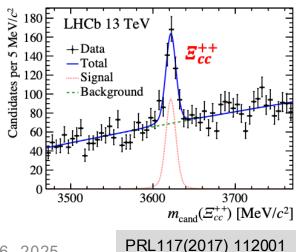
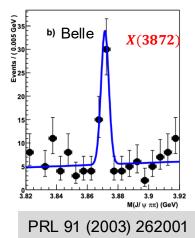


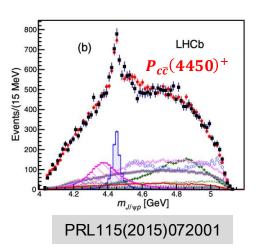
Recent spectroscopy results from LHCb experiment

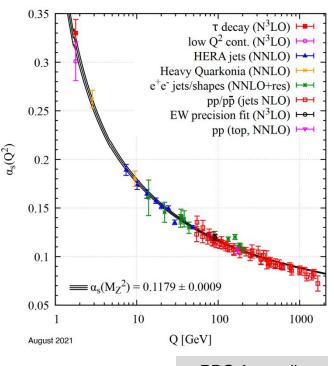
Zan Ren*

*on behalf of LHCb collaboration

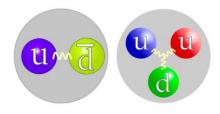

University of Chinese Academy of Sciences

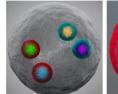

September 16th, 2025

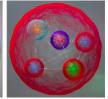


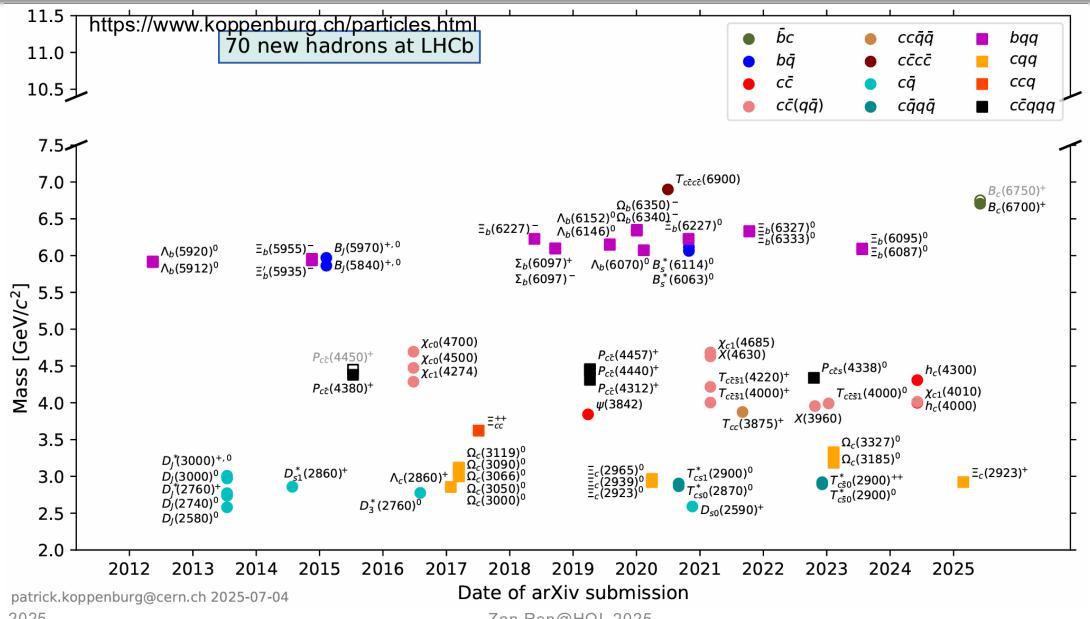

Background review

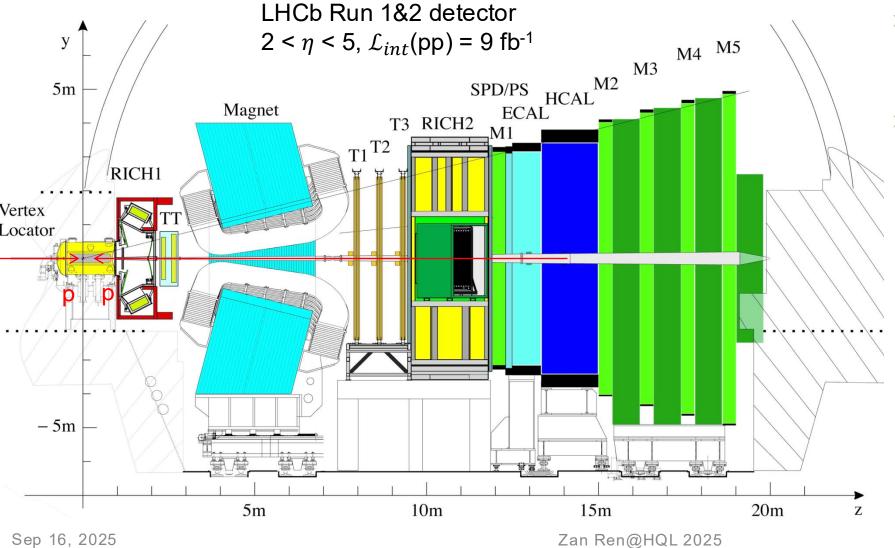
- QCD shows non-perturbative behavior at the energy scale of nuclei and hadrons.
 - Spectroscopy is a powerful tool to understand QCD at this energy scale. Experimental results will be important to test the relevant theories.
- Spectroscopy of conventional hadrons (mesons and baryons) enriched in the past decades.
- Exotics are predicted since 1960s but first observed until 2003.
 - In the last 20 years, many new exotic candidates have been discovered in e^+e^- collision and hadron collision experiments.



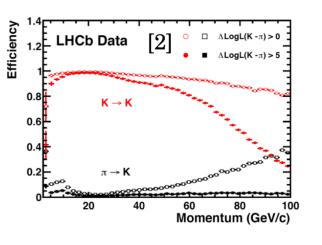






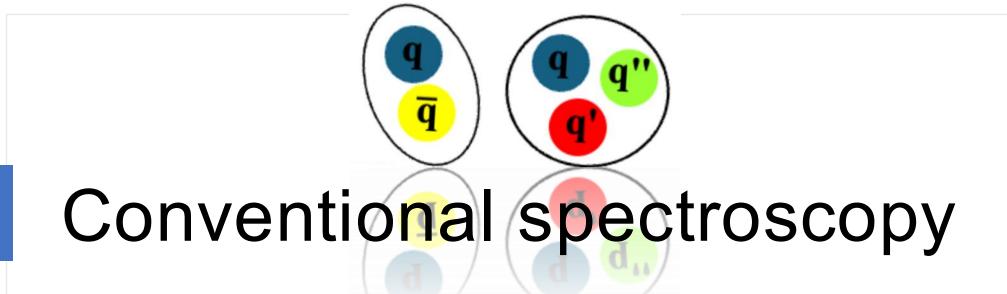

Zan Ren@HQL 2025

Hadrons discovered by LHCb



LHCb detector

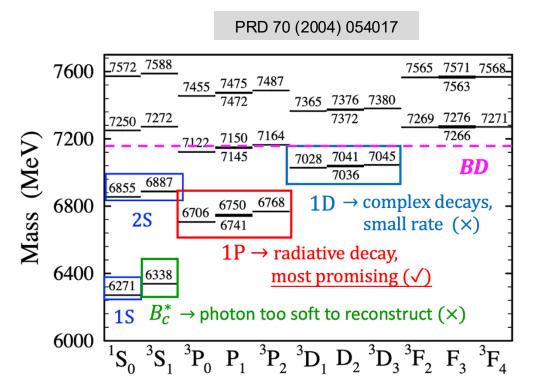
Single-arm, forward. Specifically designed for heavy-flavour physics.

