IR and backgrounds of ILC and Super KEKB

BEPCII background mini workshop IHEP, March 10, 2008

Hitoshi Yamamoto

ILC configuration

500 GeV CM 14mrad crossing angle 3000 bunches/train, 1ms/train 5 trains/sec

IR design of typical ILC detector (SiD, GLD, LDC, 4th)

HOM loss

- Loss factor k : $\Delta E = kq^2 \implies k = \frac{\log \frac{b}{a}}{4\pi^{3/2}\varepsilon_0\sigma_Z} \quad (V/C)$
- HOM loss by an iris of a=1cm to b=10cm

$$P = n_{\text{bunch}} n_{\text{train}} kq^2 = 2820 \quad 5kq^2$$
$$= 5.6W$$

This is to turn to heat somewhere

HOM loss

• Two beams & FCAL/BCAL

5.6 x 2 x 2 ~ 22.4 W

Beam-gas background

Loss pts. of 150 random beam-gas brem. trajectories in the BDS using LP TURTLE

Summary of Hits/bunch and Hits/160 bunches (TPC) – both beams, 10 nTorr

Hits/bunch

—— Hits/160 bunches (TPC)

Hit	GEANT3 Beam-gas brem (charged)	TUR Beam- <u>(</u> (cha	RTLE gas brem rged)	TUR Beam-g (phot	TLE jas brem cons)	TUF Cou (cha	RTLE Ilomb arged)
Location	Hits	Hits	<e></e>	Hits	<e></e>	Hits	<e></e>
FD Prot. Coll. (13 m) x > 0.74 cm y > 0.45 cm Origin 0-800m from IP	0.22 35	0.17 27	235 GeV	0.056 9.0	~50 GeV	0.009 1.4	250 GeV
Inside F.D. (10 – 3.5 m) (QF1 to QD0) Origin 0-100m from IP	0.014 2.2	0.006 1.0	~100 GeV	0	-	0	-
IP region (± 3.5 m) (R > 1 cm at Z = 6.0 m) Origin 0-200m from IP	0.04 6.4	0.02 3.2	~100 GeV	0	-	0	-

GEANT3 simulations show that only hits in the IP region (± 3.5 m) cause problems for the vertex detector (L. Keller)

Vacuum requirement near IP

Electro-production of hadrons in gas near the IP (± 3.5 m)

 $\sigma_{tot} \sim 2 \text{ mb} => \sim 5 \times 10^{-5} / \text{BX} @ 10 \text{ nT}$

Lumonosity bkg.: gamma-gamma at L $_{max} \sim 0.5/BX$

Therefore the near-IR pressure requirement is not determined by the beam-gas background rates

(L. Keller)

Vacuum requirement summary

- 1. Within 200m of IP, the pressure spec is 1nTorr.
- 2. Within 200m-800m, the pressure spec is 10nTorr.
- 3. Between QD0 (±4m), the pressure spec can be more than 1nTorr (luminosity background dominates)

Vacuum pumping near IP

GLD NEG pump location

Vacuum pumping

- Pumping scheme at z < L* (Cone) depends on the required pressure;
 - For P >10 nTorr, (probably acceptable)
 - No baking and no pump are OK
 - For 10 nTorr > P >1 nTorr, (acceptable)
 - No baking is OK, but some pumps are required
 - For P < 1 nTorr, (overkill)</pre>
 - NEG coating and baking are required.
- Other room temperature region needs pumps (distributed or lumped pumps or NEG coating)

e+e- Pair background

Vertex detector needs to stay out of the dense area. Dominates the background in vertexing.

Pair background in CCD

Readout every 50µs Or fine-pixel needed

N: nominal beam params

Muon Spoiler

Toroid magnets 5m thick, 1.5 Tesla Estimated muons: a few/TPC sweep Upgradable to 18m Additional 9m optional

Neutron backgrounds

- The IP has a direct line-of-sight from the beam dump.
- Neutrons and photons produced at $\cos\theta \sim -1$ will reach the IP, and no shielding is possible.

SiD Vertex Detector

Maruyama

1 MeV Neutron Equivalent Fluence

- However, the amount of displacement damage done to CCD Si detector by neutrons is a function of neutron energy
- When relative damage to Si is considered, normalized to 1 MeV, the fluence is: 5.3×10⁸ n/cm²/year
- When e⁺ beam is considered also, value is doubled to 1.1×10⁹ n/cm²/year
- A value of 10¹⁰ n/cm² would damage the CCD Si detector by this measure

Fig. 3. Silicon displacement kerma as a function of energy. The fine-group histogram is the tabulated kerma values from Ref. 13. The broader group histogram is the function used in this work.

T. M. Flanders and M. H. Sparks, *Nuclear Science and Engineering*, 103, 265, 1989.

Neutron Backgrounds

- 1-MeV neutron equivalent fluence from the beam dump is estimated to be 1.1×10⁹ n's/cm²/year at the SiD VXD detector.
- Neutron fluence by the pairs is 0.9×10^9
- The total 1-MeV neutron equivalent fluence is 2×10⁹ n's/cm²/year.
- Photon backscattering from the dump is negligible.

