

NP search at the CEPC:

a General Perspective

(White paper: <u>arXiv:2505.24810</u>)

Zhao Li (IHEP)
On behalf of CEPC NP team

zhaoli@ihep.ac.cn

第六届粒子物理前沿研讨会,长春

July 16, 2025

Big Questions and Ideas in particle physics

CEPC operation scheme

Operation mode	Z factory	WW threshold	Higgs factory	$tar{t}$
$\sqrt{s} \; ({ m GeV})$	91.2	160	240	360
Run time (year)	2	1	10	5
Instantaneous luminosity $(10^{34}cm^{-2}s^{-1}, \text{ per IP})$	191.7	26.6	8.3	0.83
Integrated luminosity $(ab^{-1}, 2 \text{ IPs})$	100	6	20	1
Event yields	4.1×10^{12}	2×10^8	4.3×10^6	0.6×10^6

TABLE I: Nominal CEPC operation scheme, and the physics yield, of four different modes.

FIG. 2: The updated run plan of the CEPC, with the baseline and upgrade shown in solid and dashed blue curves, respectively. The run plans for several other proposals of the e^+e^- colliders are also shown for comparison. See [14] for details.

Executive Summary

As a Higgs (flavor, top) factory, CEPC will provide unprecedented opportunities for looking for new physics Beyond SM. CEPC may:

- Identify the origin of matter, especially the mechanism related to the first-order EW phase transition (EWPT) in the early Universe, which could produce a detectable gravitational wave signal.
- Discover dark matter, particularly dark matter particles with a mass between one tenth and 100 times the proton mass.
- Observe an array of new physics smoking guns, with sensitivities orders of magnitude better than those of existing facilities.

NP Program

- Intensity frontier of H/Z...:
 - Exotic Higgs/Z, EWPT,...
- Dark Matter and Dark Sector
- New particles/phenomena:
 - LLP, ALP, ...
- New symmetries:
 - SUSY
- **■** Flavor frontier:
 - Flavor, Neutrino, ...
- **■** Techniques:
 - Global fitting, Al,...

1. Exotic Higgs/Z/top decays

■ Higgs is connected to the origin of both visible and dark matter of the Universe, the origin of neutrino masses, the stability of the Universe, and the self-consistency of the particle physics theory at quantum level ...

→ A promising way towards NP.

■ Higgs exotic decay motivated by a large class of BSM physics, such as singlet extensions, two Higgsdoublet-models (2HDM), SUSY models, Higgs portals, gauge extensions of the SM ...

Exotic higgs

FIG. 9: The 95% C.L. upper limit on selected Higgs exotic decay branching fractions at HL-LHC and CEPC, based on Ref [45].

1. Exotic Higgs/Z/top decays

FIG. 12: The reach for the branching ratio of various exotic Z decay modes at the future Z-factories (rescaled to four Tera Z) and the HL-LHC at 13 TeV with $\mathcal{L}=3$ ab⁻¹ [73]. The

- Exotic Z or top decays are also motivated by many BSM models (ED, Heavy Vector Triplet, ...)
- Light Higgs are motivated by 2HDM and Axion-like particle models.

Light higgs can be searched at CEPC very well if exists.

→ As a *Higgs (flavor, top) factory*, CEPC could search for exotic H/Z/top decays with sensitivities orders of magnitude better than those of existing facilities.

2. EWPT at CEPC

■ The nature of Electroweak Phase Transition (EWPT) deeply impacts the thermal history of the Universe, closely linked to puzzles of DM, matterantimatter asymmetry

In the SM, the transition is a smooth crossover

In NP, the scalar potential exhibits a barrier, allowing for a FOEWPT with bubble nucleation and expansion

- Higgs precision measurements

Higgs exotic decay

Higgs exotic decay

h→ss→XXYY as a probe for the FOEWPT:

CEPC has the potential to probe almost the entire FOEWPT parameter space for 4b and 4tau channels

2. EWPT at CEPC

- Higgs precision measurements

Higgs exotic decay

FIG. 17: Discontinuity in the Higgs vev (v) at the critical temperature (T_c) as function of the doublet-singlet mixing angle θ in the real scalar singlet extension of the SM (xSM).

CEPC will provide a powerful test of the xSM FOEWPT

FIG. 18: Phase diagram for the real scalar singlet extension of the SM in the plane of the doublet-singlet mixing angle θ and double-singlet cross-quartic portal coupling a_2 . Light

A FOEWPT could also generate detectable GW signals, CEPC measurements will coincide with next generation of GW detectors (LISA, Taiji, Tianqin)

UV models DM:

SUSY DM / Double dark portal model /.....

■ Simplified models DM:

Scalar / Fermion / Vector portal

■ EFT DM

Portal	Effective operator	$\sqrt{s} \; [\mathrm{GeV}]$	$\mathcal{L}[ab^{-1}]$	Sensitivity of CEPC (HL-LHC)	Figs.	Ref.
Scalar	$\lambda_{HP} H ^2S^2 \to \text{scalar mixing } \sin \theta$	250	5	invisible S, $\sin \theta \approx 0.03$ (0.20 global-fits)	24	[220]
	$y_\ell ar{\chi}_L S^\dagger \ell_R + ext{H.c.}$	250	5	covering $100\mathrm{GeV} < m_S < 170\mathrm{GeV}$	25	[45]
Fermion	$\kappa \Phi \overline{q_L'} \ell_R + ext{H.c. (dark QCD)}$	250	5	$m_{\Phi} \sim 10 \text{ TeV for } c \tau_{\mathrm{darkpion}} \in [1, 10^3] \text{ cm (Null)}$	27	[221]
	$y\Phiar{F}_L\ell_R + ext{H.c.}$	240	5.6	$y\theta_L \in [10^{-11}, 10^{-7}] (\lesssim 10^{-8} - 10^{-9})$	-	[222]
	$A'_{\mu}\left(e\epsilon J_{ m em}^{\mu}+g_Dar{\chi}\gamma^{\mu}\chi ight)$	250	5	$\epsilon \sim 10^{-3}$ for $g_D=e$ and $m_{A'}<125$ GeV $(\epsilon \sim 0.02$)	28, 29	[220]
		250	5	$\epsilon \sim 0.1 \ { m for} \ m_\chi \sim 50 \ { m GeV}$		
Vector	$\varepsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$, (millicharge DM)	91.2	2.6	$\epsilon \sim 0.02 \; { m for} \; m_\chi \sim 5 \; { m GeV}$	-	[223]
vector		160	16	$\epsilon \sim 0.5 \; { m for} \; m_\chi \sim 10 \; { m GeV}$		
	$= rac{1}{2} \mu_{\chi} ar{\chi} \sigma^{\mu u} \chi F_{\mu u} + rac{i}{2} d_{\chi} ar{\chi} \sigma^{\mu u} \gamma^5 \chi F_{\mu u}$	91.2	100	$\mu_{\chi}, d_{\chi} \sim 4 \times 10^{-7} \ (4 \times 10^{-6}) \mu_{B} \ \text{for} \ m_{\chi} < 25 \text{GeV}$	30	[224]
	$-a_{\chi}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\partial^{\nu}F_{\mu\nu} + b_{\chi}\bar{\chi}\gamma^{\mu}\chi\partial^{\nu}F_{\mu\nu}$	240	20	$a_{\chi}, b_{\chi} \sim 10^{-6} \ (2 \times 10^{-6}) \mathrm{GeV^{-2}} \ \mathrm{for} \ \mathrm{m}_{\chi} < 80 \mathrm{GeV}$	30	[224]
	$\frac{1}{\Lambda^2} \sum_i \left(\bar{\chi} \gamma_\mu (1 - \gamma_5) \chi \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \ell \right)$	250	5	$\Lambda_i \sim 2 { m TeV} (m_\chi = 0) ({ m Null})$	31	[225]
EFT	$rac{1}{\Lambda_A^2}ar{\chi}\gamma_\mu\gamma_5\chiar{\ell}\gamma^\mu\gamma_5\ell$	250	5	$\Lambda_A \sim 1.5 \; { m TeV} \; ({ m Null})$	32	[223]
	$\sum_{i} \frac{1}{\Lambda_{i}^{2}} (\bar{e}\Gamma_{\mu}e) (\bar{\nu}_{L}\Gamma^{\mu}\chi_{L}) + \text{H.c.}$ $\Gamma_{\mu} = 1, \gamma_{5}, \gamma_{\mu}, \gamma_{\mu}\gamma_{5}, \sigma_{\mu\nu}$	240	20	$\Lambda_i \sim 1 { m TeV} (m_\chi = 0) ({ m Null})$	33	[226]

Dark Sector from Z/H associate production

Double dark portal model: Scalar and Vector-portal DM

Portal	Effective operator	\sqrt{s} [GeV]	$\mathcal{L}[ab^{-1}]$	Sensitivity of CEPC (HL-LHC)	Figs.	Ref.
Scalar	$\lambda_{HP} H ^2S^2 ightarrow ext{scalar mixing } \sin heta$	250	5	invisible S, $\sin \theta \approx 0.03 \; (0.20 \; \text{global-fits})$	24	[220]
	$y_\ell ar{\chi}_L S^\dagger \ell_R + ext{H.c.}$	250	5	covering $100 \mathrm{GeV} < m_S < 170 \mathrm{GeV}$	25	[45]
Fermion	$\kappa \Phi \overline{q_L'} \ell_R + ext{H.c. (dark QCD)}$	250	5	$m_{\Phi} \sim 10 \text{ TeV for } c au_{ ext{darkpion}} \in [1, 10^3] \text{ cm (Null)}$	27	[221]
	$y\Phiar{F}_L\ell_R + ext{H.c.}$	240	5.6	$y\theta_L \in [10^{-11}, 10^{-7}] (\lesssim 10^{-8} - 10^{-9})$	-	[222]
	$A'_{\mu}\left(e\epsilon J_{ m em}^{\mu}+g_Dar{\chi}\gamma^{\mu}\chi ight)$	250	5	$\epsilon \sim 10^{-3}$ for $g_D = e$ and $m_{A'} < 125$ GeV $(\epsilon \sim 0.02)$	28, 29	[220]
		250	5	$\epsilon \sim 0.1 \ { m for} \ m_\chi \sim 50 \ { m GeV}$		
Vector	$\varepsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$, (millicharge DM)	91.2	2.6	$\epsilon \sim 0.02 \; { m for} \; m_\chi \sim 5 \; { m GeV}$	-	[223]
vector		160	16	$\epsilon \sim 0.5 \ { m for} \ m_\chi \sim 10 \ { m GeV}$		
	$\frac{1}{2}\mu_{\chi}ar{\chi}\sigma^{\mu u}\chi F_{\mu u} + \frac{i}{2}d_{\chi}ar{\chi}\sigma^{\mu u}\gamma^5\chi F_{\mu u}$	91.2	100	$\mu_{\chi}, d_{\chi} \sim 4 \times 10^{-7} \ (4 \times 10^{-6}) \mu_B \ \text{for} \ m_{\chi} < 25 \text{GeV}$	30	[224]
	$-a_{\chi}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\partial^{\nu}F_{\mu\nu} + b_{\chi}\bar{\chi}\gamma^{\mu}\chi\partial^{\nu}F_{\mu\nu}$	240	20	$a_{\chi}, b_{\chi} \sim 10^{-6} \ (2 \times 10^{-6}) \mathrm{GeV^{-2}} \ \mathrm{for} \ \mathrm{m}_{\chi} < 80 \mathrm{GeV}$	30	[224]
	$\frac{1}{\Lambda^2} \sum_i \left(\bar{\chi} \gamma_\mu (1 - \gamma_5) \chi \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \ell \right)$	250	5	$\Lambda_i \sim 2 { m TeV} (m_\chi = 0) ({ m Null})$	31	[225]
EFT	$rac{1}{\Lambda_A^2}ar{\chi}\gamma_\mu\gamma_5\chiar{\ell}\gamma^\mu\gamma_5\ell$	250	5	$\Lambda_A \sim 1.5 \; { m TeV} \; ({ m Null})$	32	[223]
	$\sum_i rac{1}{\Lambda_i^2} \left(ar{e}\Gamma_\mu e ight) \left(ar{ u}_L \Gamma^\mu \chi_L ight) + ext{H.c.}$	240	20	$\Lambda_i \sim 1 \; { m TeV} \; (m_\chi = 0) \; ({ m Null})$	33	[226]
	$\Gamma_{\mu}=1,\gamma_5,\gamma_{\mu},\gamma_{\mu}\gamma_5,\sigma_{\mu u}$					

Lepton-portal DM

Vectorportal DM → CEPC can probe lowmass light dark states.