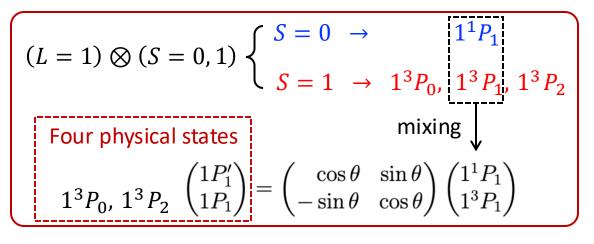

- > Excellent tracking and vertexing
 - $\sigma(p)/p < 1\% @ \epsilon_{\text{track}} > 96\%$
 - σ (IP) = $(15 + 29/p_T) \mu m$
- > Excellent PID
 - $\epsilon_{PID}(K) \approx 95\%$ @ MisID $(\pi \rightarrow K) \approx 5\%$
 - $\epsilon_{\text{PID}}(\mu) \approx 97\%$ @ MisID $(\pi \rightarrow \mu) \approx 3\%$

JINST3 (2008) S08005 IJMPA 30 (2015) 1530022

New results covered by this talk

- Conventional states and related:
 - Observation of the orbitally excited B_c^+ states
 - Observation of a new charmed baryon decaying to $\Xi_c^+\pi^-\pi^+$
 - First determination of the spin-parity of $\Xi_c(3055)^{+,0}$ baryons
- Exotic states and related:
 - Observation of $T_{cs0}^*(2870)^0$ in the $B^- \rightarrow D^- D^0 K_S^0$ decay
 - Observation and investigation of the $T_{c\bar{c}1}(4430)^+$ structure in $B^+ \to \psi(2S)K_S^0\pi^+$ decays
 - Observation of $\Lambda_b^0 \to \Lambda_c^+ D_s^- K^+ K^-$ decay and search for pentaguarks
 - Observation and branching fractions of $\Lambda_b^{\ 0}(\Xi_b^{\ 0}) \to J/\psi\Xi^-K^+(\pi^+)$ decay

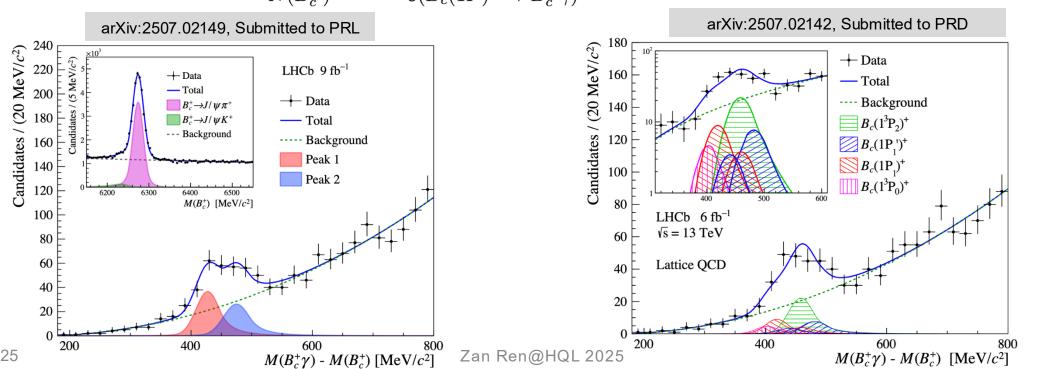



Observation of the orbitally excited B_c^+ states

- The B_c^+ meson family is the only mesons composed of two different heavy quarks $(\bar{b}c)$
- Despite its ground state, only the 2S excitations have been observed at the LHC

PRL 113 (2014) 212004

- The 1P excited states are predicted to decay solely via radiative transitions
 - most likely to be the next excitations to be observed, with predicted masses in the range of (340,520) MeV
 - four states are expected, leading to six peaks due to unreconstructed photons from B_c^* decays

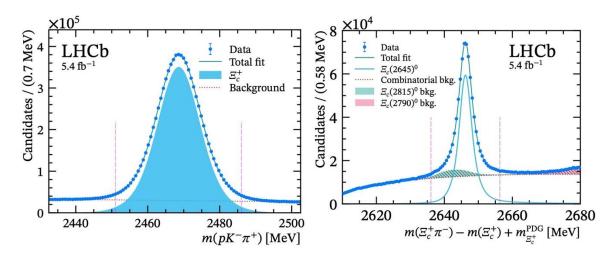


States	$1^{3}P_{0}$	$1P_1$	$1P_1'$	$1^{3}P_{2}$
Decays	$B_c^{*+}(\to B_c^+\gamma)\gamma$	$B_c^+ \gamma$ $B_c^{*+} (\to B_c^+ \gamma) \gamma$	$B_c^+ \gamma$ $B_c^{*+} (\to B_c^+ \gamma) \gamma$	$B_c^{*+}(\to B_c^+\gamma)\gamma$
#peaks	1	2	2	1

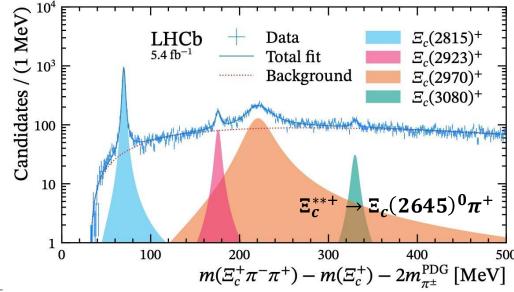
Observation of the orbitally excited B_c^+ states

- $B_c(1P)^+ \to B_c^+ \gamma$, where $B_c^+ \to J/\psi \ (\to \mu^+ \mu^-) \pi^+$ and photon reconstructed from calorimeter
- A pronounced wide peaking structure is seen within the predicted mass range (significance $> 7\sigma$)
- The visible width exceed the expectation of single-peak interpretation ⇒ a minimal effective **two-peak** model used
- By fixing the peak positions and relative yields to theory, different theoretical models were investigated ⇒ all generally good
- The relative production rate, representing the fraction of B_c^+ comes from $B_c(1P)^+$ is determined using the LQCD model

$$R = \frac{N(B_c(1P)^+ \to B_c^+ \gamma)}{N(B_c^+)} \cdot \frac{\varepsilon(B_c^+)}{\varepsilon(B_c(1P)^+ \to B_c^+ \gamma)} = 0.20 \pm 0.03 \pm 0.02 \pm 0.03 \text{ (choice of theoretical models)}$$