Shielding of detectors

Super KEKB backgrounds

Machine Parameters of KEKB and Super-KEKB

	KEKB (now)	Super-KEKB
	LER^+/HER^-	LER^-/HER^+
energy(GeV)	3.5/8	3.5/8
nbunch	1223/1223	5018/5018
$I_{ m beam}(A)$	1.41/1.06	9.4/4.1
$I_{\mathrm{bunch}}(mA)$	1.14/0.86	1.87/0.82
$\epsilon_x(nm)$	18/24	24/24
ϵ_y/ϵ_x	0.055/0.041	0.01/0.01
β_x^* (cm)	59/63	15/15
$\beta_{u}^{*}(mm)$	6/7	3/3
$\sigma_z^{'}(mm)$	5.6/5.6	3/3
xing(mRad)	22	30
$L(10^{33}/cm^2s)$	10.6	500

Super-KEKB: More currents by more bunches, Smaller beta*s, shorter bunches.

SuperKEKB beampipe baseline: SVD2.0 r = 1.0cm design. (fall-back design : r = 1.5cm)

No LER-side mask \rightarrow no resonant cavity.

SuperKEKB Synchrotron Radiation Background Incoming HER beam (LER dose will be small)

- Use the program SRW (written by T. Abe).
- Dominant source is QC1.
- For the same mask shape as SVD2.0 (asymmetric crescent shape), Dose \sim 200 kRad/yr.

More than half is due to photons sneaking though the halfwidth regions (top and bottom).

 \rightarrow try symmetric circular mask.

 Symmetric circular mask.
 Dose ~ 80 kRad/yr (T. Abe, confirmed by O. Tajima). (mostly backward inside)

Further optimization should be possible.

Is HOM OK?

 HOM estimation (S. Stanic) Symmetric mask design : k = 0.29 V/pC (Ref.) SVD1.5 : k = 0.5 V/pC → HOM loss is OK.

HOM loss
$$(W) = rac{I(A)^2 k(V/C)}{c(m/s)/b_{sp}(m)}$$

Also there is no resonant cavity. (heat deposit small)

Large orbit dependence seen.
 → needs real-time orbit tracking (T. Abe)

Outgoing HER Backscattering

Large offset (~4cm) at QCSR $\rightarrow E_c \sim$ 40keV, 100kW.

Outgoing HER Backscattering

• No LER-side mask.

For SVD 2.0, expect 20-30 kRad/yr of dose. (Estimated by H.Y. using EGS)

```
Preliminarily confirmed by O. Tajima using GEANT4. (23 kRad/yr)
```

- For SuperKEKB, Expect ~60 kRad/yr.
 → Move the Cu absorber further away, or, use heavier metal as surface?
- With a LER-side mask: bkg small. But one has to avoid HOM resonances. Reduces flexibility for machine operation.

```
\rightarrow the default is not to use the LER-side mask.
```

MC Simulation Results (Karim Trabelsi) (KEKB)

Lyr1 doses

(kRad/yr=10 ⁷ s) for (1nTorr CO, 1.1A/2.6A)				
Version	Data	SVD1.4	SVD2.0	SVD2.0
r(b.p.)	2cm	2cm	1cm	1.5cm
r(lyr1)	3cm	3cm	1.5cm	2.2cm
HER Brem		6	28	13
HER Coul		35	35	13
HER sum	24	41	63	26
LER Brem		20(9)	67(63)	13(9)
LER Coul		15	52	14
LER Touschek		57(7)	474(464)	29(9)
LER sum	82	92(31)	593(579)	56(32)
Total	106	133(72)	655(641)	82(58)

(): ignore bkg from just outside beampipe at QC2.

Azimu. angle dist. of Shower particles

SuperKEKB Particle Background

MC Simulation by K. Trabelsi

- LER only now. (LER optics only is available at this time)
- Use ± 11 mrad crosing angle (for quick answer).
- Use SVD2.0 r = 1 cm design (to begin with).
- Whole one turn simulation by TURTLE. (multi-turn effects not simulated)
- GEANT simulation upto/including QC2's.
- Vacuum = 1 nTorr of CO. (needs a good pumping)
- Physics run only (no injections).

MC Simulation Results (Preliminary)

Coulomb scattering

SVD layer	dose (kRad/yr)	
Lyr 1	1655 ± 229	
Lyr 2	374 ± 57	
Lyr 3	107 ± 18	
Lyr 4	61 ± 9	
$(1yr = 10^7 s)$		

Mostly due to beam particles hitting at around QCSR.

Uniform in ϕ (Coulomb)

Brems. and Touschek \sim 0. (!!) (preliminary, but let us hope it is true)

Touschek Transverse Profiles

KEKB design

There are many particles with x < 5cm at z = +7m, which creates a large dose.

Touschek Transverse Profiles (preliminary) SuperKEKB

Not much outside of $x = \pm 5cm$ at z = +7m.

Brems. Transverse Profiles

KEKB design

There are some for x < 5 cm at z = 7m.

Brems. Transverse Profiles (preliminary)

SuperKEKB

BREM

Not much outside $x = \pm 5$ cm at z = 7m.

Effect of 30mrad crossing angle

Simulation was for 22mrad crossing angle.

Super-KEKB $r_{\text{beampipe}} = 1.5$ cm, 1cm Horizontal beam-stay-clear (20 σ)

Crossing angle ($22 \rightarrow 30$ mrad) and beam-stay-clear in y

No problem in y.

To be done:

- Further optimization of SR background. Protect against possible orbit shifts.
- CDC simulation for the HER SR backscattering.
- Further particle background simulation for LER. (confirm the small Brems. and Touschek backgrounds)
- Particle background simulation for HER.
- Simulate injection.
- Mask design/optimization for 30mrad crossing angle. (including the design with r = 1cm beampipe with r = 1.5cm version mask.)
- Study mechanical support system. Attach SVD directly to the beampipe.