Measurements of the CKM angle γ/ϕ_3 at LHCb and Belle (II) with inputs from BES III

Aidan Wiederhold, on behalf of the LHCb Collaboration

University of Manchester, United Kingdom

Heavy Quarks and Leptons, Beijing, China

17th September 2025

CKM angle γ

- CKM matrix links quark mass and flavour eigenstates
- Unitary in the SM
 - ==> triangles in the complex plane
- Use measurements to overconstrain them and search for new physics
- Also compare direct to indirect measurements
 - CKMfitter 2023 indirect world average $\gamma = (66.3^{+0.7}_{-1.9})^{\circ}$
 - HFLAV 2025 direct world average $\gamma = (66.4^{+2.7}_{-2.8})^{\circ}$
 - Global Beauty and Charm average $\gamma = (65.7 \pm 2.5)^\circ$ Phys. Rev. D 112, 013004
- Tree-level γ measurements have very low theory uncertainties excellent benchmark parameter JHEP 01 (2014) 051
 - Next milestone for direct measurement is 1° uncertainty

CKMfitter fit of the db unitarity triangle

BES III Inputs

- e^+e^- at the $D\bar{D}$ threshold ensures a clean environment
- CP-odd quantum correlated Charm pairs from a virtual photon
- 20.3 fb⁻¹ of $\psi(3770) \to D\bar{D}$
 - Some measurements don't use the full dataset yet
- $B \to DX(Y)$ measurements of γ rely on hadronic D^0 decay parameters
 - \emph{r}_{D} ratio of suppressed and favoured D decay
 - $\Delta\delta_D$ strong-phase difference
 - κ_D coherence factor, to account for multi-body decay resonance effects
 - Can also measure CP-even fractions F_+

Sketch of DD production at BES III, courtesy of Alex Gilman

• GLW method considers 2-body CP eigenstate modes, $D \to \pi^+\pi^-$, $D \to K^+K^-$, $D \to K_S^0\pi^0$

$$R_{CP} = \frac{\Gamma(B^- \to D_{CP}X) + \Gamma(B^+ \to D_{CP}X)}{\Gamma(B^- \to D^0X) + \Gamma(B^+ \to \bar{D}^0X)} \propto 1 + r_B^2 \pm 2r_B \cos(\delta_B) \cos(\gamma)$$

ullet For any D final state can measure the charge asymmetry

$$A_{CP} = \frac{\Gamma(B^- \to f^-) - \Gamma(B^+ \to f^+)}{\Gamma(B^- \to f^-) + \Gamma(B^+ \to f^+)} \propto \pm 2r_B \sin(\delta_B) \sin(\gamma) / R_{CP}$$
 "Difference in peak heights"

- Doesn't require strong-phase input
- Extend fairly simply to 4-body modes such as $D \to \pi^+\pi^-\pi^+\pi^-$
 - Dilute interference by the CP-even fraction from BES III
- ullet The same for B^0 decays

$B^+ \to DK^+, D \to (K^+K^-, K_S^0\pi^0)$

- $B^+ \to D\pi^+$ used to cancel efficiencies in CP observables (see backup)
- $772 \times 10^6 \ B\bar{B}$ pairs from Belle, $198 \times 10^6 \ B\bar{B}$ from Belle II
- Data split into 12 sets: B charges $\times B$ decays $\times D$ final states
- $\Delta E = E_B E_{\rm beam}^*$, difference of B candidate energy and beam energy
- Signal yields determined from a fit to ΔE and an ordered BDT output, C', "the fraction of signal events below C".
 - Factorised due to negligible correlation

$$R_{CP+} = 1.164 \pm 0.081 \pm 0.036$$

 $R_{CP-} = 1.151 \pm 0.074 \pm 0.019$
 $A_{CP+} = (+12.5 \pm 5.8 \pm 1.4) \%$
 $A_{CP-} = (-16.7 \pm 5.7 \pm 0.6) \%$

JHEP 05 (2024) 212

Fitted distributions of ΔE for $B^+ \to DK^+, D \to K^+K^-$ in Belle data

1 – CL as a function of ϕ_3 , with dashed lines showing 68.3% CL, and 95.4% CL.

• ADS method considers 2-body Cabibbo favoured/suppressed modes $D\to K^\pm\pi^\mp$

$$R_{CP} = \frac{\Gamma(B^- \to \overline{D}X, \overline{D} \to f) + \Gamma(B^+ \to DX, D \to f)}{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to \overline{D}X, \overline{D} \to f)} \sim \frac{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to DX, \overline{D} \to f)}{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to DX, \overline{D} \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to DX, \overline{D} \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to DX, \overline{D} \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to DX, \overline{D} \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to DX, \overline{D} \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^- \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^- \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^- \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^+ \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^+ \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^+ \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^+ \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^+ \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^+ \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)}{\Gamma(B^+ \to DX, D \to f)} \sim \frac{r_B^2 + r_D^2 + r_D$$

ullet For any D final state can measure the charge asymmetry

$$A_{CP} = \frac{\Gamma(B^- \to f) - \Gamma(B^+ \to f)}{\Gamma(B^- \to f) + \Gamma(B^+ \to f)} \propto 2r_B r_D \sin(\delta_B + \delta_D) \sin(\gamma) / R_{CP}$$

