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Neutrinos are massive and leptons mix
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Evidence for BSM physics!
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FIG. 3: As in Fig. 2, but adding atmospheric ω data (i.e., with all oscillation data included). NO is favored at 2.2ε.

Summarizing, in the last few years there has been an appreciable progress on three known oscillation parameters
(|!m2|, ω13, ω23), with the first one entering the subpercent precision era. Previous hints about the three oscillation
unknowns (ω23 octant, CP phase ε, mass ordering) are instead weaker. Finally, we note that our global results (Fig. 3
and Table I) are in good agreement with ones reported in an independent analysis [15]. The agreement would be even
better by excluding the recent RENO data [33] appeared after [15]; in particular, we would then obtain a preference
for NO at 2.5ϑ as in [15].

TABLE I: Global 3ω oscillation analysis: best-fit values and allowed ranges at Nω = 1, 2, 3, for either NO or IO. The last
column shows the formal “1ε parameter accuracy,” defined as 1/6 of the 3ε range, divided by the best-fit value (in percent).
We recall that !m2 = m2

3 → (m2

1 +m2

2)/2 and that ϑ/ϖ is cyclic (mod 2). Last row: !ϱ2 o”set between IO and NO.

Parameter Ordering Best fit 1ε range 2ε range 3ε range “1ε” (%)

ϑm2/10→5 eV2 NO, IO 7.37 7.21 – 7.52 7.06 – 7.71 6.93 – 7.93 2.3

sin2 ς12/10
→1 NO, IO 3.03 2.91 – 3.17 2.77 – 3.31 2.64 – 3.45 4.5

|!m2|/10→3 eV2 NO 2.495 2.475 – 2.515 2.454 – 2.536 2.433 – 2.558 0.8

IO 2.465 2.444 – 2.485 2.423 – 2.506 2.403 – 2.527 0.8

sin2 ς13/10
→2 NO 2.23 2.17 – 2.27 2.11 – 2.33 2.06 – 2.38 2.4

IO 2.23 2.19 – 2.30 2.14 – 2.35 2.08 – 2.41 2.4

sin2 ς23/10
→1 NO 4.73 4.60 – 4.96 4.47 – 5.68 4.37 – 5.81 5.1

IO 5.45 5.28 – 5.60 4.58 – 5.73 4.43 – 5.83 4.3

ϑ/ϖ NO 1.20 1.07 – 1.37 0.88 – 1.81 0.73 – 2.03 18

IO 1.48 1.36 – 1.61 1.24 – 1.72 1.12 – 1.83 8

!ϱ2

IO→NO IO→NO +5.0

P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, 
C. A. Ternes, M. Tórtola and J. W. F. Valle,arXiv:2006.11237 [hep-ph]
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Naturally small neutrino masses

3

There are only 3 tree-level realisations of neutrino masses in the minimal SM

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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SSB mechanism, in a similar way as Dirac mass terms are generated in the SM. However
such mechanism would require a Higgs-like scalar field with isospin I = 1, in order to
construct a gauge invariant Yukawa interaction containing the I = 1 term ⌫c

L
⌫L. Such a

field (a Higgs triplet) is not present in the SM, and so this possibility is also excluded.
To summarise, because of the gauge symmetries and the field content of the theory,

and allowing only renormalizable couplings, neutrinos are massless in the SM.
If one relaxes the renormalizability condition and considers the SM as an effective

theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
effects are encoded in the collection of allowed dimension 5 operators. Remarkably, there
exists a unique Lorentz and gauge-invariant operator that is possible to construct with
the SM fields, the so called Weinberg operator [28]

1

2

c↵�

⇤

⇣
lc
L↵

e�⇤
⌘ ⇣

e�†l�
L

⌘
+ h.c., (2.85)

where ↵, � = e, µ, ⌧ , c↵� is a complex symmetric matrix and ⇤ is a constant with the
dimensions of energy that is related to the new physics scale. When the Higgs field
acquires a nonzero VEV, the operator (2.85) contributes as

v2

2

c↵�

⇤
⌫c

L↵
⌫L� + h.c., (2.86)

that is a Majorana mass term for left-handed neutrinos. It is notable that the first
expected effect of physics BSM is just the appearance of non-zero Majorana neutrino
masses; in this sense neutrinos are truly a window to BSM physics.

2.3 Leptonic Lagrangian in the Standard Model

Given the SM field content, the SM Lagrangian is the most general renormalizable La-
grangian which is invariant under the local gauge group and the global Lorentz transfor-
mations. Choosing a basis in which the kinetic terms are diagonal, the leptonic part is
given by

Lleptons = l↵
L

✓
i/@ +

g

2
/W

i
�i � g0

2
/B

◆
l↵L + e↵

R

�
i/@ � g0 /B

�
e↵

R

�Y↵�l↵
L
�e�

R
� Y †

↵�
e↵

R
�

†l�
L
. (2.87)

Y↵� is the matrix of the Yukawa interactions, which expresses the strength of the cou-
plings between the leptons and the Higgs field. It is a 3 ⇥ 3 matrix with complex entries
in general, which can be diagonalised through the bi-unitary transformation [29]

U †Y V = diag [y1, y2, y3] , (2.88)

where y1,2,3 are positive numbers and U, V are unitary matrices. Redefining the lepton
fields as

l↵L = U↵�
el�
L
, (2.89)

e↵

R = V↵�ee�

R
, (2.90)
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Type-I seesaw mechanism
Complete the SM field pattern with right-handed neutrinos

Figure from S. Alekhin et al., arXiv:1504.04855 [hep-ph]
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Neutrino masses from sterile singlets
Type-I seesaw mechanism: SM + gauge singlet fermions NI

After electroweak phase transition < Φ > = v ≃ 174 GeV

5

L = LSM + iNI /∂NI −
(
FαIℓαLφ̃NI +

MIJ

2
N c

INJ + h.c.

)
(1)
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1

2
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†
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c
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)
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†ℓαL (2)

η∆B = (6.13± 0.03)× 10−10 (3)

1

mν = −v2F
1

M
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L = LSM + iNI /∂NI −
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MIJ

2
N c
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1
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c
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− FαiℓαLφ̃νRi − F ∗

αiνRiφ̃
†ℓαL (3)

η∆B = (6.13± 0.03)× 10−10 (4)

1

mν is much smaller than EW scale

∑ mν < 0.12 eV

Planck collaboration, arXiv:1807.06209 [astro-ph.CO]

mν < 1.1 eV
KATRIN collaboration, arXiv:1909.06048 [hep-ex]

Laboratory Cosmology
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New physics
scale

SM as an effective theory
Relaxing the renormalizability condition there is only one dim=5 gauge invariant operator 

(Weinberg operator)

EWSB

ΔL = 2

S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566

Why are neutrinos so 
light?

