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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Feynman integrals involving several energy scales can be
given by some finite linear combinations of generalized
hypergeometric functions.

@ Any commonly used functions of one indeterminate of
analysis can be expressed as the Gauss function

a,b o (a), ()
’ = AN 1.1
(4] 2 e, < a1
where (a), = I'(a + n)/I'(a) is the Pochhammer notation.

@ For the given parameters a, b, c, there are 24
hypergeometric series solutions totally of the partial
differential equation (PDE) which can be written as the
GKZ-system on the Grassmannians G, ,.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ In a-parameterization, the Feynman integral of one-loop
self-energy is

iAlSE(pz,m?,mi)
_ 2 \2-D/2 [ d’q . 2 2
,—(ARE) /0 doda, /Wexp{l[a](q 7111])
+ay(@+p)’ = md)]}

iy 2-D/2
B 2-D/2 exp{m‘(24 D) }F<2 ) (AZRE) /
B (4m)P/2

X /Sw3(t)6(rlt2 +it +t2t3)(tlt2)]_D/2t§)/2_]

D/2—2
)

X [rl m? + ’2m§ + t3p2] 1.2)

@ The hyperplane S is given by the equation 7, + 1 = 0, and
w3(t) = t,dt,dt, — t,dt, dt, + t,dt dt, is the volume element in
the projective plane P?, respectively.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

. 2 2 9 ' 1—-D/2D/2—1 2 2 21D/2-2
iA g (P s ,m2) o< Aw3(t)§(tlt2 +it + 1)) / t3/ {tlml +um +ip }

@ The integral can be embedded in the subvariety of the
Grassmannian G,

with r, = ml2, r, = mf, r, = p2.

@ Row: 1: integration variable 7, 2: t,, 3: t,, respectively.

@ Column: 1: the power function ¢!=2/2, 2: ¢1=P/2 3. (P/2-1,
6: the power of the linear polynom|altm +zm +1,p%.

@ The polynomial under ¢ function is taken as the fourth and
fifth columns of the subvariety of the Grassmannian G, ;.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Because the fourth and fifth columns in the matroid
Eq.(1.3) coalesce into a same point in projective space P?,

¢''S is reduced to the subvariety of the Grassmannian G,
represented by the matroid & of size 3 x 5

1 0 0 1 r
¢ = ( 0 1 0 1 r, > . (1.4)
0 0 1 1 r3
with the exponent vector

ﬁm):(Z—g, 27%’ lf)’ -1, %*I)ECS'

@ Similarly the Feynman integral of 1-loop massless triangle
diagram is embedded in the subvariety of the
Grassmannian G, ; represented by the matroid in Eq.(1.4)
with r,, = p?,, r, = p} = (p, +p,)* and the exponent vector
Bup=0112-21-9)cC.



IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

The hypergeometric function on the general stratum of the
Grassmannian G, ; with the splitting coordinates in Eq.(1.4)
satisfies the GKZ-system as

{9,4+0,5}26, & =-520, ¢,

{9, +0,5}2B, & =-5,28, ¢,

{94+ 055 }28, & = —,2(8, &) ,

{9140+ 0,4 +0,, 128, &) = (8, - DB, &),

{9, 5+0,5 + 0,5 }28, &) = (8 — V2B, &) , 21)

where the Euler operators ¥, = &, ,0/9¢, ;, and the exponent
vector B = (B,,---, B,) € C° satisfying 3" 3, = 2.



IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

Corresponding to the Grassmannian G, ; represented by the
matroid in Eq.(1.4), the exponent matrix is generally written as

51 —1 0 0 ay Qs
0 By, —1 0 ay, a5 | (22
0 0 ,83 —1 Qs y Qs

where

5 3
28=2 Y =81 Y as=p—1
i=1 Jj=1 Jj=1
Qg tos==F, j=123 (2.3)
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