Observation of $\Xi_c(2923)^+$ decaying to $\Xi_c^+ \pi^- \pi^+$

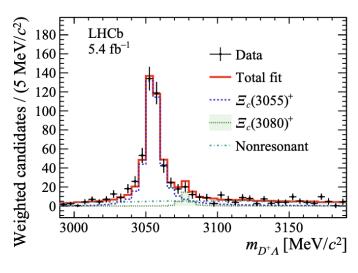

Four peaks with high significance

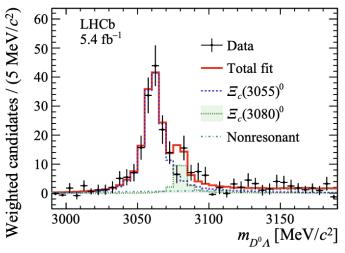
- $\Xi_c(2923)^+$
 - observed for the first time
- $\Xi_c(3080)^+$
 - seen in this decay mode for the first time
- $\Xi_c(2970)^+$ with ~30 MeV width
 - confirms different to $\Lambda_c K \pi$ peak

$$m[\Xi_c(2815)^+] = 2816.65 \pm 0.03 \pm 0.03 \pm 0.23 \,\text{MeV},$$

 $\Gamma[\Xi_c(2815)^+] = 2.07 \pm 0.08 \pm 0.12 \,\text{MeV},$
 $m[\Xi_c(2923)^+] = 2922.8 \pm 0.3 \pm 0.5 \pm 0.2 \,\text{MeV},$
 $\Gamma[\Xi_c(2923)^+] = 5.3 \pm 0.9 \pm 1.4 \,\text{MeV},$
 $m[\Xi_c(2970)^+] = 2968.6 \pm 0.5 \pm 0.5 \pm 0.2 \,\text{MeV},$
 $\Gamma[\Xi_c(2970)^+] = 31.7 \pm 1.7 \pm 1.9 \,\text{MeV},$
 $m[\Xi_c(3080)^+] = 3076.8 \pm 0.7 \pm 1.3 \pm 0.2 \,\text{MeV},$
 $\Gamma[\Xi_c(3080)^+] = 6.8 \pm 2.3 \pm 0.9 \,\text{MeV},$

arXiv: 2502.18987, Submitted to PRL

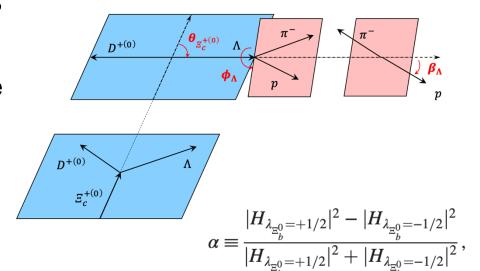


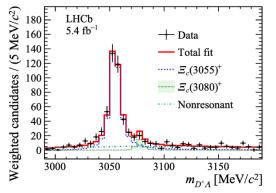

First determination of the spin-parity of $\Xi_c(3055)^{+,0}$

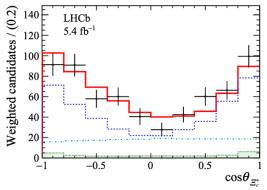
- Study $\Xi_c^{**+(0)}$ in the $\Xi_b^{0(-)} \to D^{+(0)} \Lambda \pi^+$ processes
 - Dominated by $\Xi_c(3055)^{+(0)} \rightarrow D^{+(0)}\Lambda$ contributions
 - Using LHCb Run2 dataset of 5.4 fb⁻¹
- $\Xi_c(3055)^+$ and $\Xi_c(3055)^0$ observed, first time in Ξ_b decays
- Evidence of $\Xi_c(3080)^{+(0)}$, significance $4.4(3.6)\sigma$
- Mass, width of $\Xi_c(3055)$, relative branching fraction
- $R_{\mathfrak{B}} = Br(\Xi_c(3080)) / Br(\Xi_c(3055))$ measured

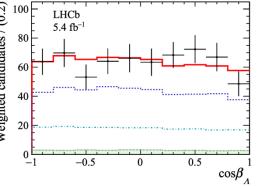
Quantity	$\Xi_c(3055)^+$	$\Xi_c(3055)^0$
$m [{ m MeV}/c^2]$	$3054.52 \pm 0.36 \pm 0.17$	$3061.00 \pm 0.80 \pm 0.23$
$\Gamma \left[\mathrm{MeV}/c^2 \right]$	$8.01 \pm 0.76 \pm 0.34$	$12.4 \pm 2.0 \pm 1.1$
$R_{\mathcal{B}}$	$0.045 \pm 0.023 \pm 0.006$	$0.14 \pm 0.06 \pm 0.04$

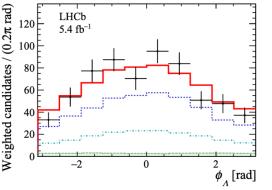
PRL 134 (2025) 081901

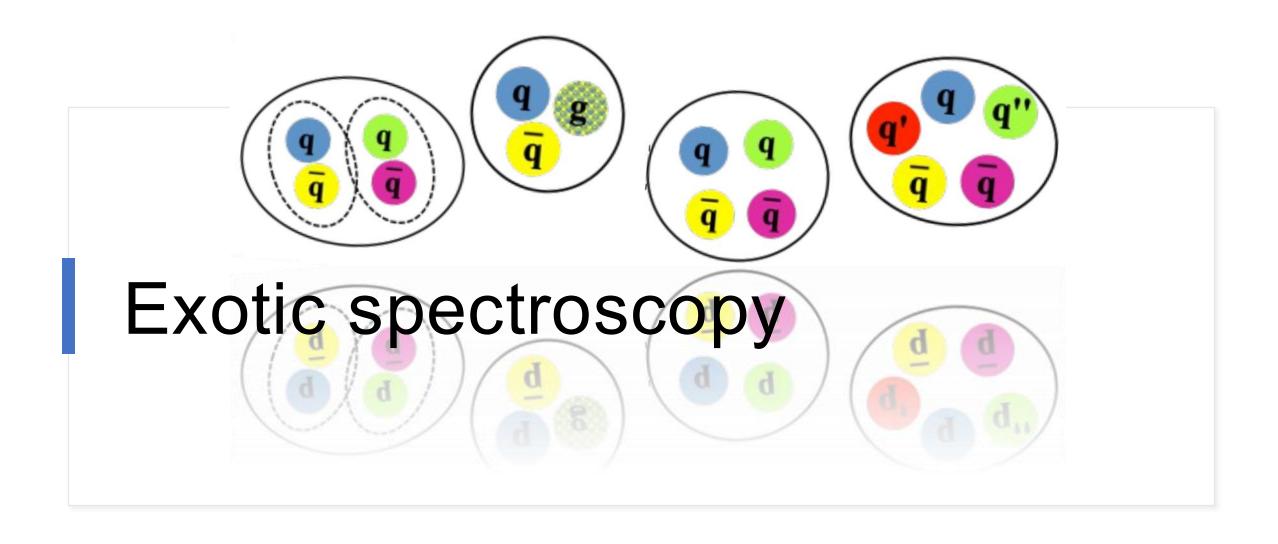


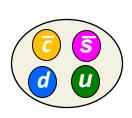

First determination of the spin-parity of $\Xi_c(3055)^{+,0}$

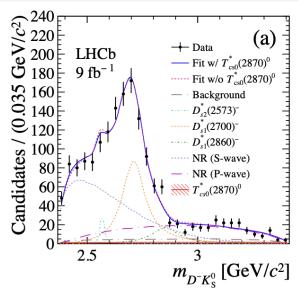

- $\Xi_b^{0(-)} \to \Xi_c^{**+(0)} (\to D\Lambda(\to p\pi))\pi^-$ amplitude analysis
 - 4-dimensional fit to $m(D\Lambda)$, helicity angles θ , β , ϕ
 - J^P of $\mathcal{E}_c(3055)^{+(0)}$ determined to be $3/2^+$ for the first time
 - $6.5(3.5)\sigma$ significance w.r.t. other hypotheses
 - $5/2^+$ of $\mathcal{E}_c(3080)^{+(0)}$ also favored, but not significant
 - Decay parameter $\alpha_{\Xi_h \to \Xi_c(3055)\pi^-}$ (up-down asymmetry)
 - Consistent with maximal parity violation
 - Indicates the light quarks are spectating in $b \rightarrow c$ transition