High NP scale

Symmetry (Lepton number)
Suppression

mechanisms
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construct a gauge invariant Yukawa interaction containing the I = 1 term ⌫c

L
⌫L. Such a

field (a Higgs triplet) is not present in the SM, and so this possibility is also excluded.
To summarise, because of the gauge symmetries and the field content of the theory,

and allowing only renormalizable couplings, neutrinos are massless in the SM.
If one relaxes the renormalizability condition and considers the SM as an effective

theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
effects are encoded in the collection of allowed dimension 5 operators. Remarkably, there
exists a unique Lorentz and gauge-invariant operator that is possible to construct with
the SM fields, the so called Weinberg operator [28]

1

2

c↵�

⇤

⇣
lc
L↵

e�⇤
⌘ ⇣

e�†l�
L

⌘
+ h.c., (2.85)

where ↵, � = e, µ, ⌧ , c↵� is a complex symmetric matrix and ⇤ is a constant with the
dimensions of energy that is related to the new physics scale. When the Higgs field
acquires a nonzero VEV, the operator (2.85) contributes as

v2

2

c↵�

⇤
⌫c

L↵
⌫L� + h.c., (2.86)

that is a Majorana mass term for left-handed neutrinos. It is notable that the first
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masses; in this sense neutrinos are truly a window to BSM physics.
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Y↵� is the matrix of the Yukawa interactions, which expresses the strength of the cou-
plings between the leptons and the Higgs field. It is a 3 ⇥ 3 matrix with complex entries
in general, which can be diagonalised through the bi-unitary transformation [29]

U †Y V = diag [y1, y2, y3] , (2.88)

where y1,2,3 are positive numbers and U, V are unitary matrices. Redefining the lepton
fields as

l↵L = U↵�
el�
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, (2.89)
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Effective approach

⋆ BSM (or SM + mν ) require new fields (or extremely tiny Yν)

⋆ Effects at low energy: effective theorie approach

Effective operators obtained when expanding the heavy field propagators in
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Lepton number violation Neutrino masses and mixing

mν
αβ = cαβ
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Λ
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ν masses and mixing

common to all SM 

extensions with Majorana ν

7

Unveiling neutrino mass generation mechanism

New physics effects

If only Λ at work
New physics effects 
strongly suppressed 
by the ν mass scale

If symmetry at work

J = Jeµ
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new physics scale ⇤ necessarily implies a strong suppression of the higher dimensional
operators, d � 6, in the effective theory expansion

Leff = LSM +
c5

⇤
Od=5

+
ci

6

⇤2
Od=6

i + . . . (4.27)

Thus in this framework new physics effects other than neutrino masses are difficult to
observe. This is what happens for instance in the Type-I Seesaw mechanism, where the
relations (4.23) imply

⇥
⇤ ' vp

2
Y ⇤ M�1, (4.28)

ml ' �v2

2
Y ⇤M�1Y †. (4.29)

If the submatrices m and M in (2.104) do not have any substructure, barring accidental
cancellations between the (a priori independent) entries of the matrices Y and M , the
smallness of the ratio O(m)/O(M) required to accommodate neutrino masses necessarily
implies a suppression of the active-sterile mixing ⇥V .

As pointed out in [308], the phenomenology is different if the suppression of the five
dimensional operator in (4.27) is not related to a suppression of the higher-dimensional
operators. This is notably the case of mechanisms characterised by an approximate lepton
number conservation: the five-dimensional operator (2.85) violates lepton number by two
units, and its coefficient is necessarily zero if the Lagrangian preserves the total lepton
number. On the other hand the d > 5 operators in (4.27) can violate or preserve the
lepton number, and they do not necessarily vanish when the symmetry is restored. Hence
new physics effects are not necessarily suppressed by the small value of neutrino masses.
Examples of mechanisms of this kind are the linear [309, 310] and the inverse Seesaw
(ISS) [311–313], where pairs of fermionic singlets, (⌫R, s), with lepton number L = 1 are
added to the SM. In the ISS the submatrices m and M in the mass matrix (2.104) read,
in the basis (⌫L, ⌫c

R
, s),

m =
�

d 0
�
,

M =

✓
0 n

nT µ

◆
, (4.30)

where d, n are complex matrices and µ is a complex symmetric matrix. The matrix d
arises from the Yukawa couplings between the left- and right-handed neutrino fields ⌫l

and ⌫R after the EWSB, while the matrix n is related to the new physics energy scale ⇤.
The matrix µ is the only entry in the mass matrix that violates the total lepton number
and the hierarchy O(µ) ⌧ O(d) < O(n) is assumed. The relations (4.23) give in this
case
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Λ suppression: naive Seesaw scaling
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Theorem: SM + fermionic gauge singlets

9

K. Moffat, S. Pascoli and C. Weiland, arXiv:1712.07611 [hep-ph]

“The most general gauge-singlet neutrino extensions of the SM with no cancellation between 
different orders of the seesaw expansion, no fine-tuned cancellations between different 

radiative orders and which lead to three massless neutrinos are lepton number conserving”

In the SM extended with fermionic gauge singlets (e.g. Right-Handed neutrinos)

mν = 0 ΔL = 0

Unless there are accidental cancellations in mν, the rate for Lepton number 
violating events is proportional to the small active neutrino masses

The theorem extends and generalises previous results: G. Ingelman and J. Rathsman, Z. Phys. 
C 60 (1993) 243; J. Gluza, hep-ph/0201002; J. Kersten and A. Y. Smirnov, arXiv:0705.3221 [hep-ph]

Symmetries: L number has a special role
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L symmetry and Majorana fields

10

Majorana fermions violate all global symmetries, including L

How to preserve lepton number with Majorana states?
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NEUTRINOLESS DOUBLE BETA DECAY

11
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Neutrinoless double beta decay: ΔL = 2

12
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x

If neutrinos are Majorana particles 0ν2β is possible

These results are expected to be improved by the next generation of experiments:
KATRIN [138] and MARE [141] with a planned sensitivity of 0.35 eV (3-years running)
and 0.2 eV, respectively.