Portal	Effective operator	$\sqrt{s} \; [\mathrm{GeV}]$	$\mathcal{L}[ab^{-1}]$	Sensitivity of CEPC (HL-LHC)	Figs.	Ref.
Scalar	$\lambda_{HP} H ^2S^2 \to \text{scalar mixing } \sin \theta$	250	5	invisible S, $\sin \theta \approx 0.03$ (0.20 global-fits)	24	[220]
	$y_\ell ar{\chi}_L S^\dagger \ell_R + ext{H.c.}$	250	5	covering $100\mathrm{GeV} < m_S < 170\mathrm{GeV}$	25	[45]
Fermion	$\kappa\Phi\overline{q_L'}\ell_R$ + H.c. (dark QCD)	250	5	$m_{\Phi} \sim 10 \text{ TeV for } c \tau_{\mathrm{darkpion}} \in [1, 10^3] \text{ cm (Null)}$	27	[221]
	$y\Phiar{F}_L\ell_R+\mathrm{H.c.}$	240	5.6	$y\theta_L \in [10^{-11}, 10^{-7}] (\lesssim 10^{-8} - 10^{-9})$	-	[222]
	$A_{\mu}^{\prime}\left(e\epsilon J_{\mathrm{em}}^{\mu}+g_{D}ar{\chi}\gamma^{\mu}\chi ight)$	250	5	$\epsilon \sim 10^{-3}$ for $g_D = e$ and $m_{A'} < 125$ GeV ($\epsilon \sim 0.02$)	28, 29	[220]
		250	5	$\epsilon \sim 0.1 \; { m for} \; m_\chi \sim 50 \; { m GeV}$		
Vector	$\varepsilon A_{\mu} \bar{\chi} \gamma^{\mu} \chi$, (millicharge DM)	91.2	2.6	$\epsilon \sim 0.02 \; { m for} \; m_\chi \sim 5 \; { m GeV}$		[223]
vector		160	16	$\epsilon \sim 0.5 \ { m for} \ m_\chi \sim 10 \ { m GeV}$		
	$\frac{1}{2}\mu_{\chi}\bar{\chi}\sigma^{\mu\nu}\chi F_{\mu\nu} + \frac{i}{2}d_{\chi}\bar{\chi}\sigma^{\mu\nu}\gamma^{5}\chi F_{\mu\nu}$	91.2	100	$\mu_{\chi}, d_{\chi} \sim 4 \times 10^{-7} \ (4 \times 10^{-6}) \mu_B \ \text{for} \ m_{\chi} < 25 \text{GeV}$		[224]
	$-a_{\chi}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\partial^{\nu}F_{\mu\nu} + b_{\chi}\bar{\chi}\gamma^{\mu}\chi\partial^{\nu}F_{\mu\nu}$	240	20	$a_{\chi}, b_{\chi} \sim 10^{-6} \ (2 \times 10^{-6}) \text{GeV}^{-2} \text{ for } m_{\chi} < 80 \text{GeV}$	30	[224]
	$\frac{1}{\Lambda^2} \sum_i \left(\bar{\chi} \gamma_\mu (1 - \gamma_5) \chi \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \ell \right)$	250	5	$\Lambda_i \sim 2 { m TeV} (m_\chi = 0) ({ m Null})$	31	[225]
EFT	$rac{1}{\Lambda_A^2}ar{\chi}\gamma_\mu\gamma_5\chiar{\ell}\gamma^\mu\gamma_5\ell$	250	5	$\Lambda_A \sim 1.5 \; { m TeV} \; ({ m Null})$	32	[223]
	$\sum_i rac{1}{\Lambda_i^2} \left(ar{e}\Gamma_\mu e ight) \left(ar{ u}_L \Gamma^\mu \chi_L ight) + ext{H.c.}$	240	20	$\Lambda_i \sim 1 \; { m TeV} \; (m_\chi = 0) \; ({ m Null})$	33	[226]
	$\Gamma_{\mu}=1,\gamma_{5},\gamma_{\mu},\gamma_{\mu}\gamma_{5},\sigma_{\mu u}$					

CEPC can improve the sensitivities by roughly one order of magnitude (vs LHC)

FIG. 35: The sensitivities for scalar, fermion, and vector portals, as well as dark matter magnetic dipole moment and electric dipole moment operators for CEPC and HL-LHC.

Long lifetimes result from a few simple physical mechanisms:

- Small couplings (ex. RPV SUSY)
- Limited phase space: small mass splitting (ex. compressed SUSY, ...)
- Heavy intermediate states

- New scalar particles from higgs decay
- SUSY RPV N1 from Zboson decays
- ALP
- Dark photons
- ...
- → Far Detector can help a lot!