Let V' ={1,--- ,5} denoting the set of indices of the columns in
Eq.(1.4). Choosing the spanning subset B of the vector
subspace C? in the vector space C° and the integer lattice on
the complement A\ 3, one gets the hypergeometric function

accordingly.
For example as B = {1,2,3}, there are on the matrix
of integer lattice whose submatrix composed of the fourth- and

fifth columns is formulated as +n, E{) & n,EY), where n, , > 0,
(i,j) € {(1,2),(1,3),(2,3)}, and other elements are all zero.

i i 0 0
Integer lattice (Ozxx‘ inlEil) in2E§’>): Eil) = ( 1 —1 ) s

, 1 —1 1 1
E§-> = 0 0 JED) = —1 1 .
3 —1 1 3 0 0
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,5 n]Eg(l) + ”2E3(2))
0 0O —n,
=1 0 0 O —n, , (2.4)

0 00 —n—n n +n,
@ the exponents are given by the matrix

( 0 B—-1 0 0] -8,
0 0 B—1 B -1 1-8-8,

where ¢, , = a,, = 0 because n, , are nonnegative.

B, -1 0 0 0] -8,
) , (2.5)
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is

2 (B, &) =40 (B)r) T 1(r,) P2(ry) T

{1,2,3} {1,2,3}
»( LES
{123}(ﬁ rzY rl>7
eV (B, x, ) = Z W (B )l a2 (2.6)
{121} » Xps Xy L{lZ}} s s My )X T, .
where
alh) (8 = [G) :
(123} T(1— B)T(I - B,)T(2 ~ B, — B,)
I B B, (1= B0, )
(B, ny,ny) = . (2.7)
{123} n I, 1(2 — By — By), o
1

with the Pochhammer notation (a), = I'(a + n) /T'(a).
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

[ IS8

,‘
o

a,b

(a) (0)

Figure: 1 The geometric configurations of the hypergeometric
functions on the projective plane P?, where the points a, - - - , e denote
the indices of columns of the 3 x 5 exponent matrix.

The geometric representation of the function (I)El) ,, is drown in
Fig.1(a) where {a,b} = {3,4} and {c,d, e} = {1,2,5}, which the
determinant of any 2 x 2 minor of the submatrix consisted of

the third and fourth columns is zero.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,5 n]Eg(l) + ”2E3(3))
000 —n,
=100O0 n-n —-n-+n |, (2.8)
000 —n
@ the exponents are given by the matrix
e[|
B, -1 0 0 0] -8,
= 0 B, —1 0 B,+pB,—1 B, +5,—1 ](2.9)
0 0 B—1 —B, 0]

where o, , = a,, = 0.

3,5
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is formulated as

@) B o =40 @)y

{1,2,3} {1,2,3}
e 8, —z —?)
saf])‘“}(ﬁ, )= > cﬁm}(ﬁ, nyom)x 2 (2.10)
iy
@ Where
4O () = T(B,)T(Bs) ’
{123} T(1— B)C(1 = By)T (B, + BT (B, + B,)

28y, (B,
n i By + Bs) ) (Bs +B,)

BBy =

e (2.11)

i)

Note that 1/(a)_ = (—1)"(1 - a),.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric
representations of G,

(a) (b)

@ The geometric representation of the hypergeometric
function is determined by the exponent matrix presented in
Eq.(2.9), the determinants of the submatrices
det(HaH{lzs}) det(HaH{zzq)iO

@ The geometric representation of the function <I>< ) . 18
drown in Fig.1(b) where a = 2, {b,c} = {1,5} and
{d,e} = {3,4}.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Taking the affine spanning B = {2,4,5}, one finds
det(gm‘s}) = r, — r, which differs from det(& 1.2.3}) =1,
where det(,, , ) denotes the determinant of the 3 x 3

minor of the matrix in Eq.(1.4) composed of the 2nd, 4th
and 5th columns.

