

Recent spectroscopy results at BESIII

Yateng Zhang

(On behalf of the BESIII Collaboration)
Zhengzhou University

17th International Conference on Heavy Quarks and Leptons (HQL 2025)

Introduction

Hadron Physics, a cornerstone of our understanding of the strong interaction of quarks and gluons as described by QCD, which is primarily responsible for holding the nuclei of atoms together. Nuclei: Dominant part of visible matter in the universe.

- How are hadrons formed from quarks?
- What is the origin of confinement?
- How is the mass generated in QCD?

- $\alpha_s \sim 1$, Occurring in the non-perturbative regime of QCD, perturbative techniques fail.
- Challenges for both theoretical analyses and experimental investigations.
- ✓ Alternative theoretical tools often model dependent or very computational expensive
- ✓ Highly populated spectrum: many overlapping, interfering, mixing or distorted states

Introduction

- Quark mode:
 - Mesons
- ✓ Baryons
- New forms of hadrons

- Multi-ways to produce conventional and exotic mesons:
- ✓ Direct production of vector states
- Charmonium decays
- ✓ Two-photon scattering

BEPCII&BESIII

BESIII

- ✓ Cover 93% of full solid angle
- √ 1.0 T supercondacting solenoid
- ✓ Momentum resolution: 0.5% at 1 GeV/c
- Energy resolution: 2.5%(5%) at 1 GeV/c in the barrel (end cap)
- ✓ Time resolution: 68(60) ps in the barrel (end cap)

BESIII Data Samples

Data sets collected so far include:

- \rightarrow 10 ×10⁹ J/ ψ events
- \triangleright 2.7 ×10⁹ ψ (3686) events
- \triangleright 20 fb⁻¹ ψ (3770)
- Scan data [1.84, 3.08] GeV; [3.735, 4.600] GeV, 143 energy points, $\sim 2.0 \text{ fb}^{-1}$
- \triangleright Large data sets for XYZ study ~22 fb⁻¹
- Entangled hadron pair-productions near thresholds

Excellent platform to explore the hadron spectroscopy!

The BESIII Experiment

Date of arXiv submission

Physics topics span a wide range of topics:

Light quark spectroscopy;

- Charmonium spectroscopy;
- Spectroscopy of exotic, "XYZ" states; etc.

Strangeonium Spectrum

- Experimental study scare, and few strangeonium states confirmed
- Vector sate, only $\phi(1020)$ and $\phi(1680)$; axial-vector state, only $h_1(1380)$ ($h_1(1415)$ PDG) observed
- More excitations, e.g., $h_1(2P)$ and $h_1(3P)$, still missing in experiment
- Fully-strange tetraquarks in same mass region and same final states predicted in theory
- Method: Charmonium decay and Energy scan

Recent Analyses:

- ✓ PWA of $J/\psi \rightarrow \phi \pi^0 \eta$
- ✓ PWA of $\psi(3686) \rightarrow \varphi \eta \eta'$ ✓ $e^+e^- \rightarrow K_S K_L \pi^0 / K^+ K^- \pi^0$

Study of the decay $J/\psi \rightarrow \phi \pi^0 \eta$

 $h_1(1900)$ consistent with $h_1(2P)$ theoretical prediction

No structure around 1.4 GeV in $\phi\pi^0$ invariant spectrum observed!

Study of the decay $J/\psi \rightarrow \phi \pi^0 \eta$

Phys. Rev. D 110, 112014 (2024)

- The $f_0(980) a_0(980)^0$ mixing signal in $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0(980)^0$ and the corresponding electromagnetic decay $J/\psi \rightarrow \phi a_0(980)^0$ measured with improved precision.
- The mixing intensity of $f_0(980) a_0(980)^0 (\xi_{fa})$ is calculated to be $(0.86 \pm 0.04 \pm 0.25)\%$.