LLP	Signal Signature	\sqrt{s}	£	Detector	Sensitivities on parameters	Figs.	Refs
Type		[GeV]	[ab ⁻¹]		[Assumptions]		
	$Z(\to \text{incl.}) h(\to XX),$	240	20	MD	${ m Br}(h o XX)\sim 10^{-6}$	38	[82]
	X o q ar q / u ar u				$[m \in (1, 50) \text{ GeV}, \tau \in (10^{-3}, 10^{-1}) \text{ ns}]$		
				MD	${\rm Br}(h o XX) \sim 3 imes 10^{-6}$	50	[88]
New scalar					$[m = 0.5 \text{ GeV}, c\tau \sim 5 \times 10^{-3} \text{ m}]$	10000	L
particles (X)	$Z(\to \text{incl.}) h(\to XX),$	240	5.6	FD3	${ m Br}(h o XX)\sim 7 imes 10^{-5}$	50	[88]
	$X \to \mathrm{incl.}$	240	0.0	1 1 1 1 1	$[m=0.5~{\rm GeV},c\tau\sim 1~{\rm m}]$	00	[00]
				LAYCAST	${ m Br}(h o XX)\sim 5 imes 10^{-6}$	50	[056
				LATCASI	$[m=0.5~{\rm GeV},c\tau\sim 10^{-1}~{\rm m}]$	50	[258
				MD	$\lambda'_{112}/m_{\tilde{f}}^2 \in (2 \times 10^{-14}, 10^{-8}) \text{ GeV}^{-2}$	44	[00]
DDM GHGM				MD	$[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	44	[88
RPV-SUSY	$Z ightarrow ilde{\chi}^0_1 ilde{\chi}^0_1,$	01.0	150	TDo	$\lambda'_{112}/m_{\tilde{f}}^2 \in (10^{-14}, \ 10^{-9}) \ {\rm GeV^{-2}}$	SAV	[00
neutralinos	$\tilde{\chi}_1^0 \to { m incl.}$	91.2	150	FD3	$[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	51	[88
$(ilde{\chi}^0_1)$					$\lambda'_{112}/m_{\tilde{f}}^2 \in (7 \times 10^{-15}, 10^{-9}) \text{ GeV}^{-2}$	220	
				LAYCAST	$[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	51	[258
	$Z^{(*)} ightarrow \mu^- \mu^+ a$	91	150	MD	$f_a/C_{\mu\mu}^A\lesssim 950{ m GeV}$	45	[87
					$C_{\gamma\gamma}/\Lambda \sim 10^{-3}~{ m TeV^{-1}}$		
				MD	$[C_{\gamma Z}=0,m\sim 2\;{ m GeV}]$	52	[258
ALPs (a)	$e^+e^- o \gamma a,$			77.0	$C_{\gamma\gamma}/\Lambda \sim 6 imes 10^{-3}~{ m TeV^{-1}}$	as	
	$a o \gamma \gamma$	91.2	150	FD3	$[C_{\gamma Z}=0,m\sim 0.3{ m GeV}]$	52	[259
					$C_{\gamma\gamma}/\Lambda \sim 2 imes 10^{-3} \; { m TeV^{-1}}$		-
				LAYCAST	$[C_{\gamma Z}=0,m\sim 0.7~{\rm GeV}]$	52	[258
Hidden valley	$Zh(o\pi_V^0\pi_V^0),$				$\sigma(h) imes { m BR}(h o \pi_v^0 \pi_v^0) \sim 10^{-4} { m \ pb}$	122	
particles (π_V^0)	$\pi_V^0 o bar{b}$	350	1.0	MD	$[m \in (25, 50) \; { m GeV}, au \sim 10^2 \; { m ps}]$	42	[260
Dark photons	$Z(o qar q)h(o \gamma_D\gamma_D),$	1202000	22. 20	2 (1000)	$Br(h \to \gamma_D \gamma_D) \sim 10^{-5}$,	W2007	-
(γ_D)	$\gamma_D o \ell^- \ell^+/q ar q$	250	2.0	MD	$[m \in (5, 10) \text{ GeV}, \tau \sim 10^2 \text{ ps}, \epsilon \in (10^{-6}, 10^{-7})]$	43	[85

Light Scalars from Exotic Higgs Decays

FD can extend and complement the sensitivity to the LLPs compared with Main Detector

arXiv:1911.06576 arXiv:2406.05770

LLP		\sqrt{s}	L	_	Sensitivities on parameters				
Type	Signal Signature	[GeV]	$[ab^{-1}]$	Detector	[Assumptions]	Figs.	Refs		
	$Z(\to \text{incl.}) h(\to XX),$ $X \to q\bar{q}/\nu\bar{\nu}$	240	20	MD	${ m Br}(h o XX) \sim 10^{-6}$ $[m \in (1, 50) { m GeV}, au \in (10^{-3}, 10^{-1}) { m ns}]$	38	[82]		
New scalar				MD	${ m Br}(h o XX)\sim 3 imes 10^{-6}$ $[m=0.5~{ m GeV},~c au\sim 5 imes 10^{-3}~{ m m}]$	50	[88		
particles (X)	$Z(\to \text{incl.}) h(\to XX),$ $X \to \text{incl.}$	240	5.6	FD3	${ m Br}(h o XX)\sim 7 imes 10^{-5}$ $[m=0.5~{ m GeV},c au\sim 1~{ m m}]$	50	[88		
				LAYCAST	$\mathrm{Br}(h \to XX) \sim 5 \times 10^{-6}$ $[m = 0.5 \ \mathrm{GeV}, \ c\tau \sim 10^{-1} \ \mathrm{m}]$	50	[258		
DDW GUGW				MD	$\lambda'_{112}/m_{\tilde{f}}^2 \in (2 \times 10^{-14}, 10^{-8}) \text{ GeV}^{-2}$ $[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	44	[88]		
RPV-SUSY neutralinos	$Z o ilde{\chi}^0_1 ilde{\chi}^0_1, \ ilde{\chi}^0_1 o ext{incl.}$	91.2	2 150	150	150	FD3	$\lambda'_{112}/m_{\tilde{f}}^2 \in (10^{-14}, 10^{-9}) \text{ GeV}^{-2}$ $[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	51	[88]
$(ilde{\chi}_1^0)$				LAYCAST	$\lambda'_{112}/m_{\tilde{f}}^2 \in (7 \times 10^{-15}, \ 10^{-9}) \ \mathrm{GeV^{-2}}$ $[m \sim 40 \ \mathrm{GeV}, \ \mathrm{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	51	[25		
	$Z^{(*)} \rightarrow \mu^- \mu^+ a$	91	150	MD	$f_a/C_{\mu\mu}^A\lesssim 950~{ m GeV}$	45	[87		
				MD	$C_{\gamma\gamma}/\Lambda \sim 10^{-3} \; { m TeV^{-1}}$ $[C_{\gamma Z}=0, m \sim 2 \; { m GeV}]$	52	[25		
ALPs (a)	$e^{+}e^{-} \to \gamma a,$ $a \to \gamma \gamma$	91.2	150	FD3	$C_{\gamma\gamma}/\Lambda \sim 6 imes 10^{-3} \ { m TeV^{-1}}$ $[C_{\gamma Z}=0, \ m \sim 0.3 \ { m GeV}]$	52	[25		
				LAYCAST	$C_{\gamma\gamma}/\Lambda \sim 2 imes 10^{-3} \ { m TeV^{-1}}$ $[C_{\gamma Z}=0, m \sim 0.7 \ { m GeV}]$	52	[25		
Hidden valley particles (π_V^0)	$Zh(o\pi_V^0\pi_V^0), \ \pi_V^0 o bar b$	350	1.0	MD	$\sigma(h) \times \mathrm{BR}(h \to \pi_v^0 \pi_v^0) \sim 10^{-4} \mathrm{\ pb}$ $[m \in (25, 50) \mathrm{\ GeV}, \ \tau \sim 10^2 \mathrm{\ ps}]$	42	[26		
Dark photons (γ_D)	$Z(\to q\bar{q}) h(\to \gamma_D \gamma_D),$ $\gamma_D \to \ell^- \ell^+ / q\bar{q}$	250	2.0	MD	${ m Br}(h \to \gamma_D \gamma_D) \sim 10^{-5},$ $[m \in (5, 10) \ { m GeV}, \ \tau \sim 10^2 \ { m ps}, \ \epsilon \in (10^{-6}, 10^{-7})]$	43	[85		