@ In addition,

— 0 0
. }3 1 37N
- ¢ = k 1
(2,45} 13 P 0 7r3 = 1 0 . (2.12)
1 1
37N 0 37" 0 !
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,,5|(n,E ( ) +n E3 )N\B)
0 -n, 00
=| n-n 0 —n+n 0 0 |, (2.13)
—n, 0 00
@ the exponents are given by the matrix
e[|
0] B, —1 —B, 0 0
=| B +5 -1 0 B,+pB,—1 B, —1 0 2.14)
_/85 0 @ 0 ﬂs -1
where o, = a,, = 0.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is
(ry — 1| )27‘31 A (r_z)ﬁlJrBSil(r1 -

e B &=40) ®
(24,5 {2.4.5) der(€, )

— B,
)

3 r(y —n)

By+B3—1 _(2)
x (=)0 (e, 2,
{2,4,5} ryory(rp —ry)
1-8,-8 By +B85—1 -8
=A({22),4,5}(ﬁ)(r =) TSy =) 2
By By =1, o (—n/n)
x(=r)P2 B, 2, =22,
feea
P B ) =@ (28, ) - (2.15)

{24 5}
@ In order to obtain the analytical expressions in the whole

domain of definition, we present the fundamental solution
systems under all possible affine spanning 5.

20/52



IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ In these hypergeometric functions, ¢\, i = 1,3,5,8, 10, 12
are the first Appell functions, while o9, j =2,4,6,7,9,11
are the Horn functions.

@ ltis easy to find that the convergent regions of gogfl .
QEIL ,,» and gﬂ) ., have nonempty intersections in a
connected component of definition domain, thus they
constitute a fundamental solution system in the proper

nonempty subset of the parameter space.

@ The linear combinations of hypergeometric functions on
the different nonempty proper subsets of the parameter
space are regarded as analytic continuations of each other.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

— () ()
e o= 3 @, 0
— 0] O]
= ,-:{Iz,s,ﬁ)c ®ef), B O
= 3 el (s ¢
i={3,7,8} (23
_ ) 3y ®
> e, B O
i={4,5,12} o
_ @) gy
> e, B o
i={8,9,10} o
= > @) s e (2.16)
i={10,11,12} -

Using the Gauss inverse relations below, we can derive the
combinatorial coefficients uniquely, then continue the analytic
expressions to the whole domain of definition of the Feynman
integral by the Gauss-Kummer relations.
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Ill. Inverse

I1l. Generalized Gauss inverse relations

@ The Gauss inverse relations include the following analytic
continuation together with its various variants
)

R ( a,b x) _ F(f)l“(b*a)(_x)fa JF) ( al+a—c

¢ T T(B)T(c —a) I+a—b
L(e)T'(a —b) —b bl4+b—c |1
er(*x) 2F) ( l—a+b x) . (3.1)

@ Note that this transformation satisfies the idempotent
property. Performing the inverse transformation on the
terms of the right side, one finds that the sum of the results
after transformation is exactly the term on the left side.
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Ill. Inverse

[l. Generalized Gauss inverse relations

The Gauss inverse relations, i.e. the analytic continuation
formulas from one connected component to another in the
domain of definition, are obtained through the Mellin-Barnes’s
contour on the corresponding complex plane.

The Mellin-Barnes representation of the hypergeometric

(1)
function Py is
L(B)T(B)T(1 — B,) o
T2 -6, —B,) Pasy
_ 1 /ioo T(B, +s)T(B) +5,)T(1 — B, +5, +5,)
27i)? J—ico INE 53 - 54 +5, +52)
XD(=s )0 (—s5,)(—x,)"1 (=x,)2ds, J\ ds, . (3.2)

B ¥ 1)
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Ill. Inverse

. Generalized Gauss inverse relations

Performing the transformation 3, + s, = —s, on the complex
plane s,, we rewrite the Barnes’s contour integral in the
right-handed of above equation as

(—x) "0 /,-oo T(B, +5)T(B) +s)T(1 = B, = B, +s5, =)
@eri)?2 J-ico LB, +85+s — s;)

XD(=s )T (=5))(=x)"1 (=) T2as, A as)

_TBITBITU =8, = B) 5 s
= T8, + By) () ey B ) o
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Ill. Inverse

. Generalized Gauss inverse relations

Under the affine transformation 1 — 3, + s, + s, = —s, on the
complex plane s,, the Barnes’s contour integral in the
right-handed of Eq.(3.2) is formulated as