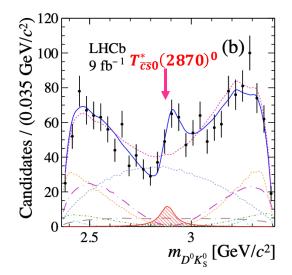

PRL 134 (2025) 081901

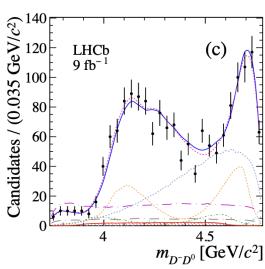



• Identified $\Xi_c(3055)$ as the first *D*-wave, λ -mode excitation of the Ξ_c triplet


Observation of $T_{cs0}^*(2870)^0$ in $B^- \rightarrow D^- D^0 K_S^0$

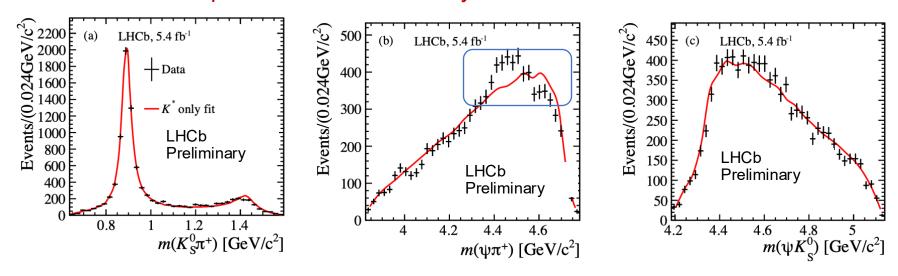

- Amplitude analysis of $B^- \to D^- D^0 K_{\rm S}^0$ found $T_{cs0}^*(2870)^0$, but no $T_{cs1}^*(2900)^0$ decaying to $D^0 K_{\rm S}^0$
- $T_{cs0}^*(2870)^0$
 - Significance of 5.3 σ
 - $m = 2883 \pm 11 \pm 8 \text{ MeV}$
 - $\Gamma = 87^{+22}_{-47} \pm 17 \text{ MeV}$
- Branching ratio $R_{\rm I}(T_{cs}^{*0}) = \frac{\mathcal{B}(B^- \to D^- D^0 \overline{K}^0) {\rm FF}(T_{cs}^{*0} \to D^0 K_{\rm S}^0)}{\mathcal{B}(B^- \to D^- D^+ K^-) {\rm FF}(T_{cs}^{*0} \to D^+ K^-)}$


$$\frac{T_{cs0}^{*}(2870)^{0} \to D^{0} \overline{K}^{0}}{T_{cs0}^{*}(2870)^{0} \to D^{+} K^{-}} = 3.3 \pm 1.1 \pm 1.1 \pm 1.1 (\mathcal{B})$$


 $\frac{T_{cs1}^{*}(2900)^{0} \rightarrow D^{0}\overline{K}^{0}}{T_{cs1}^{*}(2900)^{0} \rightarrow D^{+}K^{-}} = 0.15 \pm 0.15 \pm 0.05 \pm 0.05(\mathcal{B})$

Isospin symmetry: these two ratios should be 1

PRL 134 (2025) 101901


$T_{c\bar{c}1}(4430)^{+} \text{ in } B^{+} \to \psi(2S)K_{S}^{0}\pi^{+} \text{ decays}$

• About $T_{c\bar{c}1}(4430)^+$

LHCb-PAPER-2025-039 in preparation

- Discovered by Belle in 2007 in $B^{+,0} \to K^{0,-}\pi^+\psi(2S)$
- Confirmed by LHCb $J^P = 1^+$ in B^0 decays. PRL12 (2014) 22, 222002
- 4-dimensional amplitude analysis of $B^+ \to \psi(2S)\pi^+K_S^0$ decays

Amplitude fit result with only K^* contributions

K* states alone cannot describe the data -- Structure in $m_{\psi\pi^+}$ needed

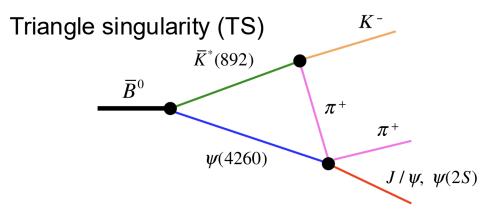
$T_{c\bar{c}1}(4430)^{+} \text{ in } B^{+} \to \psi(2S)K_{S}^{0}\pi^{+} \text{ decays}$

Structure modelled as a genuine state

Relativistic Breit-Wigner parametrization

$m(\text{GeV/c}^2)$	Γ(GeV)	J^P
$4.452 \pm 0.016^{+0.023}_{-0.033}$	$0.174 \pm 0.019^{+0.075}_{-0.020}$	1+

Properties consistent with $T_{c\bar{c}1}(4430)^+$ state

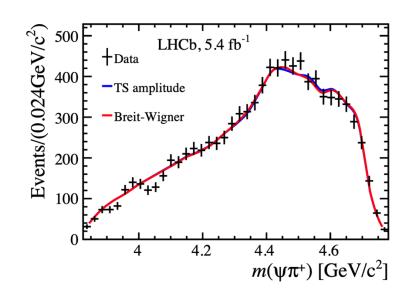

Furthermore, assuming $T_{c\bar{c}1}(4430)^+$ is $\bar{D}_1^*(2600)^0D^+$ hadronic molecule

$$F = \frac{1}{m_0^2 - m^2 - i(\rho_1 g_1^2 + \rho_2 g_2^2)}$$

$$g_1: T_{c\bar{c}1}(4430)^+ \to \psi(2S)\pi^+$$

 $g_2: T_{c\bar{c}1}(4430)^+ \to \overline{D}_1^*(2600)^0D^+$

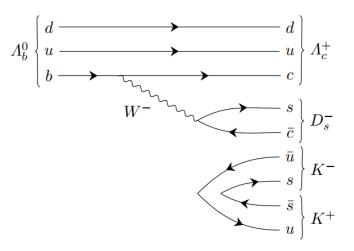
Result: $|g_2/g_1| < 6.8 \text{ in } 95\% \text{ CL}$


Structure modelled as a triangle singularity

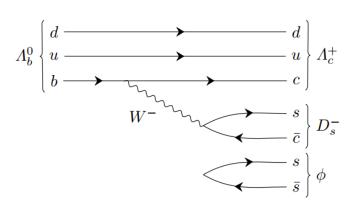
PRD 100 (2019) 051502

- · Potential description of data,
- More precise measurement needed to determine the nature of the structure