3.2.2 meff

⌫µ
and meff

⌫⌧
mass limits

Analogously to the definition (3.15), it is possible to define an effective mass for the
other neutrino flavours, meff

⌫µ and meff
⌫⌧ , by the replacement Uei ! Uµi and U⌧ i, respec-

tively [56].
A limit on the effective mass meff

⌫µ can be extracted from the pion decay

⇡+ ! µ+
+ ⌫µ, (3.18)

by measuring the muon energy, since the kinematics of the process gives

m2

⌫µ
= m2

⇡ + m2

µ � 2m⇡Eµ. (3.19)

The current bound on the effective muon neutrino mass is [142]

meff

⌫µ
< 170 keV at 90 % C.L. (3.20)

A limit on meff
⌫⌧ can be obtained by measuring the missing energy in the decays

⌧� ! 2⇡�
+ ⇡+

+ ⌫⌧ ,

⌧� ! 3⇡�
+ 2⇡+

+ ⌫⌧ , (3.21)

resulting in the upper bound [143]

meff

⌫⌧
< 18.2 MeV at 95 % C.L. (3.22)

Notice that, in the three-flavour paradigm, the above referred quantities are con-
strained to be orders of magnitude smaller than the bounds (3.20, 3.22), due to the com-
bination of the values of the mixing matrix elements, Table 3.1, and the upper bound on
the neutrino mass scale (3.17).

3.2.3 Neutrinoless double beta decay

The double beta (2�) decay is a second order weak process characterised by the transition

N (A, Z) ! N (A, Z + 2) + 2e�
+ 2⌫e. (3.23)

Being a second order process in the weak coupling, this process is relevant when the single
beta decay is kinematically forbidden, as is the case for instance of the nuclei 48Ca, 76Ge,
82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe, 150Nd [56], see Fig. 3.3 for the A = 76 case.

If neutrinos are Majorana particles they can mediate a variation of the 2�-decay
process, the neutrinoless double beta (0⌫2�) decay process [144]

N (A, Z) ! N (A, Z + 2) + 2e�. (3.24)

41Clear experimental signature

2β

0ν2β

W. H. Furry, Phys. Rev. 56 (1939) 1184

Figure modified from F. T. Avignone III, S. R. Elliott and J. Engel, arXiv:0708.1033 [nucl-ex]



Michele Lucente - Università di Bologna HQL 2025

Experimental status: minimal SM

13

J. J. Gómez-Cadenas, J. Martín-Albo, J. Menéndez, M. Mezzetto, F. Monrabal and M. Sorel, 
Riv. Nuovo Cim. 46 (2023) no.10, 619-692

The amplitude for light neutrino exchange is proportional to

(Ep = 100 GeV) to produce a neutrino beam that is sent to the underground site of MINOS at a
distance of 730 Km. The detailed comparison of a “near” and a “far” detector functionally identical
(two iron/scintillator sampling calorimeters) with toroidal magnetic field should allow to confirm the
oscillation interpretation for atmospheric neutrinos, and to determine more accurately the oscillation
parameters. The beginning of the data taking is scheduled for the end of 2004.

In the CERN to Gran Sasso project 450 GeV p beam is the source of a higher energy neutrino
beam hE⌫i ⇠ 15 – 20 GeV that will be sent to the Gran Sasso underground laboratory, again at a
distance of 730 Km. The OPERA detector is designed to serch for the appearance of ⌫⌧ charged current
interactions with a massive lead/nuclear emulsion target. The ICARUS detector is also sensitive to the
⌫⌧ ’s generated by the oscillations.

Fig. 42: Energy levels for the A = 76 nuclei.

11. DOUBLE BETA DECAY

The most promising way to distinguish between Dirac and Majorana neutrinos is neutrinoless double
beta decay (for extensive reviews see [102]). Double beta decay is the process:

(Z,A) ! (Z + 2, A) + 2e�
+ 2⌫̄e (2⌫�� decay) , (177)

that can occur when single beta decay is kinematically forbidden. For example the nucleus 76Ge (Z=32)
cannot have a beta decay into the Z=33 state (76As) that has a mass 0.4 MeV larger, but can have a double
beta decay into the Z=34 state (76Se) that is 3.05 MeV lighter. The process (177) at the fundamental
(quark) level (see part (a) of Fig. 43) is the transition of two d quarks into two u quarks with the emission
of two electrons and two ⌫e. The process is of second order in the weak coupling and therefore the
corresponding decay rates are very low with lifetimes of order T >⇠ 10

19–1021 years.

In the neutrino–less process:

(Z,A) ! (Z + 2, A) + 2e�
(0⌫�� decay) , (178)

there is no neutrino emission. The leading order diagram of this process is shown in part (b) of Fig. 43,
and can be pictured as one beta decay followed by the absorption of the emitted anti-neutrino by a
different neutron in the nucleus. The process has a very clear experimental signature because while in
the standard decay the sum of the energy of the two electrons in the final state has a broad distribution,
in the neutrinoless case one has that the sum of the energies of the two emitted electrons is equal to the

186

Figure 3.3: Energy levels for the A = 76 nuclei. Figure taken from [39].

This process violates the conservation of the total lepton number by two units and is
characterised by a clear experimental signature, since the two final electrons carry away
the total Q value of the reaction, resulting in a peak over the continuous 2�-decay
background.

The 0⌫2� decay process requires a chirality flip and a particle-antiparticle identi-
fication, thus its amplitude is proportional to the Majorana neutrino masses. Other
mediators than Majorana neutrinos can in principle contribute to the amplitude, how-
ever it has been demonstrated that if 0⌫2�-decay is possible then the same underlying
physics generates a Majorana mass term for neutrinos [145,146]. Thus 0⌫2� experiments
are a powerful tool to probe the Majorana hypothesis for massive neutrinos.

The contribution of a single Majorana neutrino to the 0⌫2�-decay amplitude is pro-
portional to the combination [147]

Ai / miU
2

eiM
0⌫2�

(mi) , (3.25)

where M0⌫2�
(mi) is the nuclear matrix element that characterises the process. The latter

is a function of the neutrino mass mi and depends on the nucleus that undergoes the
0⌫2� transition. It can be satisfactorily approximated by the analytic expression

M0⌫2�
(mi) ' M0⌫2�

(0)
p2

p2 � m2

i

, (3.26)

where p2 ⇡ �(125 MeV)
2 is the virtual momentum of the neutrino, whose exact value

depends on the nucleus. From the experimental results described in Section 3.2.1 we know
that mi ⌧ |p|, the contribution of active neutrinos to the 0⌫2� amplitude is proportional
to the combination

m2� =

�����
X

i

U2

eimi

����� . (3.27)
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oscillation parameters it is possible to 

compute m2β as a function of 
unknown lightest neutrino mass, 

ordering and CP phases 
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Fig. 10 The effective neutrino Majorana mass mββ as a function of the lightest neutrino mass, mlight. The
red (green) band corresponds to the normal (inverted) ordering, respectively, in which case mlight is equal
to m1 (m3). The horizontally excluded region comes from ββ0ν constraints

via β and ββ0ν decay experiments, respectively, can in principle be used to determine
or constrain the phases αi [90]. Second, measurements of mβ or mcosmo in Eq. (3)
may yield a constraint on mlight that is inconsistent with a mββ upper limit. In this
case, the non-observation of ββ0ν would suggest that neutrinos are Dirac particles.
Third, measurements ofmβ ormcosmo may yield a constraint onmlight that is inconsis-
tent with a measured non-zero mββ . This scenario would demonstrate that additional
lepton number violating physics, other than light Majorana neutrino exchange, is at
play in the ββ0ν process. We briefly describe some of these possible ββ0ν alternative
mechanisms in the following.

