Tau LFV/LFU measurements

Fabian Becherer
On behalf of the Belle II collaboration
17th International Conference on Heavy Quarks and Leptons
Beijing, 15.09.2025

Outline

Belle II

- Motivation
- Experimental Method
- Testing Lepton Flavor Universality (LFU) in τ decays
- Searching for Lepton Flavor Violation (LFV) in τ decays
- Outlook and conclusion

- τ pairs produced by e^+e^- collisions provide a unique laboratory
 - → Test the Standard Model (SM) through precision measurements
 - → Search for non-SM physics
- High-precision measurements of SM properties: Study of hadronization, light LFU, determination of mass and lifetime
 - → Mostly limited by systematics
 - → Requires understanding of detector performance and background modeling to control systematic uncertainties
- World-leading sensitivities for direct searches, target rare or forbidden processes ($\tau \to \mu\mu\mu$, $\tau \to \ell V^0$, etc.)
 - → Statistically limited
 - → Larger data sets, new techniques to increase signal efficiency and reduce backgrounds, new detectors

Working at $B(\tau)$ - factories

- Clean environment at e^+e^- colliders
- Ongoing experiment: Belle II
 - \rightarrow At $\sqrt{s} = 10.58$ GeV: $\sigma(b\bar{b}) \approx \sigma(\tau\tau) \approx 1$ nb \rightarrow B & τ -factory
 - \rightarrow Known initial states + efficient reconstruction of neutrals (π^0 and η), recoiling system, and missing energy
 - → Specific low-multiplicity triggers (not available at Belle)

Current datasets:

- BaBar (1999-2008): 0.5 ab^{-1}
- Belle (1999-2010): 1 ab^{-1}
- Belle II: Run1 (2019-2022) + Run2 (2024-present) 0.6 ab^{-1}

Future dataset:

- Belle II:
 - $30 \times \text{KEKB peak luminosity} \rightarrow 6 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$ $50 \times \text{BELLE integrated luminosity} \rightarrow 50 \text{ ab}^{-1}$
 - \rightarrow 4.6 × 10¹⁰ τ pairs
- Future super τ -charm factory (STCF)
 - 1 ab⁻¹/per year at 4-5 GeV (3.5 × 10⁹ τ pairs pairs)

- τ pairs in $e^+e^- \to \tau\tau$ events are produced back-to-back in center-of-mass system
- Separation into two hemispheres defined by the plane perpendicular to the thrust axis \hat{n}_{thrust}

Use different topologies:

$$(1x3)$$
 vs $(1x1)$

Define best topologies for each analysis, e.g., to suppress background

$$T = \max_{\hat{n}_{thrust}} \left(\frac{\sum_{i} |p_{i} \cdot \hat{n}_{thrust}|}{\sum_{i} |p_{i}|} \right)$$

 \hat{n}_{thrust} , the best approximation of the τ flight direction

Lepton Flavor Universality

The W boson of the SM couples equally to all charged leptons (LFU): $g_e = g_{\mu} = g_{\tau}$

• Experimentally often tested via branching ratio ratios to cancel systematic uncertainties e.g.:

$$R_{\mu} = \frac{\mathcal{B} \left(\tau \to \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right)}{\mathcal{B} \left(\tau \to e^{-} \bar{\nu}_{e} \nu_{\tau}\right)} \Rightarrow \left|\frac{g_{\mu}}{g_{e}}\right|_{\tau} = \sqrt{R_{\mu} \frac{f\left(m_{e}^{2}/m_{\tau}^{2}\right)}{f\left(m_{\mu}^{2}/m_{\tau}^{2}\right)}}$$

$$f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$$
 (phase space correction)

• A deviation from 1 would directly hint to physics beyond the SM

τ properties at B factories

Belle II

LFU test with lepton – properties

 τ mass (MeV/c²):