(_Xz)ﬁfl /,-OO (B, +5,)0(B, +B, —1—5, — s;)F(l — B, +5, +s;)
@ri)? Joico L1 =8y =)

XD(=s )T (=5)) (=5 )1 (=x)) 1 "2ds; A\ )

_ LB +8, —DLBITU = B) 5, 1 (1) n
= Ta— 5, (—x,)"4 Lp{|72,3} B, »’52’ X2)~ (3.4)
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Ill. Inverse

[l. Generalized Gauss inverse relations

Then the residue theorem implies the following equation:
Gauss inverse relations

) c
o), By )

_TU =B, =BITC=8,—B) s I
=TI r et =gy 2 P B )

Similarly, we have
A0, B )
_ra —FZ;I fé:;fﬂﬂé)_ 2 (o) 200, (8, % %)
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Ill. Inverse

I1l. Generalized Gauss inverse relations

@ The images of the generalized hypergeometric functions
under the map of inverse transformation of certain variable
are the linear combinations of the generalized
hypergeometric solutions of the GKZ-system in the same
affine spanning.

@ The method presented here generalizes the approach
adopted in the work A new development of the theory of
hypergeometric functions by E. W. Barnes, published in
Proc. London. Math. Soc. 6(1907)141-177, and can be
used to derive the analytic continuations of any
generalized hypergeometric functions. For example, we
can derive the analytic continuations of the Pochhammer
functions ,,F),, and verify those continuations satisfying
the idempotent property accordingly.
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ The independent Gauss adjacent relations are the
following two equations

,b
L'zFl( ac
(fl—f+1)2F1(

— a,F, ( a+cl,b

x> :aszI( at+l,b

el x)+(,'2F]< a’b(il ’x) s
)

x) — (c— 1) 2Fy ( Ca’,bl x) s (4.1)

together with two equations obtained by the interchanging
a <> b in the above equations.

a, b
c

@ For the GKZ-system on the Grassmannian, the adjacent
relations of the hypergeometric functions are determined
by G,, and its dual G- .
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ For G, ,, the dual variety of the Grassmannian £ in Eq.(1.4)

is given by the matroid
ee=( 50 20 o). 42

1 2 3

@ Correspondingto 8+¢, = (1+8,, B,, ---,5,), we obtain
three independent adjacent relations among

oW ied{l, 12}

Brell (B, &)+ B, - D2 (Bre ey &)

{1,2,3} {1,2,3}
+(Bs = @) L Be e, ©)=0,
5,20, B O+ (B - (B, e )
+(85 — l)r2<1><{il>y213} (B+e, —e5, £) =0,
B0 LB O+ (B, - (B —e 8
+(Bs = @) (Bt e, ) =0, (43)
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V. Kummer

V. Generalized Gauss-Kummer relations

@ The third type Gauss relations are derived through
Kummer’s classification, which can be written as
2[:1 ( a,rb X) - 7):)(_,;_}7 zFl ( C*ﬂ,CC*b x>
=)

=(0—-x"",F (
xil> ®1

a, c—b

b

o N—b c—a,
=(1—x) ZFI( .

and its various variants.
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V. Kummer

V. Generalized Gauss-Kummer relations

For the GKZ-system on the Grassmannian, the generalized
hypergeometric solutions corresponding to the same geometric
representation are proportional to each other in the intersection
of their convergent regions.