3.4 Alternative neutrinoless double-beta decaymechanisms

A number of alternative ββ0ν mechanisms have been proposed. For an excellent and
complete discussion of those, we refer the reader to [87]. The realization of ββ0ν can
differ from the standard mechanism in one or several aspects:

• The Lorentz structure of the currents. Positive chirality currents mediated by aWR
boson can arise, for example, in left–right symmetric theories. A possible diagram
involving positive chirality current interactions of heavy Majorana neutrinos Ni is
shown in Fig. 11a.

• The mass scale of the exchanged virtual particles. One example would be the
presence of “sterile” (that is, described by positive chirality fields) neutrinos, either
light or heavy, in the neutrino propagator of Fig. 9, in addition to the three light,
active, neutrinos we are familiar with. Another example would be the exchange of
heavy supersymmetric particles, as in Fig. 11b.
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search
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Table 2 Current best direct measurements of the half-life of ββ2ν processes

Isotope T 2ν
1/2 (year) Experiments

48Ca (5.3+1.2
−0.8) × 1019 Irvine TPC [44], TGV [45], NEMO-3 [46]

76Ge (1.88± 0.08) × 1021 HEIDELBERG-MOSCOW [47], GERDA [48]
82Se (0.87±+0.02

−0.01) × 1020 NEMO-3 [49], CUPID-0 [50], Irvine TPC [51], NEMO-2 [52]
96Zr (2.3± 0.2) × 1019 NEMO-2 [53], NEMO-3 [54]
100Mo (7.06+0.15

−0.13) × 1018 NEMO-3 [55], CUPID-Mo [56], NEMO-2 [57], Irvine TPC [58], ZnMoO4 bolometers [59]
116Cd (2.69± 0.09) × 1019 NEMO-3 [60], Aurora [61], ELEGANT [62], Solotvina [63], NEMO-2 [64]
130Te (7.91± 0.21) × 1020 CUORE-0 [65], CUORE [66], CUORICINO [67], NEMO-3 [68]
136Xe (2.18± 0.05) × 1021 EXO-200 [69], KamLAND-Zen [70]
150Nd (9.34± 0.65) × 1018 NEMO-3 [71]

The values reported are taken from the averaging procedure described in [42]
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Contribution of heavy neutrinos

14

Heavy Majorana neutrinos contribute as well to 0ν2β amplitude
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cancellation between contributions 
of single Majorana states 

Mass dependence
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Extracting contraints on heavy neutrinos

15

0ν2β constraints depend on the 
full mass spectrum (light + heavy)

These constraints do not apply to (pseudo-)Dirac particles
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TAU AND MESON DECAY
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L-violating τ and meson decay

17
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"±2

Heavy Majorana neutrinos can mediate L-violating 
decays of pseudo-scalar mesons and τ lepton 

Since we are interested in regimes close to a resonance (m2
31 ≈ m2

4 or m2
23 ≈ m2

4), the narrow
width approximation can be applied as a good approximation. In this case, the propagator in the
amplitude can be replaced by a δ-function as
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The interference term of Eq. (20) contains in fact two resonances; these can be split into two
separate parts (f1 and f2), each including only one resonance15, as

|Mτ |2 = fτ1 + fτ2, (24)

with fτ i defined by
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|Mτ |2
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× |Mτ2|2. (25)

This allows to remove one of the integrals in Eq. (21) by the δ-function introduced in Eq. (23).
After applying the narrow width approximation, the remaining integration intervals are given by
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respectively for the integrals fτ1 and fτ2, as a consequence of the narrow width approximation.

B.2 Widths of semileptonic LNV meson decays

Let us now consider the decay
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15Single-Diagram-Enhanced multi-channel integration [153].
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Negligible amplitude unless the 
intermediate state can go on-shell

Depends on combination 
of different flavour mixings
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Lifetime limitations
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(14)

Mi ≪ Mj ∕=i (15)

|Uα,i| ≪ |Uα,j ∕=i| (16)

UTM U = M̂diag (17)

U =

"

# Uα, i=1,2,3
active-active Uα, i≥4

active-sterile
...

. . .

$

% (18)

−Lν
m =

1

2

&
νL N c

'
"

# δmloop
ν vF

vF T M

$

%

"

# νcL

N

$

%+ h.c. (19)
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Dashed lines: the on-shell heavy neutrino travels for less than 10 m

Figures from A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, arXiv:1712.03984 [hep-ph]; 
see also A. Atre, T. Han, S. Pascoli and B. Zhang, arXiv:0901.3589 [hep-ph] 



Michele Lucente - Università di Bologna HQL 2025

Multiple intermediate states: interference

20

A. Abada, C. Hati, X. Marcano and A. M. Teixeira, arXiv:1904.05367 [hep-ph]

If more than one heavy neutrino mediate the process, and

of the decay widths. In the narrow-width approximation, this “resonant enhancement” can be un-
derstood as an increase of O(mi/�Ni) in the decay rates (�Ni denoting the width of the heavy sterile
state Ni). For this reason, we will assume that the individual widths are very small compared to the
sterile neutrino masses3, �Ni ⌧ mi.

In the case of the SM extended by only one heavy Majorana neutrino, we have verified that the
predictions for the LNV and LNC decay widths are of the same order, implying that R`↵`� = 1 and

thus eR`↵`� = 0. In the presence of two (or more) sterile fermions with (clearly) non-degenerate masses,

interference e↵ects are negligible and one recovers the previous predictions for R and eR. However,
when the mass splitting of the heavy Majorana states is very small, one can have an overlap between
their contributions, possibly leading to destructive or constructive interferences. The e↵ect of the
overlap will be maximal should the mass splitting be even smaller than the Majorana neutrino decay
widths. In turn, this will lead to di↵erent predictions for the LNV and LNC decay widths, changing
the values R and eR. In summary, interference e↵ects are expected to be relevant if both the following
conditions are realised:

�M ⌧ M and �M < �N , (11)

in which, for simplicity, we have assumed the widths to be the same �N4 = �N5 = �N . With these
conditions, and in terms of the CP -violating phases, the ratio R`↵`� is given as follows

R`↵`� =
(1� ||)2 + 4|| cos2

⇣
�±( ↵+ �)

2

⌘

(1� |0|)2 + 4|0| cos2
⇣
�0±( ↵� �)

2

⌘ , (12)

where we have set (
0) = |(

0)
|ei�

(0)
, and with the ± referring to the electric charge of the lepton ↵.