FD can extend and complement the sensitivity to the LLPs compared with Main Detector

SUSY RPV Neutralino1 from Z Decays

LLP	Signal Signature	\sqrt{s}	L	Detector	Sensitivities on parameters	Figs.	Refs	
Type		[GeV]	$[ab^{-1}]$		[Assumptions]			
	$Z(\to \text{incl.}) h(\to XX),$ $X \to q\bar{q}/\nu\bar{\nu}$	240	20	MD	${ m Br}(h o XX) \sim 10^{-6}$ $[m \in (1, 50) \ { m GeV}, \ \tau \in (10^{-3}, 10^{-1}) \ { m ns}]$	38	[82]	
New scalar	11/			MD	${ m Br}(h o XX)\sim 3 imes 10^{-6}$ $[m=0.5~{ m GeV},~c au\sim 5 imes 10^{-3}~{ m m}]$	50	[88]	
particles (X)	$Z(\to \text{incl.}) h(\to XX),$ $X \to \text{incl.}$	240	5.6	FD3	$[m = 0.5 \text{ GeV}, c\tau \approx 3 \times 10^{-1} \text{ m}]$ $\text{Br}(h \to XX) \sim 7 \times 10^{-5}$ $[m = 0.5 \text{ GeV}, c\tau \sim 1 \text{ m}]$	50	[88]	
	A -7 mer.		I	LAYCAST	$[m=0.5~{\rm GeV},~cr\sim10^{-6}]$ $[m=0.5~{\rm GeV},~c\tau\sim10^{-1}~{\rm m}]$	50	[258	
		91.2 150			MD	$\lambda'_{112}/m_{\tilde{f}}^2 \in (2 \times 10^{-14}, 10^{-8}) \text{ GeV}^{-2}$ $[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	44	[88]
RPV-SUSY neutralinos	utralinos $Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0, \\ \tilde{\chi}_1^0 \to \text{incl.} $ 9		150	FD3	$\lambda'_{112}/m_{\tilde{f}}^2 \in (10^{-14}, \ 10^{-9}) \ \mathrm{GeV^{-2}}$ [$m \sim 40 \ \mathrm{GeV}, \ \mathrm{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}$]	51	[88]	
$(ilde{\chi}_1^0)$				LAYCAST	$\lambda'_{112}/m_{\tilde{f}}^2 \in (7 \times 10^{-15}, 10^{-9}) \text{ GeV}^{-2}$ $[m \sim 40 \text{ GeV}, \text{Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}]$	51	[258	
	$Z^{(*)} \rightarrow \mu^- \mu^+ a$	91	150	MD	$f_a/C_{\mu\nu}^A\lesssim 950~{ m GeV}$	45	[87	
				MD	$C_{\gamma\gamma}/\Lambda \sim 10^{-3} \; { m TeV^{-1}}$ $[C_{\gamma Z}=0, \; m\sim 2 \; { m GeV}]$	52	[258	
ALPs (a)	$e^+e^- \to \gamma a,$ $a \to \gamma \gamma$	91.2	150	FD3	$C_{\gamma\gamma}/\Lambda \sim 6 imes 10^{-3}~{ m TeV^{-1}}$ $[C_{\gamma Z}=0, m\sim 0.3~{ m GeV}]$	52	[259	
				LAYCAST	$C_{\gamma\gamma}/\Lambda \sim 2 imes 10^{-3} \; { m TeV^{-1}}$ $[C_{\gamma Z}=0, m \sim 0.7 \; { m GeV}]$	52	[258	
Hidden valley particles (π_V^0)	$Zh(o\pi_V^0\pi_V^0), \ \pi_V^0 o bar b$	350	1.0	MD	$\sigma(h) \times \mathrm{BR}(h \to \pi_v^0 \pi_v^0) \sim 10^{-4} \mathrm{\ pb}$ $[m \in (25, 50) \mathrm{\ GeV}, \ \tau \sim 10^2 \mathrm{\ ps}]$	42	[260	
Dark photons (γ_D)	$Z(\to q\bar{q}) h(\to \gamma_D \gamma_D),$ $\gamma_D \to \ell^- \ell^+ / q\bar{q}$	250	2.0	MD	${ m Br}(h o \gamma_D \gamma_D) \sim 10^{-5},$ $[m \in (5,10) { m GeV}, \tau \sim 10^2 { m ps}, \epsilon \in (10^{-6},10^{-7})]$	43	[85	

Good sensitivity for ALP

Axion-like Particles

5. SUSY Searches at CEPC

- SUSY: establishes a symmetry between fermions and bosons, solve many big questions: unification, DM, Hierarchy,
- Complementary with LHC: lower mass/soft energy region
 - ✓ Mainly light EWKino and slepton for CEPC

5. SUSY Searches at CEPC

Search	Production	$\sqrt{s} \; [{\rm GeV}]$	$\mathcal{L}[ab^{-1}]$	Sensitivity	Figs.	Ref.
Light electroweakino	chargino pair	240	5.05	chargino excluded up to 120 GeV	59	[465]
Light electroweakino	$e^+e^- \to BB \to \gamma\gamma GG$.	240	5.6	selectron excluded up to 4.5 TeV	60	[467]
	smuon pair	240	20	smuon excluded up 119 GeV	61	[468]
Light slepton	stau pair	240	20	stau excluded up 119 GeV	61	[468]
	smuon pair	360	1	smuon excluded up 177 GeV	61	[469]
	stau pair	360	1	stau excluded up 176 GeV	61	[469]
	$e_R^+e_R^-\to \tilde{\chi}_1^0(\mathrm{bino})+\tilde{\chi}_1^0(\mathrm{bino})+\gamma$	240	3	right-handed selectron excluded up to $210~{ m GeV}$	62	[470]
	off-shell smuon pair	240	5	smuon excluded up 126 GeV	63	[471]
	$\mathcal{F} ext{-}SU(5)$	-	-	upper limits on $\tilde{ au}_1$ up to 115 GeV	64	[472]
	$\mathcal{F} ext{-}SU(5)$	-	-	upper limits on \tilde{e}_R up to 150 GeV	64	[472]