Corresponding to the geometric representation shown in
Fig.1(a) with {a,b} = {3,5}, {c,d, e} = {1,2,4}, we derive the
following six solutions of the GKZ-system presented in Eq.(2.1)
which are proportional to each other in the intersection of their
convergent regions,

(10) 0 o a® ) 300 O
(1){1,2,3}([3) <1>{]12‘5}(,3) ¢{1,3,4}(B) <1>{1’4,5}(ﬁ) (1){2,4,5}(@ <I>{21314}(B)- (5.2)
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V. Kummer

V. Generalized Gauss-Kummer relations

Dividing each function by a common power factor and requiring
equality to each other on the concrete principal value plane, we
obtain the generalized Gauss-Kummer relations as

(10 .
P03 B x, 5)

- -8 =By (D) * Y
=(1— (1 — 2

1=y (1—x) 59“7275}(5’ =1 oy
_ Bs=1,(5) SR
= (1 — 5

=95 e T )
_ Bs—1_(5) y oorzs
=(1-y)P —

( y) 89{2,3‘4}(57 y—l’ y_]>
=(-9'"2 a0 (g T2

: {1,4,5} 1—y

BBy _ =B ,(10) , L2
=0—-y" 17 FHBu—y Zw{z,“} B ¥, ; _X) , 63)

withx=r,/r,, y=r/r,.
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VI. Example |

VI. The analytic expressions for 1-loop self energy

In this scheme, we obtain the analytic expressions of a
Feynman integral in its whole domain of definition through the
following steps.

@ After embedding the Feynman integral on a variety (a
special stratum) of the Grassmannian G, , (k < n), we
construct all hypergeometric solutions for the general
stratum of the Grassmannian G, , under all possible affine
spanning.

@ We derive the inverse and adjacent relations among
hypergeometric solutions under the same affine spanning,
and the Gauss-Kummer relations among hypergeometric
solutions from different affine spanning.
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VI. Example |

VI. The analytic expressions for 1-loop self energy

@ In the neighborhood of the regular singularities, we write
the Feynman integral as a finite linear combinations of the
canonical series solutions for our special stratum under
same affine spanning.

@ The combination coefficients are obtained by the reduced
Gauss inverse relations among the canonical series
solutions, then the analytic expressions of the Feynman
integral are continued to its whole domain of definition.

35/52



VI. Example |

VI. The analytic expressions for 1-loop self energy

In the example of 1-loop self energy, its Feynman integral is
embedded in the general stratum of G, ;

@ The exponent vector

-1, = —1ec. (6.1)

B=B,,=0-7 B

» 2=

SRR
AR
o

(1)
Where D is the time-space dimension in dimensional
regularization.

@ The boundary conditions:

n2 - 2)r2(2 — 1) ( —pz)gq
A2

) 2 _
i (7, 0,0) = (@m)P/2T(D — 2)

ir@2-2)re - 1>( m )gq

(0, m* ,0) = =
(4m)P/2r(2) A2

(0,0,m>) = 6.2)

IAF IAF

which are used to obtain the combinatorial coefficients.
Here A,, is the renormalization scale.
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VI. Example |

VI. The analytic expressions for 1-loop self energy

@ | < m? < mi
Ay (P o)
2 2
_ (D) 2 =B, 2\—B,  2\1=B, =B, (1) rp
—C{lyz’”(ﬁ)(ml) LQmy) "207) 3 4s0{l’2,3}(ﬁy m§, e
2 2
) 2185 —1_(5) rom
T (B)(m3)"s P oy (B, mg, mi)
2
£CO (@B T ) ® (g P (63)
{1,2,3} 1 2 {1,2,33 mf m2 ’
o mz < \[)z\ < m?
Ay (7 T )
—, @)D, e B
SRR I JIEET R
+c™ (B)(mz)’Bl (p2>61+5571 (©] (B ﬁ ﬁ)
{1,2,3} 1 Clesn ™ 2 a2
1
+e® (B! TR TR ) T (s " ﬁ) (64)
{1,2,3} 1 ) P TPlhen T e :

37/52



VI. Example |

VI. The analytic expressions for 1-loop self energy

o mz < m? < Pl

2 2 2
Aygp P )