- Fav/sup mode followed by sup/fav "balances" the size of terms in the amplitude

 relatively large interference
- These extend fairly simply to 4-body modes such as $D \to K^\pm \pi^\mp \pi^+ \pi^-$
 - Dilute interference by a coherence factor, κ_D , to account for resonances
- Requires BES III inputs for r_D , $\Delta\delta_D$ and κ_D

Sketch of the favoured and suppressed paths for a $B^+ \to DX, D \to f$ GLW decay

$B^0 \to DK^{*0}, D \to h^+h^{'-}(\pi^+\pi^-)$

JHEP 05 (2024) 025

- "Self-tagging", the charges of the $K^{st 0}$ children depend on the flavour of the B
- Same method as $B^+ \to DK^+$ but cut $B^0 \to DK^+\pi^-$ phase-space around the $K^*(892)$ resonance
 - Interference term gains a coherence parameter coefficient
- Simultaneous measurement of
 - $D \to K^{\pm} \pi^{\mp} (\pi^+ \pi^-)$
 - $D \to \pi^+ \pi^- (\pi^+ \pi^-)$
 - $D \rightarrow K^+K^-$
- Fit interference effects to obtain 4 solutions of γ
 - Solution most compatible with existing measurements is $\gamma = (61.7 \pm 8.0)^\circ$
 - Require further input, such as $D \to K_S^0 h^+ h^-$, to resolve the ambiguity
- BES III input for $\kappa_D^{K\pi}$ JHEP 05 (2021) 164
- $F_+^{4\pi}$ is averaged from BES III and LHCB Phys Rev D 106 (2022) 092004, Phys. Lett. B 747 (2015) 9

Confidence levels from the simultaneous interpretation in terms of $\gamma, r_{R^0}^{DK^*}, \delta_{R^0}^{DK^*}$

BPGGSZ (Bondar-Poluektov-Giri-Grossman-Soffer-Zupan)

- Most well known example is $B^+ \to DK^+, D \to K_S^0 \pi^+ \pi^-$
- $A=|\overline{A}_B|\,|\overline{A}_D|\,+\,|A_B|\,|A_D|\,e^{i\gamma}e^{i\Delta\delta_B}e^{i\Delta\delta_D}$ varies across the D Dalitz plane
 - Resonances overlap between favoured and suppressed
 local asymmetries
- Binned Dalitz plane analysis \Longrightarrow reduced $\sigma_{\rm syst.}$ with a small increase to $\sigma_{\rm stat.}$
- \Longrightarrow bin populations $N_i^{\pm} = h^{\pm} [F_{\mp i} + (x^{\pm 2} + y^{\pm 2}) F_{\pm i} + 2 \sqrt{F_i F_{-i}} (c_i x^{\pm} \mp s_i y^{\pm})]$

fitted to obtain

$$x^{\pm} = r_B \cos(\Delta \delta_B \pm \gamma)$$
$$y^{\pm} = r_B \sin(\Delta \delta_B \pm \gamma)$$

- c_i, s_i are fixed to CLEO-c + BES III values in the fit
- Finally γ can be extracted!

 $D o K_S^0 \pi^+ \pi^-$ Dalitz plane distribution (top) for B^+ (left) and B^- (right), the optimal binning (bottom left) and the extracted Cartesian parameters (bottom right). Figures from JHEP 02 (2021) 169

- Combination with $D \rightarrow h^+ h^{'-} (\pi^+ \pi^-)$ yields $\gamma = (63.2^{+6.9}_{-8.1})^\circ$
- Much closer to where B^+ was in the previous LHCb combination! LHCb-CONF-2022-002
- Strong-phase parameters from BES III Phys. Rev. D 101, 112002 (2020), Phys. Rev. D 102 052008 (2020), Phys. Rev. Lett. 124 241802 (2020), combined with CLEO-c Phys. Rev. D 82, 112006 (2010)

Per-bin asymmetries determined by the CP fit parameters (red) and signal yields when allowed to float freely (black) with statistical uncertainties

 \mathcal{G}_{\pm}

0.2

0.0

-0.2

-0.4

Statistical confidence regions for the measured $x_{\pm i}, y_{\pm i}$ values (right) and the confidence level profile for an extraction of γ from a combination of $D \to K_S^0 h^+ h^-$ and $D \to hh(hh)$ (left)

LHCb

 9 fb^{-1}

 B^0

$B^+ \to D h^+, D \to h^{'+} h^{'-} \pi^+ \pi^-$ Preliminary LHCb-PAPER-2025-019

- First phase-space binned model-independent γ measurement from
 - $D \to K^+K^-\pi^+\pi^-, D \to \pi^+\pi^-\pi^+\pi^-$
- 5 dimensional phase-space
- Binning schemes based on amplitude models
- $D \to K^+K^-\pi^+\pi^-$ binned as a projection onto $(\Delta \delta_D, \ln(r_D))$
 - +i for $ln(r_D) < 0$, -i for $ln(r_D) > 0$,
 - $D \to \pi^+\pi^-\pi^+\pi^-$ hypercube model and binning from JHEP 01 (2018) 144, Phys Rev D 110 112008
 - Binning quality Q $\gtrsim 0.8$ (% sensitivity with respect to unbinned)
- Binning optimised according to a metric measuring the statistical sensitivity relative to an unbinned method
 - Effectively this corresponds to maximising the interference term $2\sqrt{F_iF_{-i}}(c_ix^\pm\mp s_iy^\pm)$
 - By construction, under $CP \ F_i \mapsto F_{-i}, \ c_i \mapsto c_i, \ s_i \mapsto -s_i \Longrightarrow$ reduce free parameters