Experiment	Value	Stat.	Syst.	Reference
Belle II	1777.09	± 0.08	± 0.11	PRD 108, 032006 (2023)
BES3	1776.91	± 0.12	± 0.12	PRD 90, 012001 (2014)
KEDR	1776.81	± 0.18	± 0.15	PPN 54, 185 (2023)
Belle	1776.61	± 0.13	$\pm~0.35$	PRL 99, 011801 (2007)
BaBar	1776.68	± 0.12	± 0.41	PRD 80, 092005 (2009)

τ lifetime (fs):

Experiment	Value	Stat.	Syst.	Reference
Belle	290.17	$\pm~0.53$	$\pm~0.33$	PRL 112, 031801 (2014)
BaBar	289.40	± 0.91	$\pm~0.90$	Nucl. Phys. B 144, 105 (2005)

https://agenda.infn.it/event/44943/contributions/266592/attachments/137404/206425/TAU_ESPP_Venice.pdf

BR τ lepton:

- Currently, τ lepton list contains 252 entries, 148 experimentally measured, 94 with upper limits
- Current PDG table is based on a fit using 170 measurements
- Last measurement of $\tau \to \ell$ by ALEPH (complex) \to No direct measurements at B-factories

$$\mathbf{\mathcal{B}_{\tau e}} \propto \mathcal{B}_{\mu e} \frac{\mathbf{\tau_{\tau}}}{\tau_{e}} \frac{m_{\tau}^{5}}{m_{\mu}^{5}}$$

Belle II is working on updated τ-lepton inputs!

Belle II: $\mathcal{B}(\tau \to \mu)/\mathcal{B}(\tau \to e) = 0.9675 \pm 0.0007 \text{ (stat)} \pm 0.0036 \text{ (syst)}$; JHEP 08, 205 (2024)

Test of LFU at Belle II [JHEP 08, 205 (2024)]

- Data sample: $362 \text{ fb}^{-1} \text{ with } 3 \times 10^8 \tau \text{ pairs}$
- Both leptonic decay modes studied as signal processes
- Use 1-prong tag with one or two π^0
- Neural network classifier used to improve signal purity
 - → Signal purity of 96% (electron) and 92% (muon) samples
- Binned likelihood fit of momentum distribution used to extract R_{μ}

Page 8

Lepton Flavor Violation

- SM allows LFV in charged lepton decays via weak charged currents and neutrino oscillations
 - \rightarrow But immeasurably small: $\mathcal{B} \approx 10^{-54} 10^{-49}$
 - → Observation of LFV decays would be a direct evidence of non-SM physics!

- Hints of LFV and deviation from SM predications in rare B decays (B anomalies in $b \to c/v$, τ vs. light leptons)
- Various new physics models predict LFV at observable rates

Physics Model	BR $(au ightarrow \mu\mu\mu$)
SM	10-55
SM + Seesaw	10-10
SUSY + Higgs	10-8
SUSY + SO(10)	10-10
Non-universal Z'	10-8

PRD 77, 073010

LFV sensitivities

[arXiv.220314919]

Search for $\tau \rightarrow \mu \mu \mu$ at Belle II [JHEP 09, 062 (2024)]

- Motivated by new Z', charged Higgs models
- Reconstruct signal in an inclusive, untagged approach \rightarrow new at Belle II

- Reject $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes using data-driven selections + Boosted Decision Tree (**BDT**) classifier to suppress $q\bar{q}$ background (signal and Rest Of Event (**ROE**) properties) \rightarrow Signal efficiency $\varepsilon_{\text{sig}} > 20\%$ (~3× Belle)
- Extract signal by Poisson counting in an elliptical signal region (SR) in the $\Delta E_{3\mu} = E_{3\mu} \sqrt{s}/2$ and $M_{3\mu}$ plane

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) = \frac{N_{\text{obs}} - N_{\text{exp}}}{\mathcal{L} \times 2\sigma_{\tau\tau} \times \varepsilon_{3\mu}} = \left(2.1^{+5.1}_{-2.4} \pm 0.4\right) \times 10^{-9}$$