2 2
—c® @) el TR e ® (s, 2, 2
{1,2,3} {1,2,3} 2’ m%
> 2
(9) 2\B3+Bs =1, 2y=B5 (9) oM
+C{|”}(ﬂ)(ml)3 5T0) 359{]1213}(,3, R m?)
2 2
(10) 2)85=1,,(10) o™
+C{l”}(ﬁ)(p) 5T {]“}(B, 2 ,,2> (6.5)
o m? < mg < P2
PR
2 2
_ (10 2985 =1,(10) o™
—C{I,m}(ﬁ)(p) {]23}(3, 2 p2)
2 2
(11) 218, +Bs— By (11) mfz 'i
+C{1”}(B)(m2)3 s 350{]“}(6 pz’m2>
2
> 2
(12) 2.1-8, -8 B 8, (12 meem
+CI,3}(B)( ) 4(m) 2077 349{]12‘3}(/3, - %> (6.6)

38/52



VI. Example |

VI. The analytic expressions for 1-loop self energy

o m? < P? < mf

2 2 2
Ajgp (07 mi,m))

2 2
Y 2= By 2By +Bs—1 (4 LA
=G5y BYmy) P22 70 e 1) (B w2’ p2)
2 m?
(5) 2485 =1 ,(5) o
+C{11213}(ﬁ)('"2) s ¢{1,2,3}(ﬁ’ mg, mg)
e m
(12) 2\1=By =By (2= By (,2y— B3 ,(12) N
+C{1,2,3}<B)(ml) R my) 2 07) 3%3{],2,3}(57 2 mi) (6.7)

@ Using the boundary conditions in Eq.(6.2), we have

3) %) _ ry-nre-2)
c B)=c (:3)—7(4#)0/2“%) ,

{1,2,3} {1,2,3}
_\D/2=2p2(D _ _ D

(10) (=D 2 -nre-2)

o P = (4m)P/2r(D — 2) ' ©8)
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VI. Example |

VI. The analytic expressions for 1-loop self energy

@ Other coefficients are linear combinations of the above
coefficients through the Gauss inverse relations.

@ Performing the inverse transformation of suitable variables
in Eq.(6.3) and Eq.(6.4), for example, one gets

Cisl)z 3} (8) = (-1~ LB +6; -~ DIC -6, - 65)(1(5)
. T(B)T(1 - B,) {123}
(B, + B85 — HT(B, + 55)0(6)
T(1— B, — BOT(By) {123}

@ L@ =t PO =8 =BT =By = Bs) (5)
v T(By + BT (1 = B5) {123}

)Py tB ! (B, + BT — B, — Bs)C«,)
T(B,)T(1 — B,) {1,2,3}

((2)

+(=1)~ ),

((9)

+(

B) s

(6.9)
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VI. The analytic expressions for 1-loop self energy

°
(5) _ -8 DBy +B)0(B, + 85 — 1) 2y
B N N RIS B (R R
B 1 DBy + B — DT =B, = B5) 3
D T(B,)T(1 — £,) RIESEG
©® Bt 1 DB A BT — B, — B5)
9 B = (=1t Seora ) e ®
- D@8 =BT =8y~ B) 5 6o
+(=1) G T AT A Chan @ 610
@ thus
c©® — (- (=B = BIT(Bs) c®
B = ) e e e @
_1)PatBs F@—68 = BT~ By _54)F(ﬂ5)c(5) ;
e TBOT0 - BT, + 8y 02n P
) BB, TR By — BT = By — BIT(Bs) 3
Cliam @ =D T = B)LB)T 6, + 8y aran
fenpr LU B ZBITE) o) g ©.11)

T(B, + B)T(B, + B5 — 1) {123}
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VI. The analytic expressions for 1-loop self energy

@ In a similar way, the combinatorial coefficients of

@E’Rm(ﬁ), i =4,7,9, 11 are respectively written as

@ (@) = (_1fa+Ps DO =By = BITBITQ = By = B5) (5)
{1,2,3} D(B, + B5)T(B;T(1 = By) {1,2,3}

LU =B = BITB) oy
T(B, + Bs)T(By + Bs — 1) {123}

D (@) = (—fi+Ps L2 =8, = B0 = By = BIT(Bs) 3)
12,3} T(B,)T(1 — B)T(B, + Bs) 11,23}

(2]

+(71)ﬂ2 8,

8)