 $D \rightarrow K^+K^-\pi^+\pi^-$ binning from LHCb Eur. Phys. J. C (2023) 83:547 based on the model from JHEP 02 (2019) 126

$B^+ o Dh^+, D o h^{'+}h^{'-}\pi^+\pi^-$ LHCb-PAPE

NEW

- Previous analysis of $D\to K^+K^-\pi^+\pi^-$ Eur. Phys. J. C (2023) 83:547 determined c_i,s_i from the amplitude model
- New BES III result measured them ⇒ now fully model independent Phys Rev D 112 (2025)
 012015
- BES III also provides them for $D \to \pi^+\pi^-\pi^+\pi^-$ Phys Rev D 110 (2024) 112008
- $F_{\pm i}$ are general to the given D decay, assuming the same efficiency profile,
 - \therefore can use $B^{\pm} \to D\pi^{\pm}$ as a "control" channel

Parameterise
$$B^\pm \to D\pi^\pm$$
 according to

$$x_{D\pi}^{\pm} = x_{\xi} x_{DK}^{\pm} - y_{\xi} y_{DK}^{\pm},$$
 $y_{D\pi}^{\pm} = x_{\xi} y_{DK}^{\pm} - y_{\xi} x_{DK}^{\pm},$
where

$$x_{\xi} = \text{Re}(\xi_{D\pi}), y_{\xi} = \text{Im}(\xi_{D\pi})$$

$$\xi_{D\pi} = \frac{r_B^{D\pi}}{r_B^{DK}} \exp(i[\delta_B^{D\pi} - \delta_B^{DK}])$$

$$N_{Dh,i}^{\pm} = h_{Dh}^{\pm} [F_{\mp i} + (x_{Dh}^{\pm 2} + y_{Dh}^{\pm 2}) F_{\pm i} + 2\sqrt{F_i F_{-i}} (c_i x_{Dh}^{\pm} \mp s_i y_{Dh}^{\pm})]$$

We need to extract x_{DK}^{\pm} , y_{DK}^{\pm} , x_{ξ} , y_{ξ}

$B^+ o Dh^+, D o h^{'+}h^{'-}\pi^+\pi^-$ Preliminary LHCb-PAPER-2025-019

- Negligible correlation between binned LHCb-PAPER-2025-019, and integrated phase-space measurements in Eur. Phys. J. C (2023) 83:547
- Extract γ from these simultaneously (preliminary result)

$$\gamma = (52.6^{+8.5}_{-6.4})^{\circ},$$

$$\delta_B^{DK} = (112.6^{+6.1}_{-7.8})^{\circ} \quad r_B^{DK} = (0.102^{+0.014}_{-0.017})$$

$$\delta_B^{D\pi} = (262^{+40}_{-52})^{\circ} \quad r_B^{D\pi} = (0.0043^{+0.0033}_{-0.0043})$$

- One of the most precise single measurements of γ to date!
- Statistically limited

 Run 3 opportunities
- Leading systematics are strong-phase inputs (comparable to LHCb $\sigma_{\mathrm{stat.}}$)
 - In future $D \to K^+K^-\pi^+\pi^-$ can exploit LHCb Charm mixing measurements
 - and $D \to \pi^+\pi^-\pi^+\pi^-$ the full BES III dataset \Longrightarrow factor of 2.5 reduction in statistical uncertainties of inputs
 - Other systematics are $\lesssim 20\,\%$ of LHCb $\sigma_{\rm stat.}$

Combination of the BPGGSZ measurements (top) and the combination of these with the phase-space integrated measurement.

Beauty and Charm

- Combination of:
 - 19 LHCb B decay measurements (4 new, 3 superseded)*
 - 11 LHCb D decay measurements (1 new, 1 superseded)*
- 27 auxiliary inputs from LHCb, HFLAV, CLEO-c and BESIII (1 new, 2 updated)*
- Many Beauty and Charm measurements share parameters and provide complementary information
 - Detailed description of original method in 2013 Physics Letters B 726 (2013) 151–163
 - Added Charm in 2021 JHEP 12 (2021) 141
- Produces a single LHCb value for 29 physics parameters of interest (+ nuisance parameters)
- Latest update is LHCb-CONF-2024-004
 - Does not include the new $B^+ \to DK^+$ result shown today
 - Work on an update in progress

Charm mixing parameters when measured with and without complementary Beauty inputs

*See backup

Per B species

LHCb-CONF-2022-002

Species	Value [°]	68.3% CL Uncertainty [°]	95.4% CL Uncertainty [°]
B^+	60.6	$^{+4.0}_{-3.8}$	$^{+7.8}_{-7.5}$
B^0	82.0	${+8.1} \\ {-8.8}$	$\begin{array}{c} +17 \\ -18 \end{array}$
B_s^0	79	$^{+21}_{-24}$	$^{+51}_{-47}$
All	63.8	$+3.5 \\ -3.7$	+6.9 -7.5

Species	Value [°]	68.3% CL Uncertainty [°]	95.4% CL Uncertainty [°]
$\overline{B^+}$	63.4	+3.2 -3.3	$+6.4 \\ -6.5$
B^0	64.6	$+6.5 \\ -7.5$	$^{+12}_{-17}$
B_s^0	75	$^{+10}_{-11}$	± 20
All	64.6	±2.8	$+5.5 \\ -5.7$