Process	$M (MeV/c^2)$	\ /	fit fraction(%)	$\mathcal{B} (10^{-6})$	Sig. (σ)
$\phi(1680)\pi^{0}$	$1663 \pm 5^{+16}_{-4}$			$6.66 \pm 0.26^{+1.1}_{-1.0}$	32.3
$X(2000)\pi^{0}$	$1992 \pm 12^{+15}_{-6}$	$132 \pm 22^{+17}_{-4}$	4.05 ± 0.44	$1.70 \pm 0.19^{+0.48}_{-0.13}$	13.2
$h_1(1900)\pi^0$	$1908 \pm 6^{+8}_{-4}$	$175 \pm 13^{+7}_{-16}$	20.76 ± 0.84	$8.44 \pm 0.35^{+1.4}_{-1.2}$	30.1
$\phi a_0(980)_{\rm EM}$	_	_		$3.24 \pm 0.20^{+0.52}_{-0.22}$	19.9
$\phi a_0(980)_{\rm mix}$	_	_	7.33 ± 0.35	$2.74 \pm 0.13^{+0.15}_{-0.16}$	31.6

Study of the decay $\psi(3686) \rightarrow \phi \eta \eta'$

PRL 134, 191901 (2025)

Resonance	$M (MeV/c^2)$	Γ (MeV)
$h_1(3P)$	2435 [4]	269 [4]
$h_1(3P)$	2449 [8]	N/A
$h_1(3P)$	2100 [12, 13]	N/A
$h_1(3P)$	2490 [9]	N/A
$h_1(3P)$	2398 [10]	N/A
$h_1(3P)$	2495.51±1.46 [11]	N/A
$h_1(4P)$	2340 [12, 13]	N/A
$T_{(ss\bar{s}\bar{s})1^{+-}}$	2323 [26]	N/A
$T_{(ss\bar{s}\bar{s})1}+-$	1960 [27]	N/A
$T_{(ss\bar{s}\bar{s})1}+-$	2000^{+100}_{-90} [28]	N/A
This work	$2316 \pm 9 \pm 30$	$89 \pm 15 \pm 20$

 $h_1(2300)$

- ➤ Amplitude analysis of ψ(3686) → φηη' is performed with 2.7 billion psi(3686) events.
- New resonances in $M(\phi \eta)$ observed for the first time.

$$h_1(2300)$$
 $J^{PC} = 1^{+-}$

$$M = 2316 \pm 9 \pm 30 \text{MeV/c}^2$$

 $\Gamma = 89 + 15 + 26 \text{ MeV}$

- > Systematic discrepancy in the mass of $h_1(3P)$ in theory
- For the $T(ss\bar{s}\bar{s})$ hypothesis, need more theoretical calculations!

10

Measurement of the $e^+e^-\to K^0_S~K^0_L\pi^0$ and $e^+e^-\to K^+_S^0~K^0_L\pi^0$ cross sections

Measurement of the $e^+e^- \rightarrow K_S^0 \ K_L^0 \pi^0$ and $e^+e^- \rightarrow K^+ \ K^- \pi^0$ cross sections

- Amplitude analysis of $e^+e^- \rightarrow K_S^0 K_L^0 \pi^0$ from $\sqrt{s} = 2.000$ to 3.080 GeV is performed.
 - Dominant component: $K^*(892)^0\overline{K}^0$, $K_2^*(1430)^0\overline{K}^0$
- Resonance in $K^*(892)^0 \overline{K}^0$: 3.2 σ $M = 2164.7 \pm 9.1 \pm 3.1 \text{MeV/c}^2$ $\Gamma = 32.4 \pm 21.0 \pm 1.8 \text{ MeV}$