Moreover, the coe�cients  and 0 of Eq. (8) can be expanded as follows

|| ' |0| =
|U↵5U⇤

�5|

|U↵4U⇤
�4|

⇣
1 +O

��M

�N

�⌘
. (13)

In order to have sizeable interference e↵ects, in addition to having a small mass splitting, the relative
size of the contributions of the two neutrinos to each amplitude should be of the same order, and not
very di↵erent from 1, || ⇠ |0| ⇡ 1 (as can be seen from Eqs. (6, 7)), implying that the two neutrinos
should mix with similar strength to the relevant active flavours.

Under the hypotheses of Eq. (11), and in the limit || ⇠ |0| ⇠ 1, one can derive the ratios R`↵`�

and eR`↵`� in terms of the CP -violating phases as

R`↵`� =
cos2

⇥
1
2( ↵ +  �)

⇤

cos2
⇥
1
2( ↵ �  �)

⇤ , (14)

eR`↵`� =
sin ↵ sin �

cos ↵ cos � + 1
, (15)

where (for simplicity) we have assumed in the last equations that � = �0 = 0. One can immediately
notice from Eq. (14) that, for ↵ 6= �, the ratio R`↵`� can deviate from 1 (larger or smaller) due to the
presence of both relative CP violating phases,  ↵ and  � .

The e↵ect of the interference between the two sterile fermion contributions can already be seen in
the simple limiting case in which the relative CP -violating phases are identical  ↵ =  � (the same
limit was also used in [14] regarding collider searches). This situation can be realised if, for example,
one sets all the Dirac CP phases to zero so that the ratio R`↵`� depends only on the Majorana
CP phases. It is important to notice that in such cases (i.e., for  ↵ =  �) no interference e↵ects
(destructive or constructive) occur for the LNC case.

3Notice that this assumption is well justified, as this is usually the case in seesaw-like models where the sterile
neutrinos are lighter than the typical meson masses [17].
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where we have defined  ↵ ⌘ �↵5 � �↵4, and M is the average mass of the two sterile neutrinos (�M
their mass splitting), so that m4 = M ��M/2 and m5 = M +�M/2. The functions f and g are the
integrals one obtains when computing the decay amplitudes for LNV and LNC semileptonic decays of
mesons (details can be found in for instance [11]). The complex quantities  and 0, which reflect the
relative size of the contributions of the two sterile fermions to the processes, are defined as
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Equations (6, 7) allow to infer several important points: as expected, the LNC decay amplitudes are
not sensitive to the Majorana CP violating phases 'i, as these cancel out in the  ↵� � combination;
the LNC decay amplitudes are sensitive to the Dirac phases, but only in the case of flavour violating
final states, i.e. ↵ 6= � [13]. On the other hand, the LNV decay amplitudes are sensitive to both Dirac
and Majorana CP phases (since the phase appearing in the decay amplitude is the sum of the relative
CP phases,  ↵+ �), and this even in the case of identical charged leptons in the final state (↵ = �).

In order to discuss the impact of the CP phases on the LNV and LNC decay amplitudes, as well
as possible interference e↵ects, we consider the quantity R`↵`� defined as
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The ratio R`↵`� is usually considered to compare LNV to LNC processes (a similar approach to what

was done, for instance, in the context of collider searches [14]) and the second ratio, eR`↵`� , which a
priori might seem redundant, will be useful to better understand interference e↵ects.

3 Exploring the interference e↵ect

As extensively discussed in [1–11], in addition to being of Majorana nature, the sterile fermions medi-
ating the LNV decays should be produced on-shell, in which case one can have a resonant enhancement
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where we have defined  ↵ ⌘ �↵5 � �↵4, and M is the average mass of the two sterile neutrinos (�M
their mass splitting), so that m4 = M ��M/2 and m5 = M +�M/2. The functions f and g are the
integrals one obtains when computing the decay amplitudes for LNV and LNC semileptonic decays of
mesons (details can be found in for instance [11]). The complex quantities  and 0, which reflect the
relative size of the contributions of the two sterile fermions to the processes, are defined as
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Equations (6, 7) allow to infer several important points: as expected, the LNC decay amplitudes are
not sensitive to the Majorana CP violating phases 'i, as these cancel out in the  ↵� � combination;
the LNC decay amplitudes are sensitive to the Dirac phases, but only in the case of flavour violating
final states, i.e. ↵ 6= � [13]. On the other hand, the LNV decay amplitudes are sensitive to both Dirac
and Majorana CP phases (since the phase appearing in the decay amplitude is the sum of the relative
CP phases,  ↵+ �), and this even in the case of identical charged leptons in the final state (↵ = �).

In order to discuss the impact of the CP phases on the LNV and LNC decay amplitudes, as well
as possible interference e↵ects, we consider the quantity R`↵`� defined as
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The ratio R`↵`� is usually considered to compare LNV to LNC processes (a similar approach to what

was done, for instance, in the context of collider searches [14]) and the second ratio, eR`↵`� , which a
priori might seem redundant, will be useful to better understand interference e↵ects.

