

Status and future prospects for rare kaon decay measurements at KOTO(-II)

Ryota Shiraishi (KEK) on behalf of the KOTO collaboration

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ search

- Direct CP-violating process
- Rare: $B(K_L \to \pi^0 \nu \overline{\nu})_{\rm SM} = 3 \times 10^{-11}$
- Well known: <2% theoretical uncertainties
 - → Good probe to search for New Physics

 K_L S V_{ts} V_{ts} V_{td} V_{td}

Global status of the $K \to \pi \nu \bar{\nu}$ search

J-PARC KOTO experiment

- KOTO (= K⁰ at TOkai) aims to search for new physics via the $K_L \to \pi^0 \nu \bar{\nu}$ decay
- KOTO collaboration: ~40 members from Japan, Korea, Taiwan, US

Hadron Experimental Facility

Experimental method

KOTO data-taking history

- Beam power has been increased: 64 kW (2021) → 92 kW (2025 June)
- Data collected in 2024–2025 is around twice as much as 2021 data

Our current focus

Latest results from 2021 data

- Single Event Sensitivity (SES)
 - SES = $(9.33 \pm 0.06 \pm 0.84) \times 10^{-10}$
- Expected number of background events
 - $0.252 \pm 0.055^{+0.052}_{-0.067}$
- No events observed in the signal region $\Rightarrow B(K_L \to \pi^0 \nu \bar{\nu}) < 2.2 \times 10^{-9} \text{ (90\% C.L.)}$ (current best limit)

Phys. Rev. Lett. 134, 081802

•: data Contour: signal MC

Black: #observed Red: #expected BG

Lessons from the 2021 data analysis

Background estimation in the 2021 data analysis

Upgrade after 2021: DAQ

- ullet Upgraded the DAQ system to have more rate capability ullet added new triggers
 - 5 γ trigger to collect a control sample (5 γ sample) for **veto inefficiency** evaluation \rightarrow aims to reduce the systematic uncertainty of $K_L \rightarrow 2\pi^0$ BG
 - New trigger to collect events for other physics targets (e.g., $K_L \to \pi^0 ee$)

Upgrade after 2021: detector

- Installed a new charged veto counter (Upstream Charged Veto, UCV) in 2023 for further reduction of the K^{\pm} background
 - Important features
 - Sensitive to charged particles to detect K^{\pm} in the beam
 - Less sensitive to neutral particles (K_L , n, γ) to avoid scattering

Upgrade after 2021: detector

- Upstream Charged Veto (2021)
 - Thickness: 0.5 mm (scinti. fiber), Inefficiency: 7.8%
- Upstream Charged Veto (2023–)
 - Thickness: 0.2 mm (scinti. film), Inefficiency: 0.06%

UCV (2023–)

Upgrade after 2021: beam line

- Installed a permanent magnet at the downstream edge of the collimator
 - B (\sim 0.9T) x 0.5 m on average

(lead)

• Expect 1/10 reduction of the K^{\pm} background

Beam (z)

Analysis status: 2024–2025 data

- Accumulated #protons on target (POT) in 2024-25
 - $POT_{2024-25} = 6.59 \times 10^{19} (\sim 2 \times POT_{2021})$
- No events are found outside the blind region except for the upstream π^0 events. (As expected.)
- Used a wider blind region to consider possible extension of the signal region.

upstream π^0 events

- Currently checking stability of K_L yield and veto performance
- Will start sensitivity and background estimations soon

Under almost the same cut set for the 2021 data analysis

Prospect of KOTO

With the following assumptions, we aim to reach SES $< 10^{-10}$ in 3-4 years

- Beam power will reach 100 kW in 2026–
- Run time: 20 days/month x 2 or 3 months/year
- 70% efficiency for physics data taking

Expected sensitivity

Next step

Hadron Experimental Facility extension (HEF-ex)

- Double the area for hadron/nuclear and particle physics experiments. (HEF-ex white paper [arXiv:2110.04462])
- Supported by the <u>KEK Project Implementation Plan 2022</u> as a **1st priority project** for budget request.

KOTO II experiment

What's new?

- Extraction angle: $16^{\circ} \rightarrow 5^{\circ}$
- Peak K_L momentum: 1.4 GeV/c \rightarrow 2.9 GeV/c
- Decay volume (signal region): 2 m → 12 m
 => More signal acceptance

 $P_{KL}: 1.4 \rightarrow 2.9 \text{ GeV/}c$

5° (KOTO II)

16° (KOTO)

Proton

KOTO II detector (base design)

3D cutaway view of the KOTO II detector

Signal yield and sensitivity

- With 5 years (3x10⁷ s running time) of data-taking at 100 kW beam power, we expect
 - SES = 8.5×10^{-13}
 - 35 signal and 40 background events
 - 5.6 σ discovery
 - $\Delta \mathcal{B} / \mathcal{B} = 25\%$
- 40% deviation from SM
 - → 90%-CL indication of NP

KOTO II status & prospect

- Proposal was submitted by 82 members from 11 countries in Jan. 2025
 - Scientific approval (stage-1 status) was granted by J-PARC PAC
- KOTO II collaboration was formed this summer (KEK as a host)
- Next steps toward full approval (stage-2):
 - Strategy for KL2 beam line construction
 - Realistic detector design