2.000 to 3.080 GeV is performed

Amplitude analysis of $e^+e^- \rightarrow K^+ K^-\pi^0$ from \sqrt{s} =

- Dominant component: $K^{*+}(892)K^{-}$, $K_2^{*+}(1430)K^{-}$
- Resonance in $K_2^{*+}(1430)K^-$: **7.1** σ $M = 2190 \pm 19 \pm 37 \text{ MeV/c}^2$ $\Gamma = 191 \pm 28 \pm 60 \text{ MeV}$

$$R = \frac{B(K^0 \overline{K}^{0'})}{B(K^{\pm} \overline{K}^{\mp'})}: \sim 30 \text{ for } K^*(892)K, \sim 0.25 \text{ for } K_2^*(1430)K$$

No significant $\phi(2170)$ in $K^*(892)^0\overline{K}^0$, but in $K_2^{*+}(1430)K^{-1}$

Charmonium Spectroscopy

 e^+e^- mainly annihilate into a virtual photon, with quantum numbers $J^{PC}=1^{--}$ Direct \to production of 1^{--} vector meson states

- Y states (charmonium(-like) states) numerous and not well understood
- ♦ Y(4220), Y(4390) observed in previously at BESIII
- Hybrid? Tetraquark? Excited charmonia? etc. precise measurements needed
- Strong coupling from (supposed) vector charmonium states to would indicate exotic internal structure

Recent Analyses:

- \checkmark $e^+e^- \rightarrow \pi^+\pi^-h_c$
- ✓ PWA of $e^+e^- \rightarrow \pi^+\pi^-J/\psi$
- \bullet e⁺e⁻ \to K⁺K⁻ ψ (2S)/e⁺e⁻ \to K_SK_S ψ (2S)
- ✓ Prompt Inclusive production of J/ ψ and ψ (2S)

Observation of Three Resonant Structures in the Cross Section of $e^+e^- \rightarrow \pi^+\pi^-h_c$

100 Γ_{tot} (MeV) Γ_{tot} (MeV) 4190 4200 4210 4220 4230 4240 4250 4260

Mass (MeV/c²)

4500

Mass (MeV/c²)

4400

4600

4700

4300

PRL. 135, 071901(2025)

- Cross sections of $e^+e^- \rightarrow \pi^+\pi^-h_c$ at 59 points with centerof-mass energy ranging from 4.009 to 4.950 GeV
- Three resonant structures observed
- Resonant parameters from three coherent Breit-Wigner functions

$$R_1$$
: $M = 4223.6^{+3.6+2.6}_{-3.7-2.9}$ GeV, $\Gamma = 58.5^{+10.8+6.7}_{-11.4-6.5}$ GeV R_2 : $M = 4327.4^{+20.1+10.7}_{-18.8-9.3}$ GeV, $\Gamma = 244.1^{+34.0+24.2}_{-27.1-18.3}$ GeV R_3 : $M = 4467.4^{+7.2+3.2}_{-5.4-2.7}$ GeV, $\Gamma = 62.8^{+19.2+9.9}_{-14.4-7.0}$ GeV

Measurement of the $e^+e^- o KK\psi(2S)$ Cross Section and Search Z_{cs} for in the $Z_{cs} o K\psi(2S)$ Decay

arXiv:2407.20009

arXiv:2411.15752

- ✓ Cross section measurenments of processes $e^+e^- \to K^+K^-\psi(2S)$ and $e^+e^- \to K_S^0K_S^0\psi(2S)$ from 4.68 -4.95 GeV
- deviation of about 2σ with respect to the ratio of their phase spaces $M = 4787.7 \pm 17.7$ MeV, $\Gamma = 110.3 \pm 33.9$ MeV
- Cross sections of neutral and charged channels are consistent with the prediction based on isospin symmetry.

