

Status of the Hyper-Kamiokande experiment

Jan Kisiel
Institute of Physics,
University of Silesia in Katowice, Poland
(on behalf of the Hyper-Kamiokande Collaboration)

Outline

- Hyper-Kamiokande project:
 - (1) far detector,
 - (2) near detectors,
 - (3) J-PARC neutrino beam,
 - (4) Intermediate Water Cherenkov Detector (IWCD)
- Hyper-Kamiokande sensitivity to long-baseline neutrino oscillation parameters with beam:
 - (1) CP violation,
 - (2) wrong θ_{23} octant exclusion,
 - (3) $sin^2\theta_{23}$ and Δm_{32}^2
- Outlook

Hyper-Kamiokande

Hyper-Kamiokande

HK Inner Detector (ID)

- 20% photocoverage
- ~20000 20" PMTs and

Hyper-Kamiokande

295 km

• ~800 multi-PMTs

HK Outer Detector (OD)

- ~3600 3" PMTs
- mounted on Wave Length Shifter (WLS) plates

Intermediate Water Cherenkov Detector (IWCD)

HK-project:

- 1) new far water Cherenkov detector (8.4 x Super-Kamiokande fiducial volume)
- 2) upgraded J-PARC neutrino beam : $0.8 \text{ MW (now)} \rightarrow 1.3 \text{ MW}$
- 3) upgraded ND280 detector (new Super-FGD and High Angle TPCs)
- 4) new Intermediate Water Cherenkov Detector (IWCD)

Based on Japan's successes with water Cherenkov exp.

Water Cherenkov detector development (in Japan)

• Kamiokande (1983-1996), 3 kton, 20% PMT coverage:

- SN1987A neutrinos,
- v_{atm} deficit,

Hyper-Kamiokande

• Super-Kamiokande (1996-...), 50 kton (22.5 kton FV), 40% PMT coverage: T. Kajita

- v_{atm} and v_{solar} oscillations,
- best limits on proton decay,
- far detector for T2K exp.,
- Hyper-Kamiokande (2027-...), 258 kton (188 kton FV), 20% PMT coverage:
 - CP violation: elucidation of the matter dominance in the Universe
 - proton decay (most sensitive channel: $p \rightarrow e^+ + \pi^0$):
 - neutrino oscillation (beam, atmospheric, solar)
 - neutrino mass hierarchy (combined fit of the beam and atmospheric data),
 - neutrino astrophysics (supernova, ...),

(for the discovery

20x

Hyper-Kamiokande: far detector site

- Far detector: fiducial volume: ~188 kton (~8.4 Super-K); tank bottom: ~8 bars of water pressure.
- Main cavern: one of the largest ever human-built caverns,

Hyper-Kamiokande far detector

Measurement of interaction vertex, particle direction and energy; e/μ PID with 20k 20" improved PMTs + 800 mPMTs (inner detector) and 3600 3" PMTs mounted at WLS plates (outer detector).

900 electronic modules in underwater pressure vessels (~600 for 20" PMTs only; ~300 hybrid (20" and 3" PMTs)), unlike in SK to avoid signal deterioration by long cables.

Multi-PMT (mPMT) modules: 19x3"
PMTs with electronics inside a
pressure resistant vessel to improve
the Cherenkov rings reconstructions in
the detector corners.

Outer detector: 3" PMT attached to wavelength shifting plate to veto cosmic-ray muons.

HK 20" PMTs: twice better performance (photodetection efficiency, charge and time resolutions) than SK PMTs; confirmed with 136 installed in the SK during 2018 refurbishment; data for long term stability tests in real HK conditions.

Hyper-Kamiokande Upgrade of J-PARC proton beam intensity

- Continuous increase: from 0.5 MW (2019) to 1.3 MW (2028); already above 0.8 MW.
- Cycle time: 2.48 s \rightarrow 1.16 s; protons per pulse: 2.6x10¹⁴ \rightarrow 3.3x10¹⁴; beam optics improvement.
- J-PARC neutrino beam will be used by T2K until the start of HK.