5. SUSY Searches at CEPC

- Light EWKinos/sleptons: discovery in all scenarios up to kinematic limit √s/2
- Heavy selectron from tchannel

6. Flavor NP

■ CEPC is also a flavor factory (b,c,tau) when running at Z pole, which has a unique sensitivity for some rare/SM-forbidden decays of leptons and heavy quarks

■ New Physics scenarios:

- cLFV processes
- Decays of b and c hadrons
- Light BSM degrees of freedom from flavor transitions (cLFV or quark FCNC processes) with inv. BSM states or LLP

Measurement	Current Limit	CEPC [373]	_
${ m BR}(Z o au\mu)$	$<6.5\times10^{-6}$	$\mathcal{O}(10^{-9})$	
$\mathrm{BR}(Z o au e)$	$<5.0\times10^{-6}$	$\mathcal{O}(10^{-9})$	
$\mathrm{BR}(Z o \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	
$BR(au o \mu\mu\mu)$	$< 2.1 \times 10^{-8}$	$\mathcal{O}(10^{-10})$	
${ m BR}(au o eee)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$	
${ m BR}(au o e\mu\mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$	
${ m BR}(au o\mu ee)$	$<1.8\times10^{-8}$	$\mathcal{O}(10^{-10})$	ρ _.
$\mathrm{BR}(au o\mu\gamma)$	$<4.4\times10^{-8}$	$\mathcal{O}(10^{-10})$ S	10/1/
${ m BR}(au o e\gamma)$	$<3.3\times10^{-8}$	$\mathcal{O}(10^{-10})$	Siti
${ m BR}(B_s o \phi u \bar{ u})$	$<5.4\times10^{-3}$	$\mathcal{O}(10^{-10})$ $\mathcal{O}(10^{-10})$ $\mathcal{O}(10^{-10})$ $\mathcal{O}(10^{-10})$ $\mathcal{O}(10^{-10})$ $\mathcal{O}(10^{-10})$ $\mathcal{O}(10^{-6})$	D/ D/
${\rm BR}(B^0\to K^{*0}\tau^+\tau^-)$	7-	$\lesssim \mathcal{O}(10^{-6})$	SC 1/1
$BR(B_s \to \phi \tau^+ \tau^-)$	·-	$\lesssim \mathcal{O}(10^{-6})$	
${\rm BR}(B^+\to K^+\tau^+\tau^-)$	$<2.25\times10^{-3}$	$\lesssim \mathcal{O}(10^{-6})$	
${\rm BR}(B_s o au^+ au^-)$	$<6.8\times10^{-3}$	$\lesssim \mathcal{O}(10^{-5})$	
${ m BR}(B^0 o 2\pi^0)$	$\pm 16\%$ (relative)	$\pm 0.25\%$ (relative)	
$C_{CP}(B^0 o 2\pi^0)$	± 0.22 (relative)	± 0.01 (relative)	
$\mathrm{BR}(B_c o au u)$	$\lesssim 30\%$	\pm 0.5% (relative)	
$BR(B_c \to J/\psi \tau \nu)/BR(B_c \to J/\psi \mu \nu)$	$\pm\ 0.17\ \pm\ 0.18$	$\pm 2.5\%$ (relative)	
$BR(B_s \to D_s^{(*)} \tau \nu)/BR(B_s \to D_s^{(*)} \mu \nu)$	T-	$\pm 0.2\%$ (relative)	
$\mathrm{BR}(\Lambda_b \to \Lambda_c au u) / \mathrm{BR}(B_c \to \Lambda_c \mu u)$	$\pm~0.076$	$\pm 0.05\%$ (relative)	
$\mathrm{BR}(au o \mu X_{\mathrm{inv.}})$	7×10^{-4}	$(3-5)\times10^{-6}$	65
${\rm BR}(B o \mu X_{\rm LLP}(o \mu \mu))$	y -	$\mathcal{O}(10^{-10})$ (optimal)	_

> two orders of magnitude improv.

6. Flavor NP

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

- Heavy neutrino (@ND, FD)
- Non-standard neutrino interactions (NSI)
- Active-sterile neutrino transition magnetic moments
- Neutral and doubly-charged scalars in seesaw models
- Connection to leptogenesis
 (collider probes) and dark matter
 (sterile neutrino in the v MSM)

Discovery potential $^{10}_{10^{-12}}$ extends down to mixing $^{10^{-13}}_{10^{-13}}$ values of O(10 $^{-11}$)

The allowed ranges can be constrained to be smaller than **0.002**.

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

- Heavy neutrino (@ND, FD)
- Non-standard neutrino interactions (NSI)
- Active-sterile neutrino transition magnetic moments
- Neutral and doubly-charged scalars in seesaw models
- Connection to leptogenesis (collider probes) and dark matter (sterile neutrino in the v MSM)

Summary plot of neutrino relevant models

The sensitivities can be improved by roughly 1 to 2 (or more) orders of magnitude (vs LHC & LEP).

8. More exotics

High precision of Z, h width offers power test of exotics process of Lepton number/flavor violation, Sterile states, Axion-like particles ...

- Axion-like particles (solve "strong-CP" problem)
- Emergent Hadron Mass
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Exotic lepton mass models
- Spin entanglement
- •

m_a ranges from 0.1 to 100 GeV, extending current limits by more than two orders of magnitude

Quantity	Channel	Sensitivity scale (GeV)	CEPC Run
ALP $g_{a\gamma\gamma}^{-1}$	$e^+e^-\gamma\gamma$	6.7×10^3 [668]	$\operatorname{Tera-}Z$
	$e^+e^-\gamma\gamma$	2.2×10^4 [668]	$240~{ m GeV}$
	$ar{f}fa$	6.5×10^3 [668]	$250~{ m GeV}$
ALP $(g_{aBB}/4)^{-1}$	3γ	10^6 [61]	$\operatorname{Tera-}Z$
	$\rlap/\!\!E_T\gamma$	4.8×10^6 [61]	$\operatorname{Tera-}Z$
ALP $(\epsilon_e^A/\Lambda)^{-1}$	$W o \ell^{\pm} u a$	10^3 [669]	$240~{ m GeV}$
Tau $(d_{\tau}^{weak})^{-1}$	$ au^+ au^-$	6×10^6 [711]	$\operatorname{Tera-}Z$
Bell Inequality	$Z, h o au^+ au^-$	1σ [718]	$240~{ m GeV}$

25

8. More exotics

Energy reach in representative exotic search channels at the CEPC. Note the maximal energy reach may apply to different model parameter regions between experiments.