LHCb-PAPER-2025-039 in preparation


Sep 16, 2025 Zan Ren@HQL 2025

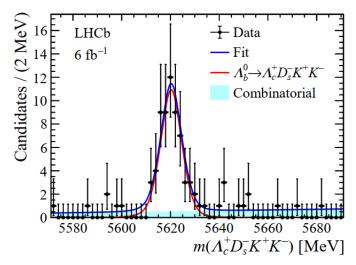
Observation of $\Lambda_b^0 \to \Lambda_c^+ D_s^- K^+ K^-$ decay and search for pentaguarks


PRL 131 (2023) 031901

Sci. Bull. 66 (2021) 1278

• $P_{c\bar{c}s}$ observed in $B^- \to J/\psi \Lambda \bar{p}$ and evidence in $\Xi_b^- \to J/\psi \Lambda K^-$ decays

(a) The nonresonant K^+K^- process

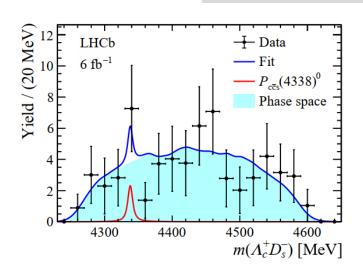


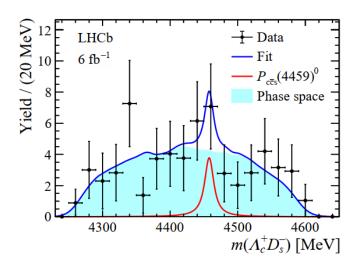
(b) The ϕ -dominated process

arXiv:2507.10713, Submitted to PRD

- Cut & MVA based selection
 - $61 \pm 8 \Lambda_b^0$ decays
 - Dominated by $\phi \to K^+K^-$

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^- K^+ K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = 0.0141 \pm 0.0019 \pm 0.0012$$




Observation of $\Lambda_b^0 \to \Lambda_c^+ D_s^- K^+ K^-$ decay and search for pentaquarks

• The relative $P_{c\bar{c}s}$ contributions (fit fractions) derived from fit to background-subtracted data.

$$\mathcal{R}_{P_{c\bar{c}s}^{0}} \equiv \frac{\mathcal{B}\left(\Lambda_{b}^{0} \to P_{c\bar{c}s}K^{+}K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+}D_{s}^{-}K^{+}K^{-}\right)} \cdot \mathcal{B}\left(P_{c\bar{c}s}^{0} \to \Lambda_{c}^{+}D_{s}^{-}\right)$$

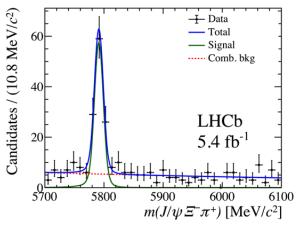
• Widths and masses for $P_{c\bar{c}s}^0$ states are Gaussian with the means and uncertainties constrained to their known value. PRL 131 (2023) 031901 Sci. Bull. 66 (2021) 1278

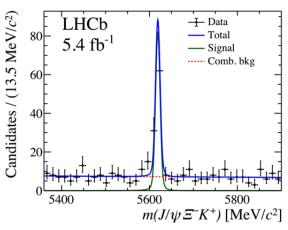
$$\Gamma(m) = \Gamma_0 \cdot \frac{q(m, m_{J/\psi}, m_{\Lambda})}{q(m_0, m_{J/\psi}, m_{\Lambda})} \cdot \frac{m_0}{m}$$

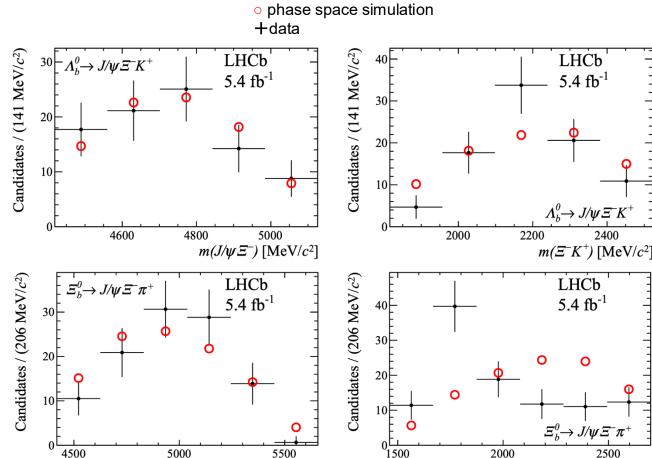
$$\mathcal{P}_{\text{sig}}(m|m_0, \Gamma_0) = \frac{\left| \text{BW}(m|m_0, \Gamma_0) \right|^2 \cdot p_{A_b^0}(m) \, q_{P_{c\overline{c}s}}(m)}{\mathcal{N}}$$

arXiv:2507.10713, Submitted to PRD

• Upper limits on 95% (90%) CLs:


•
$$\mathcal{R}_{P_{c\bar{c}s}(4338)^0} < 0.12~(0.10)$$
 and $\mathcal{R}_{P_{c\bar{c}s}(4459)^0} < 0.20~(0.17)$


Branching fractions of $\Lambda_b^{\ 0}(\Xi_b^{\ 0}) \to J/\psi\Xi^-K^+(\pi^+)$


- Motivation: $P_{c\bar{c}}(J/\psi p)[c\bar{c}uud] \rightarrow P_{c\bar{c}s}(J/\psi \Lambda)[c\bar{c}sud] \stackrel{\checkmark}{\Rightarrow} P_{c\bar{c}ss}(J/\psi \Xi^-)[c\bar{c}ssd]$
- First observation of $\Xi_h^0 \to J/\psi \Xi^- \pi^+$
- Branching fractions

$$\frac{\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi \Xi^- K^+)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda)}}{\frac{\mathcal{B}(\Xi_b^0 \to J/\psi \Lambda)}{\mathcal{B}(\Xi_b^0 \to J/\psi \Xi^- \pi^+)}} = (1.17 \pm 0.14 \pm 0.08) \times 10^{-2}$$

$$\frac{\mathcal{B}(\Xi_b^0 \to J/\psi \Xi^- \pi^+)}{\mathcal{B}(\Xi_b^0 \to J/\psi \Xi^-)} = (11.9 \pm 1.4 \pm 0.6) \times 10^{-2}$$

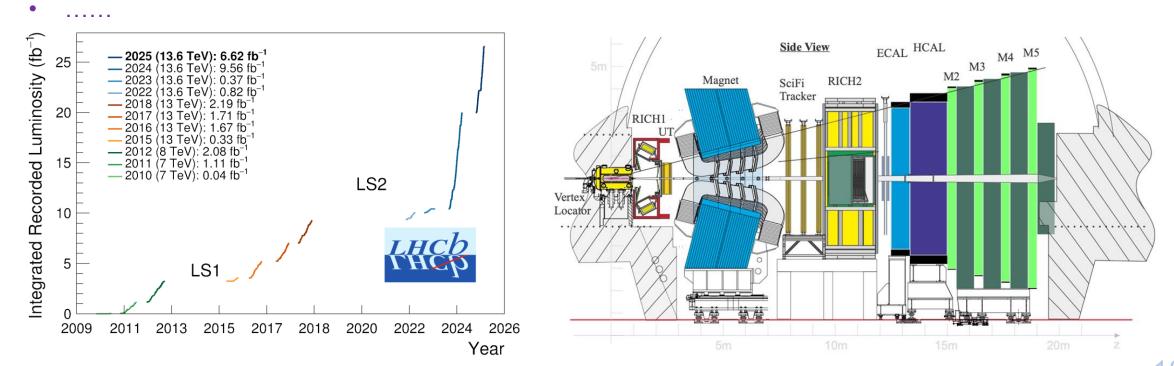
 $m(J/\psi\Xi^{-})$ [MeV/ c^2]

