlichting, and von Smekal
[2409.14470]

• Metropolis algorithm: z is function of shear viscosity ® Chattopadhyay,
Ott, Schaefer and Skokov [2403.10608]
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SELF-CONSISTENT EQUATIONS

Re-scale the frequency and the momentum as (s, r) = (ωξz, ω′ξz), (x, y) = (kξ, k′ξ)
and [Σ,∆](ω, k, ξ) = ξ−zx2 [Σ̄, ∆̄](s, x)
Σ̄c12(s, x) = ξ2z−7 ∫

r,y

 y2
− ∆̄c11(r−, y−)∣∣∣− ir− + y2

− ∆̄c12(r−, y−)∣∣∣2 ξ2
w2y2

−

y2(1 − cos2 θ)
i r+ + y2+ Σ̄c12(−r+, y+)

− y2
− Σ̄c11(r−, y−)∣∣∣− ir− + y2

− Σ̄c12(r−, y−)∣∣∣2 (y2
− + 1) − (x2 + 1)

wy2+
y2(1 − cos2 θ)

i r+ + y2+ ∆̄c12(−r+, y+)


Σ̄c11(s, x) = ξ2z−7 ∫
r,y

 y2
− ∆̄c11(r−, y−)∣∣∣− ir− + y2

− ∆̄c12(r−, y−)∣∣∣2 ξ2y2
w2y2

−

(1 − cos2 θ) y2+ Σ̄c11(r+, y+)∣∣∣− ir+ + y2+ Σ̄c12(r+, y+)∣∣∣2


Obviously, Kawasaki’s approximation of correlation is Σ̄c11 = ξ2Σ̄c12/(x2 + 1)
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DOMINANT KINETIC CONTRIBUTION

In the one-loop approach, the main contribution comes from the re-
gion in which the external momentum of order parameter, represented
by the vector x, is parallel to the inner momentum of momentum den-
sity, represented by the vector y−.

Σ̄c12(0, x) ∼
∫ x

0 y4 dy ∫ 1
1−ε2 d cos θ 1 − cos2 θ

y2
− (− i0 + y2

−)
In the momentum region, where y− ∼ εx (y+ ∼ εx for anti-parallel), the
loop contribution can be estimated as x. This recovers the Kawasaki
approximation of Σ12 ∼ x2Σ̄c12 ∼ x3 for large x.
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SELF-CONSISTENT EQUATIONS, CONT.

∆̄c12(s, x) = ξ2z−7 ∫
r,y

2y2
− Σ̄c11(r−, y−)∣∣∣− ir− + y2

− Σ̄c12(r−, y−)∣∣∣2 y3
wx

cos θ − cos3 θ
i r+ + y2+ Σ̄c12(−r+, y+)

∆̄c11(s, x) = ξ2z−7 ∫
r,y

2y2
− Σ̄c11(r−, y−)∣∣∣− ir− + y2

− Σ̄c12(r−, y−)∣∣∣2 y
3y2+
ξ2x

(cos θ − cos3 θ) y2+ Σ̄c11(r+, y+)∣∣∣− ir+ + y2+ Σ̄c12(r+, y+)∣∣∣2
∫
r,y

= ∫ ωΛ
−ωΛ dr

∫ Λ
0

y2(2π)3 dy
∫ π

0 sin θ dθ
Note that the UV cutoffs, ωΛ and Λ, are introduced. Both are proportional to the
microscopic scale of ξ−10 .
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RENORMALIZED TRANSPORT COEFFICIENTS

The renormalization of η: ® Kovtun, Moore and
Romatschke [1104.1586]

ηR = η + 760π2 ρTΛ
η

From left to right are the corrected shear modes with UV cutoffs of 24,
30, and 36.
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THE ONE-LOOP RESULTS
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The iteration results maintain the shape.
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THE SELF-CONSISTENT RESULTS
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Eventually, the self-consistent results show a significant change in
scale but only a slight modification in shape.
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COMPARISON WITH KAWASAKI FUNCTION

(PRELIMINARY)

The order parameter sector has a curve similar to the Kawasaki approximation.
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ORDER SHIFTED FOR η(ξ) (PRELIMINARY)

Under Kawasaki’s approximation, η = η0(1+ 815π2 ln ξ). However, the order is inverted
at the end. ® Perl and Ferrell, PhysRevA.6.2358 (1972)
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DECOUPLED SHEAR TERM (PRELIMINARY)

It is believed that the shear mode is decoupled and behaves as ω ∼ ηRk2 in the small
momemtum region.
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DYNAMIC SCALING FOR zprime (PRELIMINARY)

To determine the value of “zprime”, one applies the dimensionless
quantity.
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DYNAMIC SCALING FOR zprime (PRELIMINARY)

To determine the value of “zprime”, one applies the dimensionless
quantity.
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SUMMARY AND OUTLOOKS

Ø By comparing the one-loop approach, we gain more insight into the
evolution of the order parameter and the momentum density.

Ø By considering the magnitude of η, the order parameter relaxation
rate is Γk = D0

ξ4 (kξ)2 (1 + (kξ)2) + T6πηRξ3K(kξ)
For kξ ≫ 1, τR ∼ ξ4 for large ηR, and τR ∼ ξ3 for small ηR

Ø By extending our model to include expanding systems, we can bet-
ter understand the dynamical nature of phase transitions.

Thank You for Your Attention!
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