9. Global fits

Global fits: an essential tool to o b t a i n i n g a t h o r o u g h understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SMEFT
- 2HDM

Global fit for SMEFT operators at future colliders

- CEPC can improve the Higgs couplings by a factor of a few, or even orders of magnitude $(\delta g_{1,Z}, \delta \kappa_{v}, \text{ and } \lambda_{z}.)$
- CEPC can dramatically increase the sensitivity to Higgs, electroweak, and 4fermion operators by the 10~70 TeV scale

9. Global **fi**ts

Global fits: an essential tool to o b t a i n i n g a t h o r o u g h understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

SMEFT

Global fit for SMEFT operators at future colliders

- CEPC can improve the Higgs couplings by a factor of a few, or even orders of magnitude $(\delta g_{1,Z}, \delta \kappa_v, \text{ and } \lambda_z)$
- CEPC can dramatically increase the sensitivity to Higgs, electroweak, and 4fermion operators by the 10~70 TeV scale

Projected sensitivities of the CEPC and HL-LHC for various new physics scenarios

The sensitivities are orders of magnitude better than the existing facility

Sensitivity scale of the CEPC and other Exp. for various new physics scenarios

The new physics discovery power could also be expressed in the explorable energy range:

- SMEFT: up to 10-100 TeV, improve NP scale by a factor of 3~10
- SUSY/exotics: from half beam energy to TeV scale

Summary and Outlook

30 May 2025

[hep-ex]

arXiv:2505.24810v1

- CEPC has excellent discovery potential for NP, especially for light new particles at low energy/mass scale, which is complementary to hadron colliders
- CEPC NP white paper is on arXiv:2505.24810, your comments/suggestions are very appreciated!

New Physics Search at the CEPC: a General Perspective

Stefan Antusch, 1 Peter Athron, 2 Daniele Barducci, 3,4 Long Chen, 5 Mingshui Chen, 6,7 Xiang Chen,⁸ Huajie Cheng,⁹ Kingman Cheung,¹⁰ Joao Guimaraes da Costa,^{6,7} Arindam Das, 11 Frank F. Deppisch, 12 P. S. Bhupal Dev, 13 Xiaokang Du, 14, 15 Yong Du, 16, 17 Yaquan Fang, ^{6,7} Andrew Fowlie, ¹⁸ Yu Gao, ^{7,19} Bruce Mellado Garcia, ^{20,21} Shao-Feng Ge, ^{22,23} Jiayin Gu, ^{24, 25} Yu-Chen Guo, ²⁶ Jan Hajer, ²⁷ Chengcheng Han, ²⁸ Tao Han, ²⁹ Sven Heinemeyer, ³⁰ Fa Peng Huang, ³¹ Yanping Huang, ^{6,7} Jianfeng Jiang, ^{6,7} Shan Jin, ³² Liang Li,⁸ Lingfeng Li,³³ Tong Li,³⁴ Tianjun Li,^{7,35,36} Xin-Qiang Li,³⁷ Zhao Li,^{6,7} Zhijun Liang,^{6,7} Hongbo Liao,^{6,7} Jiajun Liao,²⁸ Jia Liu,^{38,39} Tao Liu,⁴⁰ Wei Liu,⁴¹ Yang Liu,⁴² Zhen Liu, 43 Zuowei Liu, 32 Xinchou Lou, 6,7 Chih-Ting Lu, 2,44 Feng Lyu, 6,7 Kai Ma, 45 Lianliang Ma, ⁴⁶ Ying-nan Mao, ⁴⁷ Sanjoy Mandal, ⁴⁸ Roberto A. Morales, ⁴⁹ Manimala Mitra, 50,51 Miha Nemevšek, 52,53 Takaaki Nomura, 54 Michael Ramsey-Musolf, 55,56,57,58 C.J. Ouseph, ^{10,59} Craig D. Roberts, ^{60,61} Manqi Ruan, ^{6,7} Liangliang Shang, ³⁵ Sujay Shil, ⁶² Shufang Su, ⁶³ Wei Su, ⁶⁴ Xiaohu Sun, ⁶⁵ Zheng Sun, ⁵⁴ Van Que Tran, ^{66,67} Yuexin Wang, ⁶ Zeren Simon Wang,⁶⁸ Kechen Wang,⁴⁷ Peiwen Wu,⁶⁹ Yongcheng Wu,^{2,44} Sai Wang,^{6,70} Lei Wu,² Fei Wang,⁷¹ Jianchun Wang,^{6,7} Xiao-Ping Wang,⁷² Guotao Xia,^{55,56} Ke-Pan Xie,⁷² Da Xu,^{6,7} Jin Min Yang,^{7,35,36} Shuo Yang,²⁶ Jiarong Yuan,^{6,7} Chongxing Yue,^{26,73} Yuanfang Yue, 35 Hao Zhang, 6,7 Mengchao Zhang, 74 Xuai Zhuang, 6,7 Yu Zhang, 68 Yang Zhang, 35 Yongchao Zhang, 69 Jing-Yu Zhu, 16 Pengxuan Zhu, 75 and Rui Zhu, 7, 36

> ¹Department of Physics, University of Basel, CH-4056 Basel, Switzerland ²Department of Physics and Institute of Theoretical Physics. Nanjing Normal University, Nanjing 210023, China

³Dipartimento di Fisica "Enrico Fermi", Universitá di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

⁴4.INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

Backup

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

- X. Neutrino Physics (Bhupal, Wei, Yongchao)
 - A. Prospects of heavy neutrinos
 - 1. Heavy neutrinos at the main detector
 - 2. Heavy neutrinos at far detectors
 - 3. SM Higgs decay $h \to NN$
 - 4. Prospects of heavy neutrinos in U(1) models
 - 5. Prospects of heavy neutrinos in the LRSM
 - B. Non-standard neutrino interactions
 - C. Active-sterile neutrino transition magnetic moments
 - D. Neutral and doubly-charged scalars in seesaw models
 - E. Connection to Leptogenesis and Dark Matter
 - F. Summary