- ✓ Simultaneous fit to the $RM^2(K^+)$ and $RM^2(K^-)$ spectra: one Z_{cs}^{\pm} resonance around 4.208 GeV (1.2 σ), another around 4.315 GeV (1.1 σ)
- ✓ A mass of 4.208 GeV is in the vicinity of the Zcs(4220) reported by LHCb
- \checkmark $K_S^0 \psi(3686)$ spectrum consistent with three-body phase space. The significance of a contribution beyond three-body phase space is only **0.8** σ

Partial wave analysis of $e^+e^- \to \pi^+\pi^- J/\psi$ and cross section measurement of $e^+e^- \to \pi^\mp Z_c(3900)^\pm$ from 4.1271 to 4.3583 GeV

PRL 110, 252001 (2013)

100 - - - Data - - Total fit - - PHSP MC - Sideband - - Sideband - - Sideband - - - PHSP MC - - PHSP

- $Z_c(3900)$ observed simultaneously by BESIII at $\sqrt{s} = 4.26$ GeV and Belle in $\pi^{\pm}J/\psi$
- If molecular/tetraquark state, strong correlation between Zc and Y system

PRD 106, 072001(2022)

• Promising to study relationship between and Y states, as well as resonances and Y states to understand internal structure of $Z_c(3900)$ and $\pi^+\pi^-J/\psi$

Partial wave analysis of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and cross section measurement of $e^+e^- \rightarrow \pi^{\mp}Z_c(3900)^{\pm}$ from 4.1271 to 4.3583 GeV

PWA of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ for datasets between 4.127 -4.358 GeV arXiv: 2505.13222

 $Z_c(3900)$ Paramater fit

from Breit-Wigner

Initial BES measurements:

$$M = 3988.0 \pm 3.6 \pm 4.9 \text{ MeV}$$

$$\Gamma = 46 \pm 10 \pm 20$$
 MeV PRL 110, 252001 (2013)

Current PDG average: M = 3987.1 + 2.6 MeV $\Gamma = 28.4 \pm 2.6$ MeV

Sample	$M ({\rm MeV}/c^2)$	Γ (MeV)
4.1567 - 4.1989	3883.5 ± 1.6	38.6 ± 3.6
4.2091 - 4.2357	3884.0 ± 1.0	37.8 ± 1.6
4.2438 - 4.2776	3884.9 ± 1.8	34.2 ± 3.3
4.2866 - 4.3583	3890.0 ± 2.3	36.1 ± 4.2
Average	$3884.6 \pm 0.7 \pm 3.3$	$37.2 \pm 1.3 \pm 6.6$

Partial wave analysis of $e^+e^- \to \pi^+\pi^- J/\psi$ and cross section measurement of $e^+e^- \to \pi^\mp Z_c(3900)^\pm$ from 4.1271 to 4.3583 GeV

arXiv: 2505.13222

- Cross section measurements of sub processes $e^+e^- \rightarrow \pi^{\pm}Z_C(3900)^{\pm}$, $f_0(980)J/\psi$, $(\pi^+\pi^-)_{S-wave}J/\psi$
- Observation of Y(4220) in sub process cross sections
- $M = 4225.8 \pm 4.2 \pm 3.1$ MeV $\Gamma = 55.3 \pm 9.5 \pm 11.1$ MeV
- Significance of Y(4220) in $\sigma(e^+e^- \rightarrow (\pi^+\pi^-)_{S-wave}J/\psi) \sim 12.2\sigma$

Inclusive cross sections of prompt J/ψ and $\psi(3686)$

PRD 111, 052007 (2025)

- Double charmonium production cross sections from factories larger than expected hidden states/processes?
- Can investigate by studying prompt and production below threshold at BESIII

- ✓ Reconstruct J/ $\psi \rightarrow \mu^+ \mu^-$
- Subtract ISR production/conventional charmonium decays (e.g. $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$)
- Reconstruct $\psi(2S) \to \pi^+\pi^- J/\psi$ with $J/\psi \to l^+ l^- (l=e,\mu)$
- ✓ ISR production also substructed

Inclusive cross sections of prompt J/ψ and $\psi(3686)$

 J/ψ : Inclusive and the sum of exclusive processes consistent well.

 ψ (3686): Contribution of unknown decay channels of the $\psi(4360) \rightarrow \psi(3686)X$ ~23% discrepancy!

