

The DUNE Experiment: Status and Outlook

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- New neutrino beam at Fermilab (upgradeable > 2 MW, most powerful beam ever built), 1300 km baseline
- Four 17 kton Liquid Argon Time Projection Chamber (LArTPC) Far Detector modules at Sanford Underground Research Facility, South Dakota, 1.5 km underground
- Multiple technologies for the Near Detector (ND)
- v_e / anti- v_e appearance and v_μ /anti- v_μ disappearance \rightarrow Neutrino mass ordering and CP violation
- Large detector, deep underground, broad and high intensity beam > Supernova burst neutrinos, atmospheric neutrinos, sterile neutrinos, nucleon decay, other BSM, etc

Long Baseline Neutrino Facility (LBNF)

- Proton beam
 - Proton Improvement Plan-II (PIP-II)
 - 1.2 MW, upgradeable to 2.4 MW
 - 60-120 Proton GeV from FNAL accelerator complex
 - Initial upward pitch, bent down at 5.8° to reach Sanford
- Horns/beam line designed to maximize CP violation sensitivity, long baseline optimizes MH measurement

Long Baseline Neutrino Facility (LBNF)

Sanford Underground Research Facility (SURF)

- In the Homestake gold mine, Lead, S. Dakota
- Home of Ray Davis's solar neutrino experiment
- 4 caverns for detector and 1 utility hall for DUNE
- Far site excavation complete

Fermilab

Far Detectors: Liquid Argon Time Projection Chamber (LArTPC)

- High resolution 3D track reconstruction
 - Charged particle tracks ionize argon atoms
 - Ionized electrons drift to anode wires (~ms) for XY-coordinate
 - Electron drift time projected for Z-coordinate
- Argon scintillation light (\sim ns) detected by photon detectors, providing t_0

Far Detectors (FD): LArTPC

FD2: Vertical Drift (VD)

- Fiducial volume: 10 kt per module
- Anode of stacked segmented and perforated printed PCBs with etched electrodes
- 2 × 80 (top and bottom) Anode Charge Readout Planes (CRPs), with 3.4 m × 3 m each
- Cathode suspended at mid-height
- Photon detectors embedded in the cathode and cryostat walls for timing and triggering

DUNE Near Detector Complex

ND-LAr and TMS move off-axis to receive different beam fluxes for disentangling flux and cross sections and constraining systematics (PRISM)

Hall location

- 574 m from target
- ∼60 m underground

- ND-LAr: LArTPC with 3-D pixelated readout; segmented into 35 modules
- TMS: Muon Spectrometer (Phase I) built from steel and scintillator with magnetic field, will upgrade to ND-Gar (Phase II)
- SAND: Magnetized on-axis neutrino detector for beam monitoring

DUNE Plans and Installation

 DUNE construction is phased to provide continuous progress toward physics goals beginning this decade.

Phase I

- Ramp to 1.2 MW beam intensity
- •Two 17kt (10kt fid.) LAr TPC FD modules.
- •Near detector: ND-LAr + TMS (steel/scint. range stack) + SAND
- .Moveable to enable PRISM

Phase II Upgrades

- Proton beam increase to 2.4 MW
- .Four 17kt LAr TPC FD modules
- .TMS Upgraded to ND-Gar to provide enhanced ND interaction physics capabilities.

DUNE Plans and Installation

 DUNE construction is phased to provide continuous progress toward physics goals beginning this decade.

Phase I

- •Ramp to 1.2 MW beam intensity
- •Two 17kt (10kt fid.) LAr TPC FD modules.
- •Near detector: ND-LAr + TMS (steel/scint. range stack) + SAND
- .Moveable to enable PRISM

Phase II Upgrades

- •Proton beam increase to 2.4 MW
- •Four 17kt LAr TPC FD modules
- •TMS Upgraded to ND-Gar to provide enhanced ND interaction physics capabilities.