 Detailed information and recent studies can be found in talks at <u>KAON2025</u> & <u>KOTO II workshop</u>

KOTO II proposal [arXiv:2501.14827]

Summary

KOTO

- Upgrades of detector/beamline/DAQ were done after 2021 data-taking
- Twice more data has been collected in 2024-25 compared to 2021 data
- Analysis of the 2024-25 data is ongoing
- KOTO will reach SES below 10^{-10} in 3-4 years

KOTO II

- Submitted a proposal and formed the KOTO II collaboration
- Aim to discover $K_L \to \pi^0 \nu \bar{\nu}$ with $> 5\sigma$
- Will measure $B(K_L \to \pi^0 \nu \bar{\nu})$ with 25% precision

Backup

Background: $K_L \rightarrow 2\pi^0$

Summary of inefficiency evaluation with $K_L \to 3\pi^0$ events

Veto Detector	FB	Barrel for high Eγ ₆	Barrel for low Eγ ₆	BHPV
Correction Factor (= Ineff.(Data) / Ineff.(MC))	1.42 ± 0.13	$0.77^{+0.85}_{-0.77}$	1.10 ± 0.10	$1.50^{+0.42}_{-0.51}$

Background Estimation: Upstream- π^0

n

Background mechanism

- Halo neutron hits the upstream veto detector \rightarrow A produced $\pi^0(\rightarrow 2\gamma)$ makes two clusters
- Photonuclear reaction in CSI causes energy mismeasurement of incident photons
 - \rightarrow Reconstructed Z_{vtx} shifts downstream

$$\cos \theta = 1 - \frac{M_{\pi^0}^2}{2E_{\gamma_1}E_{\gamma_2}}$$

Number of background events

$$=0.060\pm0.046\pm0.007$$

KOTO II: signal acceptance improvement

	KOTO II	KOTO	Improvement factor
Number of K_L/POT	$\times 2.6$		2.6
$P_{ m decay}$	9.9%	3.3%	3.0
$A_{ m geom}$	24%	26%	0.9
$A_{ m cut}$	26%	11%	2.4
1-accidental loss	61%	29%	2.1
1-backsplash loss	91%	56%	1.6
Total			58

KOTO II: beam condition & running time

Assumed beam conditions and running time

Beam power	100 kW	(at 1-interaction-length T2 target)
		$(1.1 \times 10^7 K_L/2 \times 10^{13} \text{ POT})$
Repetition cycle	$4.2 \mathrm{\ s}$	
Spill length	2 s	
Running time	$3 \times 10^7 \mathrm{\ s}$	

KOTO II: extraction angle

Small extraction angle $\theta \rightarrow$ High flux, High momentum

 \rightarrow 5° is optimal

KOTO II: decay volume

KOTO II: signal yield

$$S = \frac{\text{(beam power)} \times \text{(running time)}}{\text{(beam energy)}} \times \text{(number of } K_L/\text{POT)}$$

$$\times P_{\text{decay}} \times A_{\text{geom}} \times A_{\text{cut}} \times \text{(1-accidental loss)} \times \text{(1-backsplash loss)} \times \mathcal{B}_{K_L \to \pi^0 \nu \overline{\nu}}$$

$$= \frac{(100 \text{ kW}) \times (3 \times 10^7 \text{ s})}{(30 \text{ GeV})} \times \frac{(1.1 \times 10^7 K_L)}{(2 \times 10^{13} \text{ POT)}}$$

$$\times 9.9\% \times 24\% \times 26\% \times (1 - 39\%) \times 91\% \times (3 \times 10^{-11})$$

$$= 35.$$

KOTO II: background

Background summary

Background	Number	
$K_L o \pi^0 \pi^0$	16.9	±1.1
$K_L o \pi^+\pi^-\pi^0$	2.5	± 0.4
$K_L o \pi^{\pm} e^{\mp} u$	0.08	± 0.0006
halo $K_L \to 2\gamma$	4.8	± 0.2
$K^\pm o \pi^0 e^\pm u$	4.0	± 0.4
hadron cluster	3.0	± 0.5
π^0 at upstream	0.2	± 0.1
η at downstream	8.2	± 2.3
Total	40	± 2.7

KOTO II: sensitivity and physics impact

	Formula	Value
Signal (branching fraction : 3×10^{-11})	S	35.3 ± 0.4
Background	B	40 ± 2.7
Single event sensitivity	$(3 \times 10^{-11})/S$	8.5×10^{-13}
Signal-to-background ratio	S/B	0.89
Significance of the observation	S/\sqrt{B}	5.6σ
90%-C.L. excess / deficit	$1.64 \times \sqrt{S+B}$	14 events
	$1.64 \times \sqrt{S+B}/S$	40% of SM
Precision on branching fraction	$\sqrt{S+B}/S$	25%
Precision on CKM parameter η	$0.5 \times \sqrt{S+B}/S$	12%

^{*} A running time of 3×10^7 s is assumed in the calculation.

KOTO II detector (base design)

KOTO II detector (base design)

Decay volume

(Vacuum)

Pb converter (1.5 / 3 mm)+Aerogel

γ→e+e-→Cherenkov photon

neutron insensitive

25 modules with 9.6X₀ in total