QCD Exotics

- igoplus Non-exotic hadrons: mesons ($q\overline{q}$), baryons (qqq)
- QCD allows for exotic hadrons:
 - Multi-quark states strong evidence in heavy quark sector https://qwg.ph.nat.tum.de/exoticshub/
 - Hybrids
 - Glueballs
 - Molecule
 - ect.

Recent Analyses:

- \checkmark J/ψ → γγφ
- \checkmark J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$
- \checkmark J/ $\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$

Partial Wave Analysis of $J/\psi \rightarrow \gamma\gamma\phi$

PRD111, 052011 (2025)

PWA of $J/\psi \rightarrow \gamma\gamma\phi$ is performed with 10 billion J/ψ events.

 $1^{++}: f_1(1285), f_1(1420), f_1(1510)$ $0^{-+}: \eta(1405), X(1835), \eta_c$ $2^{++}: f_2(1525), f_2(1950), f_2(2010)$ $0^{++}: f_0(2200)$

- \triangleright X(1835) → γφ suggests its assignment of η' excitation.
- $\rightarrow \eta(1405)$ is observed, while $\eta(1475)$ can not be excluded.
- $\rho \to \gamma \phi$ are observed. The first radiative decay mode of η_c .

Observation of the Anomalous Shape of X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ Indicating a Second Resonance Near pp Threshold

- The analysis of $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ near $p\bar{p}$ Threshold is performed with 10 billion J/ψ events.
- \triangleright Two Resonance near $p\bar{p}$ threshold observed.
- > X(1840)

$$M = 1832.5 \pm 3.1 \pm 2.5 \text{ MeV/c}^2$$

 $\Gamma = 80.7 \pm 5.2 \pm 7.7 \text{ MeV}$

> X(1880)

$$M = 1882.1 \pm 1.7 \pm 0.7 \text{ MeV/c}^2$$

 $\Gamma = 30.7 \pm 5.5 \pm 2.4 \text{ MeV}$

Determination of Spin-Parity Quantum Numbers of X(2370) as 0^{-+} from $J/\psi \to \gamma K_S^0 K_S^0 \eta'$

- ♦ Discovered by BESIII in $J/\psi \rightarrow \gamma \eta' \pi \pi$ in 2011
- ♦ Confirmed by BESIII in J/ψ → $\gamma \eta' \pi \pi$, $\gamma \eta' KK$
 - Not seen in $J/\psi \rightarrow \gamma \eta' \eta \eta$ [PRD 103, 012009 (2021)], $J/\psi \rightarrow \gamma \gamma \varphi$ [PRD111, 052011 (2025)]. Upper limits of BF are well consistent with predictions of 0^{-+} glueball

PRL 132, 181901 (2024)

- ✓ PWA of J/ ψ → γK $_S^0$ K $_S^0$ η'
- Spin-parity determined to be 0^{-+}
- ✓ Mass consistent with LQCD prediction for 0⁻⁺ glueball

PRL 106, 072002 (2011) PRL 117, 042002 (2016)

EPJC 80, 746 (2020)

Summary

> BESIII has a rich and fruitful program of spectroscopy physics.

Especially J/ ψ and ψ (3686) decays provide an excellent laboratory to study spectroscopy .

- Recently many indications for new states
 - \checkmark h₁(1900): J/ψ → φπ⁰η
 - ✓ X(2000): J/ψ → φπ⁰η
 - \checkmark h₁(2300): ψ(3686) → φηη'
 - \checkmark Y(4220),Y(4320),Y(4420): e⁺e⁻ → π⁺π⁻h_c
 - ✓ $X(1840): J/ψ \rightarrow γ3(π^+π^-)$
 - ✓ $X(1880): J/ψ \rightarrow γ3(π^+π^-)$
 - \checkmark X(2370)(0⁻⁺): J/ψ → γK_S⁰K_S⁰η'
 - **√**

New exciting results ongoing:

- high statistics datasets in wide energy range already collected
- other approaches to be explored