EPJC 85 (2025) 812

LHCb

5.4 fb⁻¹

 $\Lambda_b^0 \to J/\psi \Xi^- K$

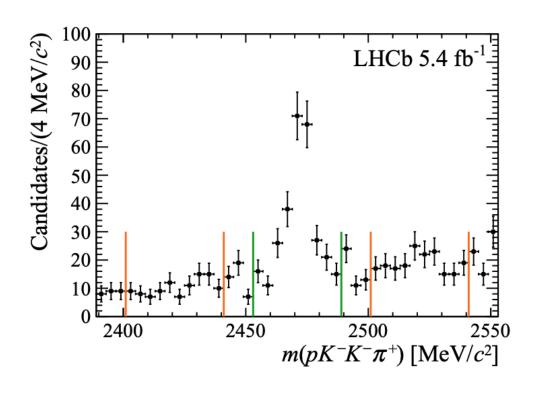

LHCb

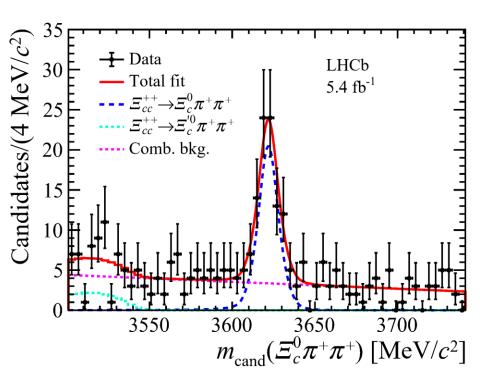
5.4 fb⁻¹

 $m(\Xi^-\pi^+)$ [MeV/ c^2]

Summary and prospects

- Run1&2: Hadron spectroscopy is one of the leading topics and highlights of LHCb!
- Run3: Upgraded detector & Higher statistics further boosts the spectroscopy studies:
 - Search for more conventional excited states
 - Search for new decay modes of observed exotic hadrons
 - Determine J^P and other properties of multiquark states

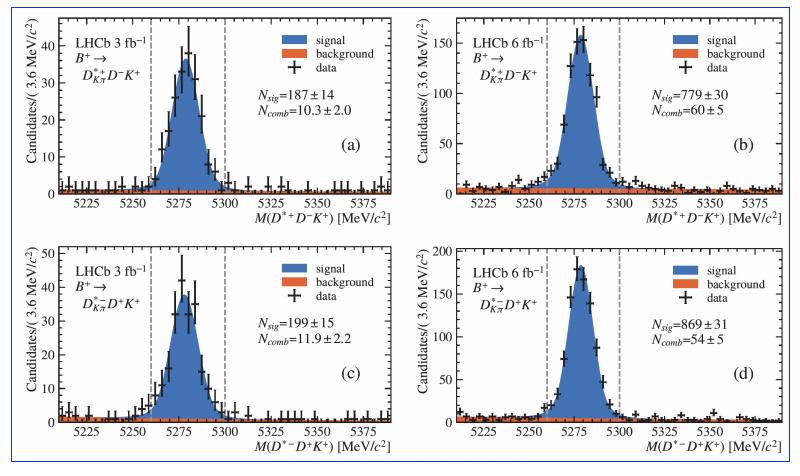

JINST 19 (2024) P05065


Thanks for your listening!

Backup

Observation of the decay $\Xi_{cc}^{++} \to \Xi_{c}^{0} \pi^{+} \pi^{+}$

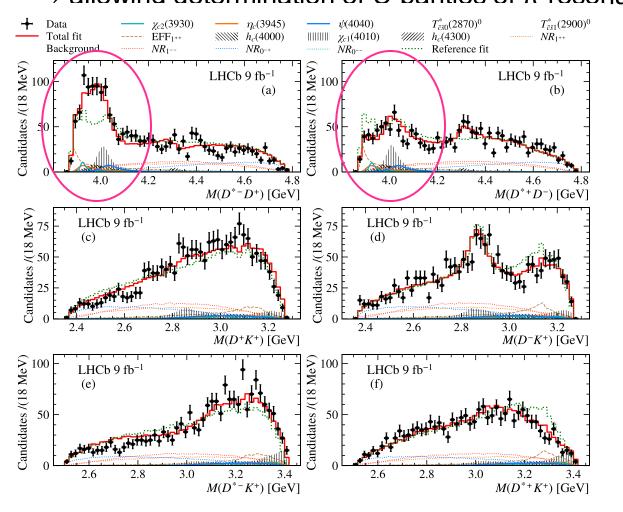
• Measurements of additional Ξ_{cc}^{++} decay modes provide essential information to better understand the decay dynamics of doubly charmed baryons.



$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{0} \pi^{+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+})} = 1.37 \pm 0.18(\text{stat}) \pm 0.09(\text{syst}) \pm 0.35(\text{ext})$$

$B^+ \rightarrow D^{*\pm}D^{\mp}K^+$: signal yields

• Using the full LHCb dataset of 9 fb⁻¹: $D^{*-} \to \overline{D}{}^0 (\to K^+\pi^- \& K^+\pi^-\pi^-\pi^+)\pi^-$

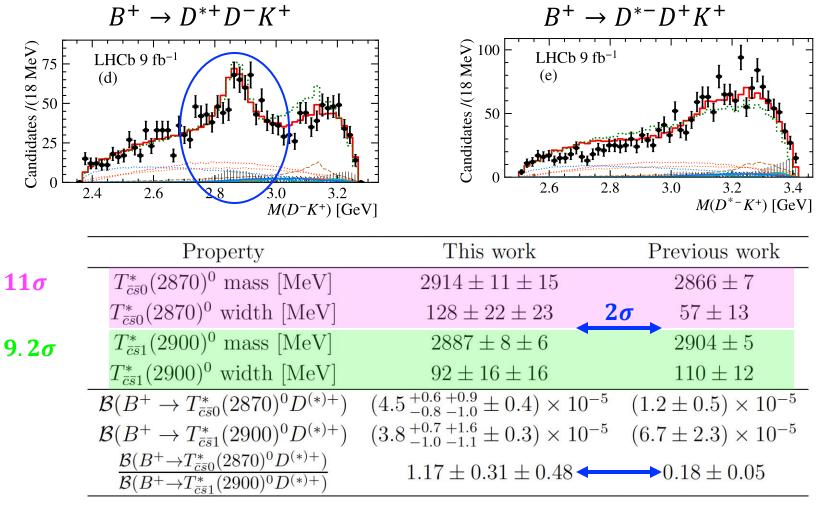


 $\checkmark B^+ \to D^{*+}D^-K^+$: **966**

 $\checkmark B^+ \to D^+ D^{*-} K^+ : 1068$

$B^+ \to D^{*\pm}D^{\mp}K^+$: amplitude analysis

• Amplitudes of $R \to D^{*+}D^-$ and $R \to D^{*-}D^+$ linked by **C-parity** \Rightarrow allowing determination of **C-parities** of R resonances