3 Exploring the interference e↵ect

As extensively discussed in [1–11], in addition to being of Majorana nature, the sterile fermions medi-
ating the LNV decays should be produced on-shell, in which case one can have a resonant enhancement

4

2 Semileptonic meson decays with two sterile neutrinos

As stated in the Introduction, we work in the framework of simplified SM extensions via the addition
of N extra neutral Majorana fermions, making no assumption on the mechanism of neutrino mass
generation (i.e., considering neutrino masses and lepton mixings to be independent). In the presence
of new sterile states with non-negligible mixings to the (light) active neutrinos, the leptonic charged
current is modified as

� Lcc =
g
p
2
U↵i

¯̀
↵ �

µ PL ⌫iW
�
µ + H.c. , (1)

in which i denotes the physical neutrino states, from 1 to 3 + N , and ↵ the flavour of the charged
leptons. For the case N = 2 (corresponding to the addition of two states with masses m4,5), the
unitary matrix U , which encodes flavour mixing in charged current interactions, can be parametrised
in terms of ten rotation matrices and 4 Majorana phases as follows [15,16]

U = R45R35R25R15R34R24R14R23R13R12 diag
�
1, ei'2 , ei'3 , ei'4 , ei'5

�
. (2)

In the above, Rij corresponds to the rotation matrix between the i and j states (each parametrised
by a mixing angle ✓ij and a Dirac CP -violating phase �ij) and 'i represent Majorana CP -violating
phases. For instance, the rotation matrix R45 can be explicitly cast as

R45 =

0

BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cos ✓45 sin ✓45 e�i�45

0 0 0 � sin ✓45 ei�45 cos ✓45

1

CCCCA
, (3)

and similarly for the other Rij . Since several of the Dirac phases are non-physical1, we thus set
�12 = �23 = �24 = �45 = 0. The parametrisation of Eq. (2), which ensures the unitarity of the full
mixing matrix, allows to clearly single out the nature of the CP phases (Dirac or Majorana). The
mixing between the left-handed leptons corresponds to a 3 ⇥ 3 block of U , which is non-unitary due
to the new mixings with the heavy neutrinos.

In the following we will be interested in the mixings of the sterile states to the active sector. Using
the parametrisation of Eq. (2), these can be written as

0

@
Ue4 Ue5

Uµ4 Uµ5

U⌧4 U⌧5

1

A ⇡

0

@
s14e�i(�41�'4) s15e�i(�51�'5)

s24ei'4 s25e�i(�52�'5)

s34e�i(�43�'4) s35e�i(�53�'5)

1

A , (4)

where sij = sin ✓ij and where we have neglected terms of O(s2ij).
We denote the active-sterile mixing elements by

U↵i = e�i�↵i |U↵i|, ↵ = e, µ, ⌧, and i = 4, 5 , (5)

where each �↵i is a combination of the 7 CP -violating phases (5 Dirac and 2 Majorana) in Eq. (4). We
notice that in the framework of this simplified model one can, without any loss of generality, choose
the mixing angles and the (Dirac and Majorana) phases as independent input parameters.

We now address the e↵ect of the new mixings on the LNC semileptonic processesM ! M 0`±↵ `
⌥
� and

the corresponding LNV ones M ! M 0`±↵ `
±
� , M and M 0 being pseudoscalar mesons2. Their squared

amplitudes (see [11]) are proportional, up to overall constant parameters, to the following:

1Note that in the case of a 3 +N model, the mixing matrix U includes a total of (3 +N)(2 +N)/2 rotation angles,
(2 + N)(1 + N)/2 Dirac phases and 2 + N Majorana phases. Together with the masses of the new sterile states, mi,
i = 1, . . . , N , the latter constitute the physical parameters of the model.

2Here we present the case of semileptonic meson decays; however, a similar discussion holds for semileptonic tau
decays ⌧ ! M M 0`↵, ↵ = e, µ. Moreover, for simplicity we focus on M+ ! M

0+`+↵ `
�
� and M+ ! M

0�`+↵ `
+
� .

3

∆M

ΓN
= 0 (1)

ψα =
π

2
(2)
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≡ Mνsτνs (3)
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i

Mi U2
ei M

0ν2β(Mi) (4)
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p2

p2 −M2
i

(5)

p2 ≈ −(125 MeV)2 (6)

Γ0ν2β ∕= 0 (7)
νci = eiφνi (8)

M1 ≃ M2 (9)
Ue1 ≃ i Ue2 (10)
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where we have defined  ↵ ⌘ �↵5 � �↵4, and M is the average mass of the two sterile neutrinos (�M
their mass splitting), so that m4 = M ��M/2 and m5 = M +�M/2. The functions f and g are the
integrals one obtains when computing the decay amplitudes for LNV and LNC semileptonic decays of
mesons (details can be found in for instance [11]). The complex quantities  and 0, which reflect the
relative size of the contributions of the two sterile fermions to the processes, are defined as
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Equations (6, 7) allow to infer several important points: as expected, the LNC decay amplitudes are
not sensitive to the Majorana CP violating phases 'i, as these cancel out in the  ↵� � combination;
the LNC decay amplitudes are sensitive to the Dirac phases, but only in the case of flavour violating
final states, i.e. ↵ 6= � [13]. On the other hand, the LNV decay amplitudes are sensitive to both Dirac
and Majorana CP phases (since the phase appearing in the decay amplitude is the sum of the relative
CP phases,  ↵+ �), and this even in the case of identical charged leptons in the final state (↵ = �).

In order to discuss the impact of the CP phases on the LNV and LNC decay amplitudes, as well
as possible interference e↵ects, we consider the quantity R`↵`� defined as

R`↵`� ⌘

�LNV
M!M 0`±↵ `

±
�

�LNC
M!M 0`±↵ `

⌥
�

, (9)

and further introduce the ratio eR`↵`�

eR`↵`� ⌘

�LNC
M!M 0`±↵ `

⌥
�

� �LNV
M!M 0`±↵ `

±
�

�LNC
M!M 0`±↵ `

⌥
�

+ �LNV
M!M 0`±↵ `

±
�

=
1�R`↵`�

1 +R`↵`�

, (10)

with, in both ratios, �LNC
M!M 0`±↵ `

⌥
�

⌘ �LNC
M!M 0`+↵ `

�
�

+ �LNC
M!M 0`�↵ `

+
�

, in the case in which ↵ 6= �.

The ratio R`↵`� is usually considered to compare LNV to LNC processes (a similar approach to what

was done, for instance, in the context of collider searches [14]) and the second ratio, eR`↵`� , which a
priori might seem redundant, will be useful to better understand interference e↵ects.