Belle (II) Combo inputs

- First Belle (II) combination of γ measurements
- Combination of:
 - $B^+ \to DK^+$, $B^+ \to D\pi^+$, $B^+ \to D^*K^+$ results
 - 7 measurements in total
- Much to be gained from future Belle II measurements

B decay	D decay	Method	Data set (Belle + Belle II) $[fb^{-1}]$
$B^+ \to Dh^+$	$D ightarrow K_{\scriptscriptstyle \mathrm{S}}^0 \pi^0, K^- K^+$	GLW	711+189 JHEP 05 (2024) 212
$B^+ o D h^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711+0 Phys Rev D 88 (2013) 091104, Phys Rev Lett 106 231803
$B^+ o D h^+$	$D o K_{\scriptscriptstyle \mathrm{S}}^0 K^- \pi^+$	GLS	711 + 362 JHEP 09 (2023) 146
$B^+ o D h^+$	$D o K_{\scriptscriptstyle { m S}}^0 h^- h^+$	BPGGSZ (m.i.)	711+128 JHEP 02 (2022) 063
$B^+ o D h^+$	$D ightarrow K_{\scriptscriptstyle \mathrm{S}}^0 \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711+0 JHEP 10 (2019) 178
$B^+ o D^*K^+$	$D^* o D\pi^0, D o K_{\rm S}^0\pi^0, K_{\rm S}^0\phi, K_{\rm S}^0\omega,$ $K^-K^+, \pi^-\pi^+$	GLW	210+0 Phys Rev D 73 (2006) 051106
D / D II	$K^-K^+,\pi^-\pi^+$	GLVV	210+0 Thyoriev D 70 (2000) 001100
$B^+ o D^*K^+$	$D^* \to D\pi^0, D\gamma, D \to K_{\rm S}^0\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0 Phys Rev D 81 (2010) 112002

Belle (II) y Combination

- 14 auxiliary input parameters from PDG, HFLAV, CLEO-c, BES III, LHCb
- Provides a single value of γ , r_B^{DK} , δ_B^{DK} , $r_B^{D\pi}$, $\delta_B^{D\pi}$, $r_B^{D^*K}$, $\delta_B^{D^*K}$ from Belle and Belle II
- Better sensitivity than expected arxiv:2207.06307, may be a statistical effect...

Parameters	$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	
Best-fit value	75.2	0.115	137.8	
68.3% interval	[67.7, 82.3]	[0.102, 0.127]	[128.0, 146.3]	
95.4% interval	[59, 89]	[0.089, 0.138]		$\gamma = (75.2^{+})$
$r_B^{D\pi}$	$\delta_B^{D\pi}(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(^\circ)$	7 — (73.2_
0.0165	347.0	0.229	342	
[0.0113, 0.0220]	[337.4, 355	[0.162, 0.2]	[326,356]	
[0.006, 0.027]	[322, 366]	[0.10, 0.3]	[306, 371]	

Combination results: best-fit values and 68.3% and 95.4% confidence intervals

1 – CL distributions as a function of ϕ_3 for various combinations of measurements

Summary

- LHCb and Belle II pushing down the direct uncertainty on γ in a complementary way
- Both experiments now perform our own dedicated combinations for γ
- Still pushing our datasets as far as we can
 - Statistically limited future measurements wi be even better!
- BES III inputs are vital to achieve this performance
 - Uncertainty will be greatly reduced once the full dataset is exploited

 should not be a limiting factor
- Thanks to all the proponents of these analyses
- Thanks for listening!

CKMfitter indirect
$$\gamma = (66.3^{+0.7}_{-1.9})^{\circ}$$

HFLAV direct
$$\gamma = (66.4^{+2.7}_{-2.8})^{\circ}$$

Global Beauty and Charm
$$\gamma = (65.7 \pm 2.5)^{\circ}$$

LHCb
$$\gamma = (64.6 \pm 2.8)^{\circ}$$

Belle (II)
$$\gamma = (75.2^{+7.1}_{-7.5})^{\circ}$$

Backup

LHCb and Belle II

Complementary experiments for measurements of γ

Schematic of the Run 1/2 LHCb detector 2008 JINST 3 S08005, Int. J. Mod. Phys. A 30, 1530022 (2015)

- pp collisions, high production cross-section and boost
- Coverage only in the forward region
- Run $1+2:9 \text{ fb}^{-1}$
- Run 3: higher integrated luminosity and hadron efficiency

Schematic of the Belle II detector

- $\cdot e^+e^- \to \Upsilon(4S)$ collisions, clean environment
- 4π coverage
- Good at reconstructing neutrals
- Belle: 711 fb⁻¹ at $\Upsilon(4S)$
- Belle II: 510 fb^{-1} at $\Upsilon(4S)$, more currently on the way

γ sensitive B decays

- $D \Longrightarrow \operatorname{admixture of} D^0 \operatorname{and} \bar{D}^0$
- $B^{\pm} \to Dh^{\pm}(\pi^{+}\pi^{-})$ (New result today)
- $B^{\pm} \to D^* h^{\pm}$, where the D^* is partially reconstructed due to a missing π^0/γ
- $B^{\pm} \to DK^{*\pm}, K^{*\pm} \to K_S^0 \pi^{\pm} \Longrightarrow$ lower efficiency from extra K_S^0 reconstruction
- $B^0 \to DK^{*0}$, "self tagging"
- $\bullet \ B^0 \to D^\mp \pi^\pm, D^- \to K^+ \pi^- \pi^- \\ \bullet \ B^0_s \to D_s^\mp K^\pm (h^+ h^-), D_s^- \to h^- h^+ \pi^- \\ \end{array} \right\} \ \ \text{Time} \ \ \Longrightarrow \ \ \text{Flavour tagging}$
 - Detailed summary available in the LHCb Beauty+Charm combination LHCb-CONF-2024-004