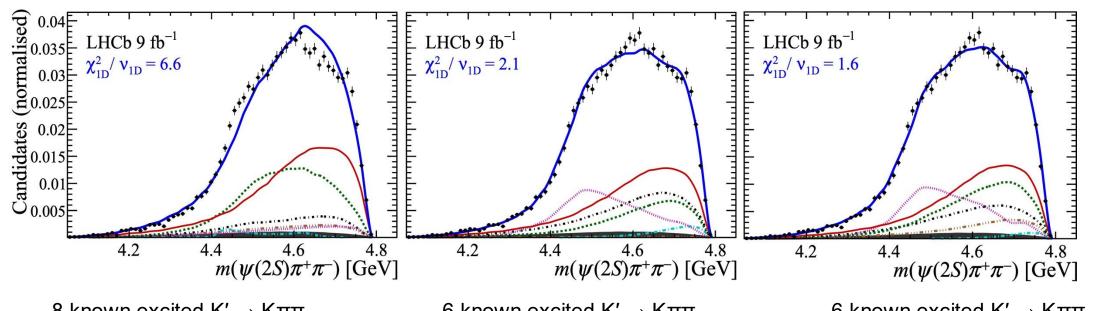

Component	$J^{P(C)}$
EFF_{1++}	1++
$\eta_c(3945)$	0-+
$\chi_{c2}(3930)^{\dagger}$	2^{++}
$h_c(4000)$	1+-
$\chi_{c1}(4010)$	1++
$\psi(4040)^{\dagger}$	1
$h_c(4300)$	1+-
$T^*_{\bar{c}\bar{s}0}(2870)^{0}$	0+
$T^*_{\bar{c}\bar{s}1}(2900)^{0 \dagger}$	1-
$\overline{NR_{1^{}}(D^{*\mp}D^{\pm})}$	1
$NR_{0^{}}(D^{*\mp}D^{\pm})$	0
$NR_{1^{++}}(D^{*\mp}D^{\pm})$	1++
$NR_{0^{-+}}(D^{*\mp}D^{\pm})$	0-+

$D^{*\pm}D^{\mp}$ system

- Four charmonium(-like)
 states are observed
 decaying to D*D̄ for
 >6.1σ
- At least the three of them are new
- J^{PC} for each state is determined for >5.7σ

$\eta_c(3945)$	$J^{PC} = 0^{-+}$
$m_0 = 3945 {}^{+28}_{-17} {}^{+37}_{-28}$	$\Gamma_0 = 130 {}^{+92}_{-49} {}^{+101}_{-70}$
$h_c(4000)$	$J^{PC} = 1^{+-}$
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$
$m_0 = 4012.5 {}^{+3.6}_{-3.9} {}^{+4.1}_{-3.7}$	$\Gamma_0 = 62.7^{+7.0}_{-6.4}{}^{+6.4}_{-6.6}$
$h_c(4300)$	$J^{PC} = 1^{+-}$
$m_0 = 4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$	$\Gamma_0 = 58 {}^{+28}_{-16} {}^{+28}_{-25}$

$B^+ \to D^{*\pm}D^{\mp}K^+$: $T^*_{\overline{c}\overline{s}}$ states



 $\checkmark T^*_{\bar{c}\bar{s}0}(2870)^0 \rightarrow D^{*-}K^+$ forbidden

 $\checkmark \mathcal{B}(T_{\bar{c}\bar{s}1}^*(2900)^0 \to D^{*-}K^+)/\mathcal{B}(T_{\bar{c}\bar{s}1}^*(2900)^0 \to D^-K^+) < 0.21 @ 95\% CL$

Amplitude analysis of $B^+ \to \psi(2S)K^+\pi^+\pi^-$ decay

- 7D amplitude analysis, using a model-building algorithm to iteratively add contributions to the total amplitude.
- More than 30k $B^+ \to \psi(2S)K^+\pi^+\pi^-$ decays are observed with > 97% signal purity.

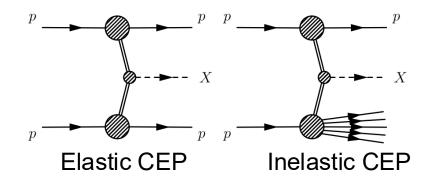
8 known excited K' \rightarrow K $\pi\pi$ 3 known excited $\psi^* \rightarrow \psi$ (2S) $\pi\pi$ No exotic states 6 known excited K' \rightarrow Kππ 1 known excited $\psi^* \rightarrow \psi$ (2S)ππ 8 "known" $\rightarrow \psi$ (2S)ππ, ψ (2S)π or ψ (2S)K 6 known excited $K' \to K\pi\pi$ 1 known excited $\psi^* \to \psi$ (2S) $\pi\pi$

8 "known" $\rightarrow \psi$ (2S) $\pi\pi$, ψ (2S) π or ψ (2S)K

+ 3 new exotic states

 $T_{c\bar{c}\bar{s}1}(4600)^{0} \rightarrow \psi (2S) K\pi$ $T_{c\bar{c}\bar{s}1}(4900)^{0} \rightarrow \psi (2S) K\pi$ $T_{c\bar{c}\bar{s}1}^{*}(5200)^{0} \rightarrow \psi (2S) K\pi \text{(maybe)}$

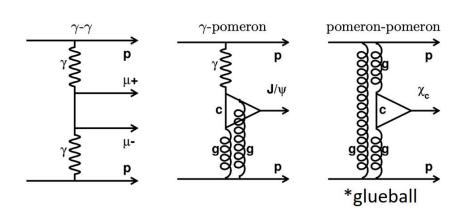
JHEP 01 (2025) 054

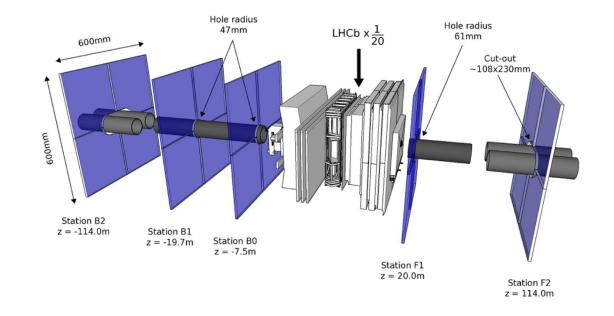

Amplitude analysis of $B^+ \to \psi(2S)K^+\pi^+\pi^-$ decay

- Interpretation of results is not straightforward: JHEP 01 (2025) 054
 - Four $X^0/\chi_{c0} \to \psi(2S)\pi^+\pi^-$ are identified and the shows some similarities to previously observed $J/\psi\phi$ resonances
 - In $\psi(2S)\pi^{\pm}$ system, $T_{c\bar{c}1}(4430)^{\pm}$ is confirmed, J^P of $T_{c\bar{c}1}(4200)^{\pm}$ is determined to be 1⁺
 - Cascade exotics decays $X^0 \to T_{c\bar{c}1}^{\pm} \pi^{\mp}$ observed
 - Hidden-charm exotics with minimal quark content $c\bar{c}\bar{s}d$: $T_{c\bar{c}\bar{s}1}(4600/4900)^0 \to \psi(2S)K^+\pi^-$, may be the radial excitations of $T_{c\bar{c}\bar{s}}(4000)^0$ in $B^0 \to [J/\psi K_s^0]\phi$