0% r(;,(rﬂfir_(ﬁ?fgfi 5 @
Cigliz,z} ®) = (=" F(;1(1+_6j2:1)ﬁlf();3(5j )BS) Cf‘{“} ®)

rntytas KO BITOOTE B Pl @),
iy )= D e S i @)

Heyfatts U= B = BITC =65 = BITBS) 10) gy 612

T(8,)T(1 — B,)T(B, + B5) 01,23}
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VI. The analytic expressions for 1-loop self energy

@ The combinatorial coefficients of o(‘{") 2.3} (B), i =1, 8, 12 are respectively written as

b @ = (it DB, + B, = DI = B)VB;) (3
2 D(1— B)T(B)D(B, + 5 — 1) {123}
1—p,—p, T8y + B, = DD = BIT(By) 5

(B)

+(=D T(1 - B,)T(8;,)T(B, + B; — 1) {1.2,3} @
DA o B:(i ;Ai?)(giﬂfﬁs ERIENCE
PRSI S TR
+(=noi s TG 52(1;345);)(2261)55 - e @
HEDTAT iﬁﬁi ;([?4—7;3))2((16: f%r iﬁ?i i @
Clnyy ) = (D775 I3, +I;3(51:1§4F)(2(55;1 — 5, Can @
HEnERT EEZ: )lf(?:ﬁl)fr((]ﬁ:f“;: (7551; o @
t(oyPats =1 DB By = DDA = BOTBs) o) 5y (643

T(B,)T(1 — BT (B, + B5 — 1) {1:2:3}
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VII. The expressions for a 2-loop massless triangle

b,
| e
b,
—
b,
4—

Figure: A 2-loop massless triangle diagram whose Feynman integral
can be embedded in G, ;.
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VII. The expressions for a 2-loop massless triangle

In a-parametrization, the Feynman integral of the 2-loop massless triangle diagram drawn in Fig.2 is written as

. 2 2 2
Ay (P Py py) =

(AéE)S’"F(s —Dyexp{in(1 — 2)}
@mP (=)D fye

5-3D/2
X[(1y + 1)ty +1,) + (1) +1, + 15 +1,)15] /
2 2
X [tl Lisp) + 14 (tyty + 151, + 1315 + 1,15 )p2
21D—5
T+, (11, + 13ty + t5ts + 141 )p3] s (7.1)
The integral can be embedded in the matroid £"% of size 3 x 5
1 0 o0 1 pf
eVE=] 0o 1 0 1 p§ , (7.2)

where the splitting coordinates r, = p?, ry, = pi, andr, = p;, respectively.
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VII. The expressions for a 2-loop massless triangle

+2A e — Ae, — Ae;inEq.(2.1), where

For convenience we take the exponent vector 3 = ,B(WE)
B(WE) =(1,1,1,3—D, D—4)¢€ C3, and A is a nonzero c-number. Certainly at the end of calculation, we
take the limit A — 0. The boundary values of the Feynman integral of the 2-loop massless triangle are

A2
2 2 2 2 5-D
AWE(p,p70)=AWE(p,0,p)=(%pF§) By,

A2
2 2 RE )3~
A (0,p7, =(—= B, 7.3
we @27 = (25)77 8 (73)
where B and B, are derived through the Gegenbauer polynomial technique.

Q- (Te-T@-D) , m \D-s
o= (4w>0r(%>{ r-n (=)

(0 -2)r(§ —r’e-2) ( m? )%72
@4 -D)r(§¥ —nrm-3)

2

@-D)r¥ —2)r¢e - o }
(6 —D)N(R —5) '

L - HrG5-p) X T(D-2+n)

(@AmPT(D —2)r(3L —5) = nl(Z — 14 n)?