Hyper-Kamiokande The near detectors at 280m

Near detectors: used to understand neutrino beam/interactions (before oscillations) and control systematics.

- INGRID: on-axis detector to monitor neutrino beam stability and profile.
- ND280: 2.5° off-axis magnetized tracker to measure neutrino interactions (cross-sections) and energy spectrum before oscillations occur. Recently upgraded with: SuperFGD 2M 1cm³ optically isolated plastic scintillator cubes for 3D track reconstruction significant improvement in backward angles, also 2 tons target; 2 horizontal gaseous Ar TPCs with central cathode with 1m drift distance; ToF with 6 scintillator planes with 150 ps timing resolution for PID.

Proton tagging threshold: lowered

Hyper-Kamiokande Intermediate Water Cherenkov Detector

- Measurement of $\frac{\sigma(\nu_e)}{\sigma(\nu_\mu)}/\frac{\sigma(\overline{\nu_e})}{\sigma(\overline{\nu_\mu})}$ with ~3% accuracy at 600 MeV to improve δ_{CP} sensitivity significantly. Oscillated neutrino energy spectrum at HK will differ from that at IWCD.
- A linear combination of the results for different off-axis angles will allow to reconstruct the neutrino energy corresponding to an almost monochromatic neutrino spectrum without neutrino interaction models.
- New, vertically movable detector with 400 mPMTs inside 50m (height) x 10m (diameter) water tank, 850m away from the beam source. Facility construction already started.

Hyper-Kamiokande collaboration

- people as of December 2024; ~75% non-Japanese; continuously growing.
- Far detector: Univ. of Tokyo.
- Beam and near detectors: KEK/J-PARC.

Hyper-Kamiokande Hyper-Kamiokande: timeline

Hyper-Kamiokande: physics program

Physics case

Proton decay

Probe Grand Unified
Theories through p-decay
(world best sensitivity)

(this talk)

- MSW effect in the Sun
- Non-standard interactions in the Sun.

Supernovae neutrinos

- Observe CP violation for leptons at 5σ
- Precise measurement of δ_{CP} .
- High sensitivity to ν mass ordering.
- <u>Direct SNν</u>: Constrains SN models.
- Relic SNv: Constrains cosmic star formation history

B. Quilain, Conf. of the 2 infinities, Kyoto, 2023

Hyper-Kamiokande Oscillation of 3v flavors: known & unknown

Unitary, Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix describes the mixing between neutrino flavor and mass eigenstates:

accelerator/reactor atmospheric/accelerator solar/reactor $\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{23} & S_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} C_{13} & 0 & S_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -S_{13}e^{-i\delta} & 0 & C_{13} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ flavor mass

In the three flavor model there are 6 parameters to be measured:

2 differences of mass in quadrature, 3 mixing angles and 1 CP phase (for Dirac neutrinos)

$\sin^2\theta_{13} = 0.0219 \pm 0.007$ $sin^2\theta_{12} = 0.307^{+0.013}_{-0.012}$ $\Delta m_{21}^2 = 7.53 \pm 0.18 \times 10^{-5} eV^2$ Normal mass ordering $\Delta m_{32}^2 = 2.455 \pm 0.028 \times 10^{-3} eV^2$ $sin^2\theta_{23} = 0.558^{+0.015}_{-0.021}$ Inverted mass ordering $\Delta m_{32}^2 = -2.529 \pm 0.029 \times 10^{-3} eV^2$ $\sin^2\theta_{23} = 0.553^{+0.016}_{-0.024}$ 15.09.2025

$$S_{ij} = \sin(\theta_{ij})$$
$$C_{ij} = \cos(\theta_{ij})$$

Open questions:

- CPV (δ_{CP} phase, difference in $\nu_{\mu} \rightarrow$ v_e , $\overline{v_\mu} \rightarrow \overline{v_e}$ oscillations)
- mass ordering
- $\Theta_{23} > 45^{\circ} \text{ or } \Theta_{23} < 45^{\circ}$ or $\Theta_{23} = 45^{\circ}$

$HK:v_e(\overline{v_e})$ appearance probabilities, 295 km

• J-PARC neutrino and antineutrino off-axis beam fluxes peaks at ~ 0.6 GeV, currently used by T2K, from 2028 by HK

- For $\delta_{CP} = -\pi/2$: $\nu_e(\bar{\nu_e})$ appearance enhanced (suppressed)
- Unknown neutrino mass ordering makes δ_{CP} measurement more complicated, but ...
- Neutrino mass ordering may be resolved with HK atmospheric neutrino data (not in this talk, detailed beam-atmospheric neutrino joint HK fit will come)
- First hint for CPV from T2K exp. (Nature 580 (2020) 339, https://doi.org/10.1038/s41586-020-2177-0)

Hyper-Kamiokande HK sensitivities: assumptions

• Expected number of events for 10 years, 27×10^{21} protons on target (1.3 MW) and ratio of 1:3 in neutrino to antineutrino beam mode:

CCQE-like muon neutrino	~10 000
CCQE-like muon antineutrino	~10 000
CCQE-like electron neutrino (assuming $\delta_{CP}=-1.6$)	~2 000
CCQE-like electron antineutrino (assuming $\delta_{CP}=-1.6$)	~ 800

- T2K neutrino flux model (increase in horn current and position of far detector included).
- T2K analysis (details in EPJ C83, 782, 2024 DOI 10.1140/epjc/s10052-023-11819-x, ref.[4] in figures) method used with new beam and new far detector.
- Central values of the oscillation parameters used:

$sin^2\theta_{12}$	Δm^2_{21}	$sin^2\theta_{23}$	Δm^2_{32}	$sin^2\theta_{13}$	δ_{CP}	mass ordering
0.307	$7.53 \times 10^{-5} eV^2$	0.528	$2.509 \times 10^{-3} eV^2$	0.0218	-1.601 <i>rad</i>	normal

Hyper-Kamiokande HK: CP violation phase sensitivity

- For maximal CPV ($\delta_{CP}=-\pi/2$) and improved systematics, 5σ discovery in < 3 years.
- For maximal CPV ($\delta_{CP}=-\pi/2$) and T2K-like, conservative systematics, 5σ discovery in < 6 years.

HK: precision measurement of CP phase

• δ_{CP} measurement expected precision of ~6° (~20°) for CP conservation (maximal CPV).

HK: sensitivity to wrong θ_{23} octant exclusion

For improved systematics:

- Above 3σ wrong $sin^2\theta_{23}$ octant exclusion for $sin^2\theta_{23} < 0.47$ and $sin^2\theta_{23} > 0.55$
- Above 5σ wrong $sin^2\theta_{23}$ octant exclusion for $sin^2\theta_{23} < 0.45$ and $sin^2\theta_{23} > 0.57$

HK: sensitivity to $sin^2\theta_{23}$

- \sim 3% precision of $sin^2\theta_{23}$ measurement in the region of maximal disappearance.
- ~0.5% or better precision of $sin^2\theta_{23}$ measurement otherwise.

HK: sensitivity to Δm_{32}^2

• Δm_{32}^2 measurement expected precision better than 0.5%.

Outlook

- Hyper-Kamiokande is the next generation neutrino experiment in Japan:
 - New, huge, ~260 kton water Cherenkov far detector,
 - Upgraded to 1.3 MW J-PARC neutrino beam,
 - Upgraded near detectors,
 - New Intermediate Water Cherenkov detector.
- Wide and ambitious Hyper-Kamiokande physics program is based on detection of neutrinos from various sources (J-PARC beam, Sun, Earth's atmosphere, supernova, relic, ...), and proton decay searches.
- Construction started in 2020, is ongoing; beginning of operation in 2028.