ProtoDUNEs at CERN

- Two major DUNE prototype LArTPCs at CERN
 - 770 t LAr mass each
 - Exposed to test beams at CERN, momentum-dependent beam composition contains $e, K^{\pm}, \mu, p, \pi^{\pm}$
 - Both Horizontal (ProtoDUNE-HD) and Vertical (ProtoDUNE-VD) design successfully operated
- Demonstrating DUNE Far Detector technologies
- Input to DUNE FD physics (e.g. had xsec)
- First physics publications, with many analyses ongoing

ProtoDUNE-HD Performance and Results

ND-LAr Prototype at Fermilab

- 2x2 prototype of ND-LAr operated in NuMI neutrino beam in summer 2024
- Pixel readout LArTPC → direct 3D image
- Neutrino data taken
- Analysis ongoing, additional beam run planned for 2026

Jianming Bian - UCI

ν_e appearance - ν_e vs anti-ν_a events

- Few percent statistical uncertainties utilizing wide band LBL
- Allow measure oscillation parameters at each L/E bin

v_e appearance - v_e vs anti- v_e events

- Will make unambiguous, high-precision measurements of mass ordering, δ_{CP} and θ_{23} octant, without relying on other oscillation parameters and experiments
- New physics would likely distort observations as a function of L/E \rightarrow unique sensitivity from DUNE

DUNE sensitivity to mass ordering

- In the most favorable scenario (CP value), DUNE surpasses 5σ in under 1 year.
- In the least favorable scenario, DUNE reaches 5σ in about 5 years.
- DUNE will determine the neutrino mass ordering for any value of δ_{CP}

DUNE Resolution of measurement δ_{CP}

- Ambiguity such as δ_{CP} =p/4 vs. 3p/4 can be resolved due to DUNE's broad energy spectrum
- DUNE has the best ultimate δ_{CP} resolution especially if CP is violated

Testing the 3-flavor paradigm with precision measurements at DUNE

- Measurements of θ_{13} obtained from ν_e appearance long-baseline and reactor experiments $\bar{\nu_e}$ disappearance are only equivalent if unitarity is assumed
- DUNE approaches JUNO precision of Δm^2
- Opportunity to test the 3-flavor paradigm

ν_τ appearance in DUNE beam

- DUNE has a substantial flux above 3.5 GeV CC threshold → possibility to measure v_τ appearance
- Imaging capabilities of DUNE's LArTPCs makes it possible to reconstruct complex τ final states kinematically
- ML-driven reconstruction based on hierarchical graph neutral network (GNN) being pursued
- Opportunity to directly measure
 3-flavor oscillations and test
 unitarity

arXiv:2203.05591

Supernova Burst (SNB)

	ν_e	$\bar{\nu}_e$	ν_x
DUNE	89%	4%	7%
SK ¹	10%	87%	3%
JUNO ²	1%	72%	27%

¹Super-Kamiokande, Astropart. Phys. 81 39-48 (2016)

Time and energy profile of SNB neutrino flux is rich is supernova astrophysics

- ~ 5° pointing resolution depending on SNB location
- Flux includes $v_e/\overline{v_e}$ and other flavours only DUNE measures v_e due to Argon target
- DUNE is uniquely sensitive to mass ordering via SNB detection
- SNB program starts once the first FD module is turned on, earlier than beam physics

²Lu, Li, and Zhou, Phys Rev. D 94 023006 (2016)

Atmospheric Neutrinos

- Atmospheric neutrinos will be DUNE's first data
- Including reconstructed hadrons substantially improves angle resolution

Proton decay

- DUNE will be an excellent detector to perform nucleon decay searches: Underground location, Very large fiducial mass; Millimetre size imaging capabilities
- Golden channel in DUNE: $p \to K^+ \bar{\nu}$

- DUNE can image the 3 particles
- DUNE sensitivity comparable to larger Cherenkov detectors:

$$\tau/{\rm Br}(p \to \bar{\nu}K^+) > 1.3 \times 10^{34} {\rm years}$$

DUNE Status and timeline

- Far site excavation complete
- Building, Site and Beam Infrastructure ongoing
- Cryostat installation by Jan. 2026
- FD1 Installation by Mid 2027
- Physics by the end of 2029: Solar, atmospheric and astrophysical neutrinos
- Beam physics with near detector by 2031

DUNE Collaboration

- More than 1,400 collaborators
- Over 200 institutions
- Over 35 countries + CERN

Summary

- DUNE will make decisive measurements for neutrino oscillations, including mass ordering and CP violation
- DUNE will test the 3-flavor paradigm and search for new physics in neutrino oscillations
- DUNE Near Detector has rich physic programs (cross-sections, BSM, etc)
- DUNE has unique capabilities to explore a broad range of nonbeam physics
- DUNE prototype programs are successful
- DUNE is under construction and on track to deliver science

Thank you!