Discovery potential extends down to mixing values of $O(10^{-11})$

The allowed ranges can be constrained to be smaller than 0.002. $e^+e^- \rightarrow \nu\bar{\nu}\gamma$

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

- X. Neutrino Physics (Bhupal, Wei, Yongchao)
 - A. Prospects of heavy neutrinos
 - 1. Heavy neutrinos at the main detector
 - 2. Heavy neutrinos at far detectors
 - 3. SM Higgs decay $h \to NN$
 - 4. Prospects of heavy neutrinos in U(1) models
 - 5. Prospects of heavy neutrinos in the LRSM
 - B. Non-standard neutrino interactions (NSI)
 - C. Active-sterile neutrino transition magnetic moments
 - D. Neutral and doubly-charged scalars in seesaw models
 - E. Connection to Leptogenesis and Dark Matter
 - F. Summary

FIG. 76: Left panel: The allowed 90% C.L. region for electron-type neutrino NSI in the planes of $(\epsilon_{ee}^{eL}, \epsilon_{ee}^{eR})$ at future CEPC with 5.6 ab⁻¹ data of $\sqrt{s} = 240$ GeV (Black), with 2.6 ab⁻¹ data of $\sqrt{s} = 160$ GeV (Red), and with 16 ab⁻¹ data of $\sqrt{s} = 91.2$ GeV (Blue), respectively. The allowed 90% C.L. regions arising from the global analysis of the LEP, CHARM, LSND, and reactor data [586], are shown in the shaded gray regions. Right panel: With all the data collected in all three running modes, the combined result is shown as the green region. Figure from Ref. [549]

BSM related neutrino physics from neutrino mass mechanism, new messengers and interactions at EW scale:

- X. Neutrino Physics (Bhupal, Wei, Yongchao)
 - A. Prospects of heavy neutrinos
 - 1. Heavy neutrinos at the main detector
 - 2. Heavy neutrinos at far detectors
 - 3. SM Higgs decay $h \to NN$
 - 4. Prospects of heavy neutrinos in U(1) models
 - 5. Prospects of heavy neutrinos in the LRSM
 - B. Non-standard neutrino interactions
 - C. Active-sterile neutrino transition magnetic moments
 - D. Neutral and doubly-charged scalars in seesaw models
 - E. Connection to Leptogenesis and Dark Matter
 - F. Summary

8. More exotics

High precision of Z, h width offers power test of exotics process of

Lepton number/flavor violation, Sterile states, Axion-like particles ...

- XI. More Exotics (Yu, Zuowei)
 - A. Axion-like particles (solve "strong-CP" problem)
 - B. Emergent Hadron Mass
 - C. Lepton form factors
 - 1. General remarks on μ/e g-2
 - 2. μ/e dipole moments in SUSY
 - 3. τ weak-electric dipole moments
 - D. Spin entanglement
 - E. Exotic lepton mass models
 - F. Summary

m_a ranges from 0.1 to 100 GeV, extending current limits by more than two orders of magnitude

36

8. More exotics

High precision of Z, h width offers power test of exotics process of Lepton number/flavor violation, Sterile states, Axion-like particles ...

- XI. More Exotics (Yu, Zuowei)
 - A. Axion-like particles (solve "strong-CP" problem)
 - B. Emergent Hadron Mass
 - C. Lepton form factors
 - 1. General remarks on μ/e g-2
 - 2. μ/e dipole moments in SUSY
 - 3. τ weak-electric dipole moments
 - D. Spin entanglement
 - E. Exotic lepton mass models
 - F. Summary
- Light EWKinos, smuon, stau coannihilation can explain mu g-2 excess
- Gaps from LHC, can cover by CEPC

A simple model with a new scalar and and a new fermion

9. Global **fi** ts

Global fits: an essention obtaining a thou understanding of a NP m the implications and precent the models for future sea experiments.

- SMEFT
- 2HDM
- SUSY

As a Higgs factory, CEPC is expected to improve significantly the SMEFT global analysis due to its high energy and luminosity.

Improve the new physics scale by a factor of 3~10

FIG. 95: Lower bounds on $\Lambda/\sqrt{|C_i|}$ at the 95% CL as presented in the Warsaw basis, assuming flavor universality and one operator at a time.

9. Global **fi** ts

Global fits: an essential tool to o b t a i n i n g a t h o r o u g h understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SMEFT
- 2HDM
- SUSY

CEPC has the potential to greatly enhance our understanding of the parameter space and mass spectrum in the MSSM.

One—dimensional profiled likelihood ratio for the global fit

2. EWPT at CEPC

- V. Electroweak phase transition and gravitational waves Huang, Sai Wang, Michael Ramsey Musolf, Bruce)
 - A. Introduction

B. Higgs precision measurements

FIG. 17: Discontinuity in the Higgs vev (v) at the critical temperature (T_c) as function of the doublet-singlet mixing angle θ in the real scalar singlet extension of the SM (xSM). Blue circles (yellow diamonds) give lattice results for a first order (crossover) transition, while blue curve is obtained from a two-loop perturbative computation using the T > 0 EFT framework. Black and green vertical lines indicate $\sin \theta$ sensitivities of LHC Run 2 and the CEPC, respectively (adapted from Ref. [193] by G. Xia).

FIG. 18: Phase diagram for the real scalar singlet extension of the SM in the plane of the doublet-singlet mixing angle θ and double-singlet cross-quartic portal coupling a_2 . Light blue and red regions indicate cross over and two-step EWPT regions, respectively, while the light grey region corresponds to a metastable electroweak vacuum. The dark grey region is experimentally excluded. Dashed red curve and dashed green lines indicate sensitivities of high luminosity LHC resonant di-Higgs searches in the $b\bar{b}\tau^+\tau^-$ channel and different scenarios of the CEPC precision $\sigma(e^+e^- \to Zh)$ exclusion reach, respectively. Purple band shows parameter region consistent with a LISA GW observation with SNR > 5. Dark grey region is experimentally excluded (adapted from Ref. [178] by V.Q. Tran)

FAR Detector