K_S⁰ at LHCb

- For K_S^0 it's necessary to distinguish between those reconstructed with π tracks in different sub-detectors
 - Long-Long (LL) have hits in each tracking subdetector
 - Down-Down (DD) are not seen in the VErtexLOcator (VELO) ⇒ slightly worse resolution

Time-integrated γ measurements

Sketch of the favoured and suppressed paths for a $B^+ \to DX, D \to f$ decay

- Can't tell which flavour D in each event
 - Interference between $b \to c$ and $b \to u$ transitions
- Squared amplitude depends on

$$\Delta \delta_B \pm \gamma \text{ for } B^\pm$$

$$\Longrightarrow \text{asymmetries } \frac{\Gamma(B^- \to f) - \Gamma(B^+ \to f)}{\Gamma(B^- \to f) + \Gamma(B^+ \to f)}$$

• Compare B^{\pm} amplitudes to extract γ

γ from 2 and 4-body D decays

ullet For any D final state can measure the charge asymmetry

•
$$\frac{\Gamma(B^- \to f) - \Gamma(B^+ \to f)}{\Gamma(B^- \to f) + \Gamma(B^+ \to f)}$$
 "Difference in peak heights"

• For 2-body modes can also measure ratios such as

$$\begin{array}{l} \bullet \quad \frac{\Gamma(B^- \to \overline{D}X, \overline{D} \to f) + \Gamma(B^+ \to DX, D \to f)}{\Gamma(B^- \to DX, D \to f) + \Gamma(B^+ \to \overline{D}X, \overline{D} \to f)} \text{ for } D \to K^\pm \pi^\mp \\ \bullet \quad \frac{\Gamma(B^- \to D_{CP}X) + \Gamma(B^+ \to D_{CP}X)}{\Gamma(B^- \to DX) + \Gamma(B^+ \to DX)} \text{ for } CP\text{-even modes, } D \to \pi^+ \pi^- \text{ and } D \to K^+ K^- \end{array}$$

- These extend fairly simply to 4-body modes, multiply interference terms by
 - $D \to \pi^+\pi^-\pi^+\pi^-$: CP-even fraction
 - $D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$: coherence factor to account for resonances
- The same for ${\it B}^{0}$ decays

$$Y_{\pi}(B^{\pm} \to D_X K^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X K)] N(B \to D_X \pi) R_X \delta (1 - \varepsilon_{\pm}),$$
 (4.1)

$$Y_K(B^{\pm} \to D_X K^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X K)] N(B \to D_X \pi) R_X \delta \varepsilon_{\pm}, \tag{4.2}$$

$$Y_{\pi}(B^{\pm} \to D_X \pi^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X \pi)] N(B \to D_X \pi) (1 - \kappa_{\pm}),$$
 (4.3)

$$Y_K(B^{\pm} \to D_X \pi^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X \pi)] N(B \to D_X \pi) \kappa_{\pm},$$
 (4.4)

We measure *CP* asymmetries,

$$\mathcal{A}_{CP\pm} \equiv \frac{\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) - \mathcal{B}(B^{+} \to D_{CP\pm}K^{+})}{\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) + \mathcal{B}(B^{+} \to D_{CP\pm}K^{+})},\tag{1.1}$$

and the ratio of branching fractions for decays in which the D is reconstructed as a CP eigenstate and decays in which the D is reconstructed in a flavor-specific state:

$$\mathcal{R}_{CP\pm} \equiv \frac{\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) + \mathcal{B}(B^{+} \to D_{CP\pm}K^{+})}{(\mathcal{B}(B^{-} \to D_{flav}K^{-}) + \mathcal{B}(B^{+} \to \overline{D}_{flav}K^{+}))/2}.$$
 (1.2)

This ratio can be expressed as

$$\mathcal{R}_{CP\pm} pprox rac{R_{CP\pm}}{R_{
m flav}},$$
 (1.3)

where

$$R_{CP\pm} \equiv \frac{\mathcal{B}(B^{-} \to D_{CP\pm}K^{-}) + \mathcal{B}(B^{+} \to D_{CP\pm}K^{+})}{\mathcal{B}(B^{-} \to D_{CP\pm}\pi^{-}) + \mathcal{B}(B^{+} \to D_{CP\pm}\pi^{+})},$$
(1.4)

and

$$R_{\text{flav}} \equiv \frac{\mathcal{B}(B^- \to D_{\text{flav}}K^-) + \mathcal{B}(B^+ \to \overline{D}_{\text{flav}}K^+)}{\mathcal{B}(B^- \to D_{\text{flav}}\pi^-) + \mathcal{B}(B^+ \to \overline{D}_{\text{flav}}\pi^+)}.$$
 (1.5)