Resonance	J^P	$m_0 \mathrm{[MeV]}$	$\Gamma_0 [{ m MeV}]$	$\Delta(-2 \ln \mathcal{L})$	$\Delta N_{ m par}$	Sign. $[\sigma]$	Stat only
$\chi_{c0}(4475)$	0+	$4475\pm 7 \pm 12$	$231 \pm 19 \pm 32$	675	6	> 20 (19)	_
$\chi_{c1}(4650)$	1+	$4653 {\pm} 14 {\pm} 27$	$227 {\pm} 26 {\pm} 22$	286	6	15 (13)	
$\chi_{c0}(4710)$	$^{0+}$	$4710 \!\pm 4 \pm \!5$	$64 \!\pm 9 \pm \! 10$	255	6	14 (10)	
$\eta_{c1}(4800)$	1-	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	382	8	17 (12)	
$T_{c\bar{c}1}^*(4055)^+$	1-	4054 (fixed)	45 (fixed)	81	2	8 (7)	_
$T_{c\bar{c}1}(4200)^+$	1+	$4257 {\pm} 11 {\pm} 17$	$308 \pm 20 \pm 32$	842	16	$> 20 \ (> 20)$	
$T_{c\bar{c}1}(4430)^+$	1+	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	305	10	15 (8)	
$T_{c\bar{c}\bar{s}1}(4600)^0$	1+	$4578 \pm 10 \pm 18$	133±28±69	287	8	15 (12)	_
$T_{c\bar{c}\bar{s}1}(4900)^0$	1+	$4925 \pm 22 \pm 47$	$255 {\pm} 55 {\pm} 127$	177	4	12 (8)	
$T_{c\bar{c}\bar{s}1}^* (5200)^0$	1-	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$	149	6	10 (8)	_
$T_{c\bar{c}\bar{s}1}(4000)^+$	1+	4003 (fixed)	131 (fixed)	597	4	> 20 (14)	_

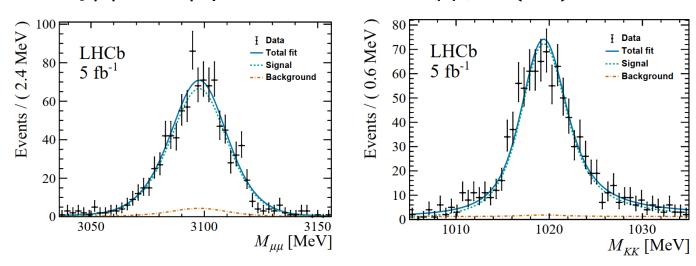
Study of exotic $J/\psi\phi$ resonances in CEP process


• CEP (central exclusive production) in pp collisions: $pp \rightarrow p + X + p$

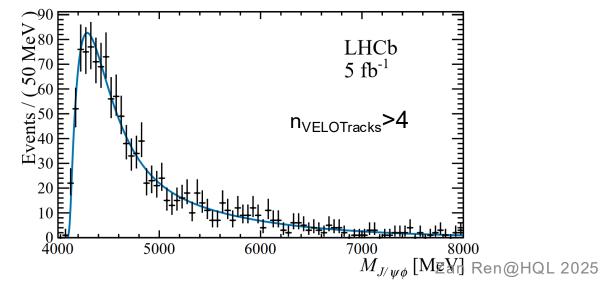


- Low-activity
- Specific kinematics

➡ Lower background

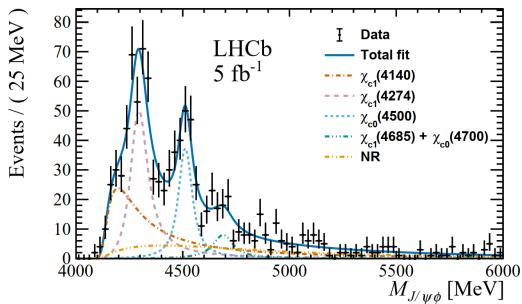

HeRSCheL (high-rapidity shower counters for LHCb) \rightarrow Extend LHCb's sensitivity to $5 < |\eta| < 10$

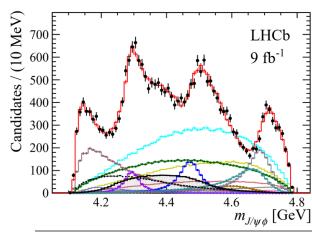
Study of exotic $J/\psi\phi$ resonances in CEP process


• Clean J/ψ and ϕ peaks: 2D fit on $m(\mu\mu), m(KK)$

Purity ~ 93%

PRL 134 (2025) 3, 031902


Background lineshape: determined by dataset with inverted offline multiplicity requirement



Study of exotic $J/\psi\phi$ resonances in CEP process

PRL 134 (2025) 3, 031902

Significance:

- $\chi_{c1}(4140)$: 2.4
- $\chi_{c1}(4274)$: 4.7
- $\chi_{c0}(4500)$: 5.5
- $\chi_{c1}(4685) + \chi_{c0}(4700):1.6$
- Mass and width for peaks with a significance>3 σ are measured:

Parameter [MeV]	Current analysis	Ref. [13]
$M_{\chi_{c1}(4274)}$	$4298 \pm 6 \pm 9$	$4294 \pm 4^{+3}_{-6}$
$\Gamma_{\chi_{c1}(4274)}$	$92^{+22}_{-18}\pm 57$	$53 \pm 5 \pm 5$
$M_{\chi_{c0}(4500)}$	$4512.5^{+6.0}_{-6.2}\pm3.0$	$4474 \pm 3 \pm 3$
$\Gamma_{\chi_{c0}(4500)}$	$65^{+20}_{-16} \pm 32$	$77 \pm 6^{+10}_{-8}$

Cross-sections:

$$\sigma_{\chi_{c1}(4140)} \times \mathcal{B}_{eff}^{\chi_{c1}(4140)} = (0.80 \pm 0.15 \pm 0.28) \,\mathrm{pb},$$

$$\sigma_{\chi_{c1}(4274)} \times \mathcal{B}_{eff}^{\chi_{c1}(4274)} = (0.73 \pm 0.08 \pm 0.17) \,\mathrm{pb},$$

$$\sigma_{\chi_{c0}(4500)} \times \mathcal{B}_{eff}^{\chi_{c0}(4500)} = (0.42^{+0.09}_{-0.08} \pm 0.06) \,\mathrm{pb},$$

$$\sigma_{\chi_{c1}(4685) + \chi_{c0}(4700)} \times \mathcal{B}_{eff}^{\chi_{c1}(4685) + \chi_{c0}(4700)} = (0.14^{+0.07}_{-0.06} \pm 0.06) \,\mathrm{pb},$$

$$\sigma_{NR} \times \mathcal{B}_{eff}^{NR} = (0.43^{+0.24}_{-0.18} \pm 0.20) \,\mathrm{pb},$$