Experiment	Luminosity [fb ⁻¹]	$\begin{bmatrix} \mathcal{B}_{90\text{CL}}^{UL}(\tau \to \mu \mu \mu) \\ \left[10^{-8} \right] \end{bmatrix}$	Reference
Belle	782	2.1	Phys. Lett. B 687,139 (2010)
CMS	131	2.9	Phys. Lett. B 853,138633 (2024)
LHCb	3	4.6	JHEP 02,121 (2015)
Belle II	424	1.9	JHEP 09, 062 (2024)

World's best result

Extending the search to $\tau \to e^{\pm} \ell^{\mp} \ell'^{-}$ at Belle II [arXiv:2507.18236 (JHEP)]

- Inclusive tagging applied \rightarrow 5 modes differentiated via lepton ID selectors
- Higher contamination from $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes (known to be mismodeled in simulation)
 - → Use data-driven BDT classifier
 - → Background samples selected away from the SR; rely on signal kinematics from simulation

$$\rightarrow \varepsilon_{sig} \approx 15 - 24\%$$

- Improve sensitivity by extracting the signal from unbinned maximum-likelihood fits to M_{ell} distributions \rightarrow Use sidebands to extrapolate expected background yields
- No significant excess in 428 fb⁻¹ observed \rightarrow upper limits computed with CLs approach are between 1.3 2.5 \times 10⁻⁸

	$N_{ m exp}$	$N_{ m obs}$	$C_{ m bg}$	\mathcal{B} (10 ⁻⁸)	$\mathcal{B}_{\rm exp}^{UL} \ (10^{-8})$	$\mathcal{B}_{\rm obs}^{UL} \ (10^{-8})$
$e^-e^+e^-$	$6.1^{+4.3}_{-2.9}$	5	$0.52^{+2.64}_{-2.60}$	0	2.7	2.5★
$e^-e^+\mu^-$	$12.1_{-4.3}^{+5.7}$	12	$-0.40^{+1.67}_{-1.68}$	0	2.1	1.6★
$e^-\mu^+e^-$	$10.5^{+5.3}_{-4.3}$	17	$-2.90^{+1.48}_{-1.54}$		1.7	1.6
$\mu^-\mu^+e^-$	$20.7^{+6.6}_{-5.5}$	18	$-2.50^{+1.45}_{-1.52}$	$0.48^{+0.90}_{-0.48}$	1.6	2.4★
$\mu^- e^+ \mu^-$	$7.5^{+4.5}_{-3.2}$	9	$-0.34^{+1.93}_{-1.94}$	0	1.4	1.3★

★ World's best results

Search for $\tau \to \ell K_S^0$ ($\ell = e, \mu$) at Belle + Belle II [JHEP 08, 092 (2025)]

- Constrains new physics models with leptoquark operators
- First LFV search using the combined data set Belle + Belle II \rightarrow 1408 fb⁻¹
- 1-prong tag approach; use lepton ID to distinguish signal channels and tag sides
- K_S^0 candidate reconstructed from two π s
- Data-driven selection against $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes + BDT to suppress $q\bar{q}$ background (input features from tag-side, event and signal K_S^0 properties) $\to \varepsilon_{\rm sig} > 10\%$
- Signal yield extracted by Poisson counting in an elliptical SR in $\Delta E_{\ell K_s^0}$ and $M_{\ell K_s^0}$ plane
- Expected background extrapolated into SR from exponential fits to $M_{\ell K_s^0}$ sideband

No significant event found
 → Set 90% CL world's best upper limits:

$$\mathcal{B}^{UL}(\tau \to e(\mu)K_S^0) < 0.8(1.2) \times 10^{-8}$$

- 3.2 (1.9) times more stringent than Belle with 671 fb⁻¹
- Better performance in the electron channel due to superior particle ID

 Page 13

Invisible scalar boson in τ-decays at Belle [arXiv:2503.22195v3 (2025)]

- τ decays to new long-lived bosons (e.g. ALPs) predicted in many models
- Search for the process: $e^+e^- \to \tau_{sig}(\to \ell\alpha) \tau_{tag}(\to n\pi v)$, with $\ell = e, \mu$
- Approximate τ_{sig} pseudo-rest frame (ARGUS method) as $E_{sig} \approx \sqrt{s}/2$ and $\vec{p}_{sig} \approx -\vec{p}_{tag}/|\vec{p}_{tag}|$
- Two-body decay: Search a bump in the lepton momentum spectrum over irreducible background from $\tau_{SM} \to \ell \nu \nu$