Extracts from JHEP 05 (2024) 212

BPGGSZ Parameter Definitions

•
$$F_{i} = \frac{\int_{i} d\Phi \eta(\Phi) |A_{D^{0}}|^{2}}{\int d\Phi \eta(\Phi) |A_{D^{0}}|^{2}}$$
•
$$c_{i} = \frac{\int_{i} d\Phi |A_{D^{0}}| |A_{\bar{D}^{0}}| \cos(\Delta \delta_{D})}{\sqrt{\int_{i} d\Phi |A_{D^{0}}|^{2} \int_{i} d\Phi |A_{\bar{D}^{0}}|^{2}}}$$
•
$$s_{i} = \frac{\int_{i} d\Phi |A_{D^{0}}| |A_{\bar{D}^{0}}| \sin(\Delta \delta_{D})}{\sqrt{\int_{i} d\Phi |A_{D^{0}}|^{2} \int_{i} d\Phi |A_{\bar{D}^{0}}|^{2}}}$$

- Where
 - ullet Φ is the 5-dimensional phase-space coordinate
 - $\eta(\Phi)$ is the detection efficiency profile

Separate γ results for $B^+ \to Dh^+, D \to h^{\prime +}h^{\prime -}\pi^+\pi^-$

- Phase-space binned $\gamma = (53.9^{+9.5}_{-8.9})^{\circ}$ LHCb-PAPER-2025-019
- Phase-space integrated $\gamma = (116^{+12}_{-14})^\circ$ Eur. Phys. J. C (2023) 83:547

Aidan Wiederhold

$B^{\pm} \to DK^{*\pm}$

- Simultaneous measurement of γ using
 - $D \to K^{\pm} \pi^{\mp} (\pi^+ \pi^-)$
 - $D \to \pi^+ \pi^- (\pi^+ \pi^-)$
 - $D \rightarrow K^+K^-$
 - $D \rightarrow K_S^0 h^+ h^-$
- First time for $B^{\pm} \to DK^{*\pm}, D \to K_S^0 h^+ h^-$
- First observation of the doubly Cabibbo suppressed $B^{\pm} \to DK^{*\pm}, D \to \pi^{\pm}K^{\mp}(\pi^{+}\pi^{-})$
- Interpretation in terms of γ yields $\gamma = (63 \pm 13)^\circ$
- $F_+^{4\pi}$ input from BES III Phys Rev D 106 (2022) 092004
- c_i, s_i for $D \to K_S^0 h^+ h^-$ combined from CLEO-c Phys Rev D 82 (2010) $_{-0.4}$ 112006 and BES III Phys. Rev. D 101 (2020) 112002, Phys. Rev. D 102 (2020) 052008
- $r_D^{K3\pi}$, $\delta_D^{K3\pi}$, $\kappa^{K3\pi}$ from a combination of LHCb, CLEO-c and BES III measurements JHEP 05 (2021) 164

Per-bin asymmetries determined by the CP fit parameters (red) and signal yields when allowed to float freely (black) with statistical uncertainties

Statistical confidence regions for the measured x_\pm,y_\pm values (left) and the contours for the extraction of $r_B^{DK^*}$ and γ (right)

$B^{\pm} \rightarrow DK^{*}$

- First observation of the doubly Cabibbo suppressed $B^{\pm} \to DK^{*\pm}, D \to \pi^{\pm}K^{\mp}(\pi^{+}\pi^{-})$
- Amplitudes for favoured modes are of the form

$$\bullet A^2 \propto 1 + r_B^2 r_D^2 + 2r_B r_D I$$

- $r_B, r_D < 1$
- Suppressed modes suffer from low statistics
 - But their amplitudes allow for large interference effects

$$\bullet A^2 \propto r_D^2 + r_B^2 + 2r_B r_D I$$

We need more data!

CP-mass fit result for suppressed $B^{\pm} \to DK^{*\pm}$, $D \to \pi^{\pm}K^{\mp}$

CP-mass fit result for suppressed $B^{\pm} \to DK^{*\pm}, D \to \pi^{\pm}K^{\mp}\pi^{+}\pi^{-}$

LHCb

 9 fb^{-1}

Combination updates

LHCb-CONF-2024-004

B decay	D decay	Ref.	Dataset	Status since
				Ref. [13]
$B^{\pm} \to D h^{\pm}$	$D \rightarrow h^+ h^{\prime -}$	[32]	Run 1&2	As before
$B^\pm o D h^\pm$	$D \rightarrow h^+ h^- \pi^+ \pi^-$	[19]	Run 1&2	\mathbf{New}
$B^\pm o D h^\pm$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[33]	Run 1&2	$As\ before$
$B^\pm o D h^\pm$	$D ightarrow h^+ h^{\prime -} \pi^0$	[34]	Run 1&2	$As\ before$
$B^\pm o D h^\pm$	$D o K_{ m S}^0 h^+ h^-$	[35]	Run 1&2	$As\ before$
$B^\pm o D h^\pm$	$D o K_{ m S}^0K^\pm\pi^\mp$	[36]	Run 1&2	$As\ before$
$B^\pm o D^*h^\pm$	$D \to h^+ h'^- \text{ (PR)}$	[32]	Run 1&2	$As\ before$
$B^\pm o D^* h^\pm$	$D \to K_{\rm S}^0 h^+ h^- \; ({\rm PR})$	[20]	Run 1&2	\mathbf{New}
$B^\pm o D^* h^\pm$	$D \to K_{\rm S}^0 h^+ h^- \text{ (FR)}$	[21]	Run 1&2	\mathbf{New}
$B^\pm o DK^{*\pm}$	$D \rightarrow h^+ h^{\prime -}$	[22]	Run 1&2	$\mathbf{Updated}$
$B^\pm o DK^{*\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[22]	Run 1&2	$\mathbf{Updated}$
$B^\pm o DK^{*\pm}$	$D o K_{ m S}^0 h^+ h^-$	[22]	Run 1&2	\mathbf{New}
$B^\pm o D h^\pm \pi^+ \pi^-$	$D \rightarrow h^+ h^{\prime -}$	[37]	Run 1	$As\ before$
$B^0 o DK^{*0}$	$D o h^+ h^{\prime -}$	[23]	Run 1&2	$\mathbf{Updated}$
$B^0 o DK^{*0}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[23]	Run 1&2	$\mathbf{Updated}$
$B^0 o DK^{*0}$	$D o K_{ m S}^0 h^+ h^-$	[24]	Run 1&2	$\mathbf{Updated}$
$B^0 o D^\mp \pi^\pm$	$D^+ ightarrow K^- \pi^+ \pi^+$	[38]	Run 1	$As\ before$
$B_s^0 o D_s^\mp K^\pm$	$D_s^+ \to h^+ h^- \pi^+$	[25, 39]	Run 1&2	Updated
$B_s^0 o D_s^\mp K^\pm \pi^+ \pi^-$	$D_s^+ o h^+ h^- \pi^+$	[40]	Run 1&2	$As\ before$
		_		