3 Exploring the interference e↵ect

As extensively discussed in [1–11], in addition to being of Majorana nature, the sterile fermions medi-
ating the LNV decays should be produced on-shell, in which case one can have a resonant enhancement
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Heavy neutrinos in pp collisions produced through a variety of mechanisms
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Figure from C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, arXiv:1602.06957 [hep-ph]; 
see also Y. Cai, T. Han, T. Li and R. Ruiz, arXiv:1711.02180 [hep-ph]
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LNV can manifest with clean experimental signatures:  
e.g. two same-sign leptons (any flavour combination of e and μ) and at least one jet 
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Prompt decays @ CMS
CMS collaboration, arXiv:2405.17605 [hep-ex]

Prompt decays
10.1 Searches for HNLs in the Type I seesaw model 85
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Figure 64: Expected (observed) upper limits at 95% CL derived on heavy neutrino mixing
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In this search, exclusively muon neutrino mixing with the HNL is considered, hence only
events with an SS dimuon pair in the final state are analyzed. The final state consists of two
well-identified isolated SS muons and two jets with a large rapidity separation as well as a
large dijet invariant mass. To discriminate the signal from the SM EW W±W± events, SRs
for the HNL and Weinberg operator analyses are defined in bins of the azimuthal separation
observable ∆φωω and pmiss

T , respectively. Events from the tt process that have only one W bo-
son decaying leptonically are the main source of the so-called nonprompt-lepton backgrounds,
which originate from leptonic decays of heavy quarks or hadrons misidentified as leptons. The
nonprompt-lepton background is estimated from a data sample by applying weights to events
containing muon candidates that fail the nominal selection criteria while passing a less strin-
gent requirement. To select event samples enriched in nonprompt leptons, a b tag CR is defined
requiring at least one b-tagged jet in addition to the SR selection. A WZ CR, requiring the pres-
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well-identified isolated SS muons and two jets with a large rapidity separation as well as a
large dijet invariant mass. To discriminate the signal from the SM EW W±W± events, SRs
for the HNL and Weinberg operator analyses are defined in bins of the azimuthal separation
observable ∆φωω and pmiss

T , respectively. Events from the tt process that have only one W bo-
son decaying leptonically are the main source of the so-called nonprompt-lepton backgrounds,
which originate from leptonic decays of heavy quarks or hadrons misidentified as leptons. The
nonprompt-lepton background is estimated from a data sample by applying weights to events
containing muon candidates that fail the nominal selection criteria while passing a less strin-
gent requirement. To select event samples enriched in nonprompt leptons, a b tag CR is defined
requiring at least one b-tagged jet in addition to the SR selection. A WZ CR, requiring the pres-
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In this search, exclusively muon neutrino mixing with the HNL is considered, hence only
events with an SS dimuon pair in the final state are analyzed. The final state consists of two
well-identified isolated SS muons and two jets with a large rapidity separation as well as a
large dijet invariant mass. To discriminate the signal from the SM EW W±W± events, SRs
for the HNL and Weinberg operator analyses are defined in bins of the azimuthal separation
observable ∆φωω and pmiss

T , respectively. Events from the tt process that have only one W bo-
son decaying leptonically are the main source of the so-called nonprompt-lepton backgrounds,
which originate from leptonic decays of heavy quarks or hadrons misidentified as leptons. The
nonprompt-lepton background is estimated from a data sample by applying weights to events
containing muon candidates that fail the nominal selection criteria while passing a less strin-
gent requirement. To select event samples enriched in nonprompt leptons, a b tag CR is defined
requiring at least one b-tagged jet in addition to the SR selection. A WZ CR, requiring the pres-
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ence of three muons in an event, is used to estimate W±Z background contributions. The Z
boson decay product is obtained from the OS dimuon combination with the invariant mass
closest to the Z boson mass. Similarly, the WZb CR is defined by requiring the same selection
as for the WZ CR, but requiring at least one b-tagged jet. The dominant backgrounds in the SR
are SM EW W±W± production and the contribution from nonprompt leptons.

Two separate fits are performed: one for the heavy Majorana neutrino analysis using the ∆φωω
bins in the SR, and the b-tagged, WZ, and WZb CRs; and a second for the Weinberg operator
analysis with the pmiss

T bins in the SR, and the b-tagged, WZ, and WZb CRs. The normalization
factors for the WW, WZ, and tZq background processes, affecting both the SRs and CRs, are
included as free parameters in the fit together with the signal strength. The bin boundaries are
chosen to optimize the signal sensitivity.

The results are found to agree with the predictions of the SM. Using the relationship between
the cross section and the squares of mixing matrix elements for the heavy Majorana neutrino
analysis, upper limits at 95% CL are derived on |VµN |2, as shown in Fig. 65. These results sur-
pass those obtained in previous searches by the ATLAS and CMS Collaborations [252, 259, 264,
265] for mN ↭ 650 GeV, and set the first direct limits for mN > 2 TeV. According to Eq. (8), for
the ωω → = µµ channel, a limit on the effective µµ Majorana mass |mµµ | = Cµµ

5 v2/Λ is obtained

from the limit on |Cωω →

5 /Λ|2 in the Weinberg operator analysis. The observed (expected) 95%
CL upper limit on |mµµ | is found to be 10.8 (12.8) GeV. This upper limit on mµµ is the first
obtained using a collider experiment, and it improves upon a previous limit set by the NA62
Collaboration [222, 266].

 [       ]

Figure 65: Upper limits on |VµN |2 at 95% CL as a function of mN. The black dashed curve shows
the median expected upper limit, while the inner (green) band and the outer (yellow) band
indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected
under the background-only hypothesis. The solid black curve is the observed upper limit [262].
The red dashed curve displays the observed upper limits from Ref. [259], while the blue dashed
curve shows the observed upper limits from Ref. [252]. Figure adapted from Ref. [262].

10.1.2 Searches for long-lived HNLs

In this section, we review the searches conducted by the CMS Collaboration for HNLs with dis-
placed signatures, starting with searches for HNLs produced through W boson decays, specifi-
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W boson pairs may convert to SS lepton pairs via a TeV-scale Majorana neutrino or through
a Weinberg operator process. Because the cross section of t-channel processes is less sensitive
to the mass of the intermediate particle compared with s-channel quark-antiquark annihilation
processes, the VBF process can complement searches for heavy Majorana neutrinos at the TeV
mass scale as its cross section decreases more slowly with increasing N mass compared with
the values from s-channel production. Although the various seesaw mechanisms can be con-
sidered as realizations of the Weinberg operator, an alternative implementation is considered in
this Letter, as shown in Fig. 1 (right). The two VBF processes considered in this work differ pri-
marily in that the Majorana process is assumed to be mediated by a heavy t-channel neutrino
whereas the Weinberg operator process is mediated by a lighter t-channel neutrino.

q1

q2

`±1

`±2

q01

q02

W±

W±

N
V`1N

V`2N

q1

q2

`±1

`±2

q01

q02

W±

W±

⌫`1
⌫`2

Figure 1: Example Feynman diagrams of VBF processes with heavy Majorana neutrino pro-
duction (left) and processes mediated by the Weinberg operator (right) at the LHC.

This analysis is based on proton-proton (pp) collision data collected at
→

s = 13 TeV by the CMS
experiment at the CERN LHC during 2016–2018, corresponding to an integrated luminosity of
138 fb↑1.

Tabulated results are provided in the HEPData record for this analysis [24].