B,

1 1
X{(l+n)(37€+n) + (1+n)(D—3+n)

1
+(D—3+n)(%—5+n)}' 74
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VII. The expressions for a 2-loop massless triangle

2 2 2
o ‘173\ < \pz‘ < ‘,;1‘

2 2 2
o ‘,)3‘ < \pl‘ < ‘,,2‘

(AZRE)57 Awﬂ"?#’imi)
211)2;}(3)@) ﬁ]@,) B,<pz)1 By— 54%11)“}
Ry @, 0
+C?1)2 z}(ﬂ>(p )BS ?1>2 3} (8, pé’ Zg)
7 1
(A§E)57DAWE(P?7I’§aP§)
211)2 ?}(B)@) A (1’> BZ(PZ)] F3 B‘W’?l)zz}
+C(Sl)’ 3}<'B>(p >BS?I 2?2 %}(ﬁ Iév g)
Py 2
+C161)1213}<B>(p?>ﬁz+ﬁ571(p> P ({61)2 %)(3

(B

K
“oluSe

2 2
Bk
27 2
P, Py
2
Z)
2
/71
(7.5)
2 2
Bk
27 2
Py P
2
]7]
=) (76)
p2
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VII. The expressions for a 2-loop massless triangle

2 2 2
@ 21 <2l < Ip}l

2 \5-D 2 2 2
(ARE Ay ], P55P3)

W

P

[SN )

P

=c @) s,

{1,2,3} 12,3} )

)

V4

_N\
=%

2 2
™ B1 )P H8s =1, B
+0 L, @ED T s, -

]72 p2
e, @D TR TGN e, e 2 2.
1

{1,2,3} {1,2,3} 2’ @7
@ <l <l
5—D
(AZRE) AWE(pf,pZ,pi)
PP
_c® By (2\1=By—B —By (®) » P
_C{1,2,3}(B)(”) L) 72 4(1)) ‘w““}(ﬁ Pﬁ’ plz)
pZ p2
(9) 2\By+Bs—1 By (9) 1 2
+C{]1213}(B)(p1)3 5 (p> ‘«P“”}(ﬂ 2 ]Tz)
3 1
p2 pZ
(10) Bs—1 (10) 2 1
+C{|1213}(B>(p )"s 20 “}(ﬁ ? p?)- (7.8)
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VII. The expressions for a 2-loop massless triangle
o

2 2 2
Py <Pyl < Ip5l

5
(AiE AWE(I’?,P;I’i)
0 (@it g 2 T
T {1,2,3} 73 {123} ’pg’ p§
V pZ p2
(11) 2\By+Bs—1,2\=B, (11) 2 T
+C{]”}(ﬁ)(1)2) 3TN0 3¢{]y213}(ﬁ, 2 1)2)
3
2 2
_ P, P
+e® L @D T TR TR ) TR (8, T 09
3 N
\Pf\<\ﬂ§\<\/’§\
2 \5-D 2 2 2
(ARE) AWE(]’l’pz’”3)
2 2
—c® @) PRt (e T
{1,2,3} {123} ],g p%
2 2
e 2,85 —1,_(5) [
+C {]23}(3)@ )7 {1,2,3)<5‘ P§, "’i)
2 2
c(12) 2\1=8, =8, B By ,(12) non
+““}(B)(P) ! 4(17) 2(p ) 3 {l“}(ﬂ §,1)2)4 (7.10)
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VII. The expressions for a 2-loop massless triangle

The boundary conditions give

72C?1),2.3} 8) + C({Sl),z,ﬂ B = 4zle ’
72C$1>.z,3} B) +C({110,)2,3}<B> = 4€1D ’
e B+l 8= 742?0 . 7.11)
Then we have
o B =
Cisl),z,.%} = Cillo,)z,z} = 74?20 ) (7.12)

50/52



VIIl. Summary

VIII. Summary

@ After embedding Feynman integral on a variety of
Grassmannian G, ,, we construct all hypergeometric
solutions under all possible affine spanning.

@ We derive the inverse and adjacent relations among
hypergeometric solutions under the same affine spanning,
and the Gauss-Kummer relations among hypergeometric
solutions from different affine spanning.

@ In the neighborhood of the regular singularities, we write
Feynman integral as a finite linear combinations of the
canonical series solutions under same affine spanning.

@ The combination coefficients are obtained by the reduced
Gauss relations, then the analytic expressions of the

Feynman integral are continued to its whole domain of
definition.
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