$D \operatorname{decay}$	Observable(s)	Ref.	Dataset	Status since
				Ref. [13]
$D^0 \to h^+ h^-$	ΔA_{CP}	[41–43]	Run 1&2	As before
$D^0 o K^+ K^-$	$A_{CP}(K^+K^-)$	[43 – 45]	Run 2	$As\ before$
$D^0 o h^+ h^-$	$y_{C\!P}-y_{C\!P}^{K^-\pi^+}$	[46, 47]	Run 1&2	$As\ before$
$D^0 o h^+ h^-$	ΔY	[48-51]	Run 1&2	$As\ before$
$D^0 \to K^+\pi^-$ (double tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[52]	Run 1	$As\ before$
$D^0 \to K^+\pi^- \text{ (single tag)}$	$R_{K\pi}, A_{K\pi}, c_{K\pi}^{(\prime)}, \Delta c_{K\pi}^{(\prime)}$	[27, 53]	Run 1&2	$\mathbf{Updated}$
$D^0 o K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2+y^2)/4$	[54]	Run 1	$As\ before$
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	x,y	[55]	Run 1	$As\ before$
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[56]	Run 1	$As\ before$
$D^0 o K_{ m S}^0 \pi^+ \pi^-$	$x_{C\!P},y_{C\!P},\Delta x,\Delta y$	[57, 58]	Run 2	$As\ before$
$D^0\!\to\pi^+\pi^-\pi^0$	$\Delta Y^{ m eff}$	[26]	Run 2	\mathbf{New}

Charm measurements in the combination

Beauty measurements in the combination

Combination updates

Decay	Parameters	Source	Ref.	Status since
				Ref. [13]
$B^{\pm} \to DK^{*\pm}$	$\kappa_{B^\pm}^{DK^{*\pm}}$	LHCb	[59]	As before
$B^0 o DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[<mark>60</mark>]	$As\ before$
$B^0 o D^\mp \pi^\pm$	eta	HFLAV	[14]	Updated
$B_s^0 o D_s^\mp K^\pm(\pi\pi)$	ϕ_s	LHCb	[61]	Updated
$D o K^+\pi^-$	$\cos\delta_D^{K\pi},\sin\delta_D^{K\pi},(r_D^{K\pi})^2,x^2,y$	CLEO-c	[62]	$As\ before$
$D o K^+\pi^-$	$A_{K\pi},A_{K\pi}^{\pi\pi\pi^0},r_{D}^{K\pi}\cos\delta_{D}^{K\pi},r_{D}^{K\pi}\sin\delta_{D}^{K\pi}$	BESIII	[63]	$As\ before$
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}^+,F_{KK\pi^0}^+$	CLEO-c	[64]	$As\ before$
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[64,65]	$As\ before$
$D \rightarrow K^+ K^- \pi^+ \pi^-$	$F^+_{KK\pi\pi}$	BESIII	[66]	New
$D \to K^+\pi^-\pi^0$	$r_D^{K\pi\pi^0},\delta_D^{K\pi\pi^0},\kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[67-69]	$As\ before$
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[54,67–69]	$As\ before$
$D o K_{ m S}^0 K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi},\delta_D^{K_{ m S}^0K\pi},\kappa_D^{K_{ m S}^0K\pi}$	CLEO	[70]	$As\ before$
$D o K_{ m S}^0 K^\pm \pi^\mp$	$r_D^{K_{ m S}^0K\pi}$	LHCb	[71]	$As\ before$