New at Belle (800 fb⁻¹): Adding 1-prong tag $\rightarrow \epsilon_{sig}$ ranges in [0.3-1.5]%

Improve estimate of τ_{sig} direction by reconstructing opening angle between τ_{sig} and the hadronic system

Invisible scalar boson in τ-decays at Belle [arXiv:2503.22195v3 (2025)]

- No significant excess found in 736 × 10⁶ τ pairs \rightarrow set 95% CL upper limits on $\mathcal{B}(\tau_{sig} \rightarrow \ell \alpha)$
- Between 0.4–6.4 (0.2–3.5) \times 10⁻⁴ for electron (muon) channels \rightarrow Most stringent limits to date

- Update of Belle II analysis [PhysRevLett.130.18180] in internal review!
- Novel technique used based on [PhysRevD.102.115001] → Stay tuned

- Many other publication from Belle and Belle II up to 2025, with several ongoing analysis
- In many decays, we are reaching the "hot area"!

[arXiv.220314919] Page 16

- Studies of LFU and LFV in τ decays are an exciting field dominated by e^+e^- colliders
- Ongoing LFV studies at Belle II → Run 2 has started
 - → New data will allow improvements in almost all LFV channels
- Ongoing work at Belle II to improve precision measurements of τ properties
 - → Input for LFU test
- Direct LFU tests ongoing at Belle II with the latest result in JHEP 08, 205 (2024)
 - \rightarrow World's best result for $|g_{\mu}/g_e|_{\tau}$
- New strategies to boost signal efficiency while controlling the background applied to $\tau \to \mu\mu\mu$ and $\tau \to e^{\pm}\ell^{\mp}\ell'^{-}$
- Statistics can be increased by combining Belle and Belle II datasets
 - \rightarrow First combined analysis for $\tau \rightarrow \ell K_S^0$
- Plans to enhance analysis performance by exploiting improved particle identification and multivariate techniques

→ Expected world's best sensitivities!

Backup

Invisible scalar boson in τ-decays at Belle [arXiv:2503.22195v3]

- Require τ_{sig} aligned with the hadronic system ($|\theta_{\tau h}| < 4$) improves the signal lepton momentum resolutions \rightarrow Better sensitivity
- Selections are independent of α mass: ε_{sig} ranges in [0.3-1.5]%
- Signal and background yields extracted from binned maximum-likelihood fits to the signal lepton momenta

 → Shape modeling from simulation

Extending the search to $\tau \rightarrow e^{\pm} \ell \ell$ at Belle II [arXiv:2507.18236 (JHEP)]

- On data event exactly at signal position
- Probably unlucky statistical fluctuation of a background event

	$N_{ m exp}$	$N_{ m obs}$	$C_{ m bg}$	\mathcal{B} (10 ⁻⁸)	$\mathcal{B}_{\rm exp}^{UL}~(10^{-8})$	$\mathcal{B}_{ m obs}^{UL} \ (10^{-8})$
$e^{-}e^{+}e^{-}$	$6.1^{+4.3}_{-2.9}$	5	$0.52^{+2.64}_{-2.60}$	0	2.7	2.5
$e^-e^+\mu^-$	$12.1^{+0.7}_{-4.3}$	12	$-0.40^{+1.67}_{-1.68}$	0	2.1	1.6
$e^-\mu^+e^-$	$10.5^{+5.3}_{-4.3}$	17	$-2.90^{+1.48}_{-1.54}$	0	1.7	1.6
$\mu^-\mu^+e^-$	$20.7^{+6.6}_{-5.5}$	18	$-2.50^{+1.45}_{-1.52}$	$0.48^{+0.90}_{-0.48}$	1.6	2.4
$\mu^-e^+\mu^-$	$7.5^{+4.5}_{-3.2}$		$-0.34^{+1.93}_{-1.94}$	0	1.4	1.3