Auxiliary inputs to the combination

LHCb-CONF-2024-004

Oughtitu	Volue	68.3	8% CL	95.4	1% CL
Quantity	Value	Uncertainty	Interval	Uncertainty	Interval
γ [°]	64.6	± 2.8	[61.8, 67.4]	$+5.5 \\ -5.7$	[58.9, 70.1]
$r_{B^\pm}^{DK^\pm} [\%]$	9.73	$^{+0.21}_{-0.20}$	[9.53, 9.94]	$^{+0.42}_{-0.40}$	[9.33, 10.15]
$\delta_{B^\pm}^{DK^\pm}[^\circ]$	127.4	$^{+2.8}_{-3.0}$	[124.4, 130.2]	$^{+5.6}_{-6.2}$	[121.2, 133.0]
$r_{B^\pm}^{D\pi^\pm} [\%]$	0.49	$^{+0.06}_{-0.05}$	[0.44, 0.55]	$^{+0.12}_{-0.10}$	[0.39, 0.61]
$\delta_{B^\pm}^{D\pi^\pm}[^\circ]$	292	$^{+10}_{-11}$	[281, 301]	$^{+19}_{-22}$	[269, 310]
$r_{B^\pm}^{D^*K^\pm}[\%]$	10.6	± 1.0	[9.6, 11.6]	± 2.0	[8.6, 12.6]
$\delta_{B^\pm}^{D^*K^\pm}[^\circ]$	312	$^{+6}_{-7}$	[304, 318]	$^{+12}_{-16}$	[296, 324]
$r_{B^\pm}^{D^*\pi^\pm}[\%]$	0.74	$^{+0.41}_{-0.32}$	[0.42, 1.15]	$^{+0.87}_{-0.62}$	[0.12, 1.61]
$\delta_{B^\pm}^{D^*\pi^\pm} [^\circ]$	37	$^{+39}_{-20}$	[17, 76]	$^{+94}_{-31}$	[6, 131]
$r_{B^\pm}^{DK^{*\pm}} [\%]$	10.6	$^{+0.9}_{-1.0}$	[9.6, 11.5]	$^{+1.7}_{-2.0}$	[8.6, 12.3]
$\delta_{B^\pm}^{DK^{*\pm}}[^\circ]$	49	$^{+14}_{-11}$	[38, 63]	$^{+30}_{-23}$	[26, 79]
$r_{B^0}^{DK^{*0}}[\%]$	23.4	$^{+1.5}_{-1.6}$	[21.8, 24.9]	$^{+2.9}_{-3.3}$	[20.1, 26.3]
$\delta_{B^0}^{DK^{*0}} [^{\circ}]$	192	± 6	[186, 198]	$^{+13}_{-12}$	[180, 205]
$r_{B_s^0}^{D_s^{\mp}K^{\pm}}[\%]$	33.3	$+3.7 \\ -3.5$	[29.8, 37.0]	$+7.5 \\ -7.1$	[26.2, 40.8]
$\delta_{R_0}^{D_s^{\mp}K^{\pm}} [\circ]$	349	± 6	[343, 355]	± 12	[337, 361]
$r_{B_{s}^{0}}^{D_{s}^{\mp}K^{\pm}\pi^{+}\pi^{-}}[\%]$	46	±8	[37, 54]	$^{+16}_{-17}$	[29, 62]
$\delta_{B_{s}^{0}}^{D_{s}^{\mp}K^{\pm}\pi^{+}\pi^{-}} [^{\circ}] \ r_{B^{0}}^{D_{s}^{\mp}\pi^{\pm}} [\%]$	345	$^{+13}_{-12}$	[333, 358]	$^{+26}_{-25}$	[320, 371]
$r_{B^0}^{ m D^{\mp}\pi^{\pm}}[\%]$	3.0	$^{+1.3}_{-1.2}$	[1.8, 4.3]	$^{+3.1}_{-2.7}$	[0.3, 6.1]
$\delta_{B^0}^{D^\mp\pi^\pm}[^\circ]$	30	$^{+25}_{-36}$	[-6, 55]	$^{+45}_{-77}$	[-47, 75]
$r_{B^\pm}^{DK^\pm\pi^+\pi^-}[\%]$	8.0	$^{+2.7}_{-3.3}$	[4.7, 10.7]	$^{+4.9}_{-8.0}$	$[0.0, 12.9]^*$
$r_{B^\pm}^{D\pi^\pm\pi^+\pi^-}[\%]$	6.2	$^{+2.2}_{-3.0}$	[3.2, 8.4]	$+3.7 \\ -6.2$	$[0.0, 9.9]^*$
x[%]	0.41	± 0.05	[0.36, 0.45]	± 0.09	[0.31, 0.50]
y[%]	0.621	$^{+0.022}_{-0.021}$	[0.600, 0.643]	$^{+0.044}_{-0.042}$	[0.579, 0.665]
$r_D^{K\pi}[\%]$	5.855	$^{+0.010}_{-0.009}$	[5.846, 5.865]	$^{+0.020}_{-0.019}$	[5.836, 5.875]
$\delta_D^{K\pi} [^\circ]$	191.6	$^{+2.5}_{-2.4}$	[189.2, 194.1]	$^{+4.9}_{-5.1}$	[186.5, 196.5]
q/p	0.989	± 0.015	[0.974, 1.004]	$+0.031 \\ -0.030$	[0.959, 1.020]
$\phi [^{\circ}]$	-2.5	± 1.2	[-3.7, -1.3]	± 2.5	[-5.0, 0.0]
$a^{\mathrm{d}}_{K^+K^-}[\%]$	0.06	$^{+0.06}_{-0.05}$	[0.01, 0.12]	± 0.11	[-0.05, 0.17]
$a_{\pi^+\pi^-}^{\mathrm{d}}[\%]$	0.22	± 0.06	[0.16, 0.28]	± 0.12	[0.10, 0.34]
$a^{\mathrm{d}}_{K^+\pi^-}[\%]$	-0.60	$^{+0.27}_{-0.26}$	[-0.86, -0.33]	$+0.53 \\ -0.54$	[-1.14, -0.07]

Combination results for Beauty and Charm parameters of interest

- Some small tension between time dependent and time integrated measurements
- Clearly need to push harder on time dependent analyses to get this uncertainty down

2024 LHCb γ combination for time dependent and time integrated analyses