The CMS apparatus [25] is a multipurpose, nearly hermetic detector, designed to trigger on [26,
27] and identify electrons, muons, photons, and hadrons [28–30]. A global “particle-flow” algo-
rithm [31] aims to reconstruct all individual particles in an event, combining information pro-
vided by the all-silicon inner tracker and by the crystal electromagnetic and brass-scintillator
hadron calorimeters, operating inside a 3.8 T superconducting solenoid, with data from gas-
ionization muon detectors embedded in the flux-return yoke outside the solenoid. The recon-
structed particles are used to build charged leptons, jets, and missing transverse momentum
(ωpmiss

T
) [32–34].

Samples of signal events are simulated with next-to-leading order (NLO) precision using the
MADGRAPH5 aMC@NLO 2.6.5 generator [35], based on model implementations from Refs. [16,
23, 36, 37]. For the heavy Majorana neutrino, we assume only one heavy state and scan its mass
in a range from 50 GeV to 25 TeV. The process induced by the Weinberg operator is simulated
using a novel approach, established in Ref. [16], which approximates the internal neutrino
lines and vertex insertion with an effective light Majorana neutrino. The Wilson coefficient Cεε↓

5
is set to 1, and the energy scale Λ to 200 TeV. The production cross sections scale with V

2
εN

V
2
ε↓N

and |Cεε↓
5 /Λ|2 for the VBF processes with heavy Majorana neutrinos [23] and the Weinberg

operator [16], respectively. Since the kinematic shape of the signal is independent of |VµN |, we
set |VµN | = 1 for the signal simulation to ensure efficient generation of signal events.

The SM electroweak W
±

W
± and W

±
Z processes, where both bosons decay leptonically, are
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A crucial characteristic of HNLs, labeled as N, to consider is their lifetime, τN. Depending on
two main factors, namely their masses and mixing with the three lepton generations, HNLs
may exhibit a wide range of lifetimes, varying from short-lived to long-lived states. The proper
lifetime of an HNL may be described by the following equation:

1
τN

= Γtot(mN, VeN, VµN, VτN) = Γe + Γµ + Γτ , (5)

where Γtot is the total decay width of an HNL; Γe , Γµ , and Γτ are the partial widths for the decay
to an electron, a muon, and a tau lepton, or to their respective neutrino partners, respectively;
mN is the HNL mass; and VeN, VµN, and VτN are the mixing matrix elements of the three lepton
generations. The Γtot may be expressed as

Γtot ∝ G2
Fm5

N ∑
ω=e,µ,τ

|VωN |
2, (6)

with GF being the Fermi coupling constant. The proper lifetime of the HNLs, measured in sec-
onds, is inversely proportional to Γtot, as expressed in Eq. (5). Specifically, the lifetime is pro-
portional to 1/m5

N ∑ω=e,µ,τ |VωN |2. This means that for a fixed value of |VωN |2, smaller masses
correspond to longer lifetimes.

By probing these different properties of the HNLs, the CMS experiment attempts to cover a
broad spectrum of interactions and potential signatures, as discussed next.

The primary production of HNLs considered is through the decay of a W boson due to its par-
ticularly high production cross section [215–217]. The decay of the W boson yields a charged
lepton and a neutrino. The charged lepton arising from the W boson decay is an important com-
ponent in the trigger strategy of various analyses. The final states considered in each analysis,
depend on the HNL decay process. The Feynman diagram depicted in Fig. 55 encapsulates the
full spectrum of possible decay scenarios in the context of HNL production through the W and
Z boson decays.

W±/Z

N

W±/Zq→

q

q→→→/ω→→±/ε →→

q→→/ω→→↑/ε →→

ω→↑/ε →

ω±/ε

Figure 55: Representative Feynman diagram of a Majorana HNL, labeled as N, produced
through the decay of a W or Z boson.

The decay channel N → ω±qq↑, with N a Dirac HNL, is dominant with an approximate branch-
ing fraction of 50%, while the N → ω±ω↓ν decay channel follows closely with a branching
fraction of around 23%. Another significant decay channel is N → νqq↑, accounting for an
approximate branching fraction of 18%.

Figure 56 shows a hypothetical production mode of HNLs via Wε fusion [218, 219], which has
been considered in one of the searches to enhance the sensitivity to HNLs with masses above
several hundred GeV. This t-channel process is complementary to the search for HNLs in the
s-channel shown in Fig. 55.
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W±

W±

N
W→

ω

q

q↑↑↑

q↑↑

q↑

ε±

ε±

Figure 56: Representative Feynman diagram of a Majorana HNL, labeled as N, produced
through the Wγ fusion process and with two charged leptons and jets in the final state.

An additional HNL production process is searched for in the decays of B mesons [220]. This
is interesting to probe as B mesons are produced in pp collision events with a much higher
rate than W bosons, and are therefore a more prominent source of neutrinos. A representative
Feynman diagram of this process is shown in Fig. 57.

⌫`P
W±⇤ N`

⌫` W±⇤

`±
P `⌥

B{ }X
} ⇡±

Figure 57: Representative Feynman diagram showing the semileptonic decay of a B meson into
the primary lepton (ωP), a hadronic system (X), and a neutrino, which contains the admixture
of an HNL. The HNL propagates and decays weakly into a charged lepton ω± and a charged
pion π→.

A Majorana HNL in the context of the Type I seesaw model would also induce a process where
two SS W bosons fuse and lead to the production of a pair of SS leptons [215, 221], notably with
the absence of neutrinos in the final state as illustrated in the Feynman diagram in Fig. 58 (left).

It is worth noting that the cross section of this kind of t-channel processes (processes char-
acterized by the exchange of a virtual particle) is less sensitive to the mass of the intermediate
particle compared with s-channel quark-antiquark annihilation processes discussed previously
and shown in Fig. 55. The Vector Boson Fusion (VBF) processes, presented in Fig. 58 (left), may
complement searches for heavy Majorana neutrinos in the t-channel at the TeV mass scale.

Additionally, these VBF-type processes are analogous to the VBF processes induced by the
dimension-5 Weinberg Operator [222]. This operator is proposed [223] to extend the SM La-
grangian with terms of the form

L5 =
Cωω ↑

5
Λ

[
Φ · Lc

ω

][
Lω ↑ · Φ

]
, (7)

where ω and ω ↑ are different lepton flavors (electrons, muons, or tau leptons); Λ is the energy
scale at which the particles responsible for neutrino masses becomes a non negligible parame-
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Figure 66: Expected and observed background yields in 48 categories for resolved (left) and
boosted (right) events. Two benchmark HNL scenarios are overlaid with masses of 4.5 and
10 GeV, and proper decay lengths of cτN = 100 and 1 mm, respectively. The dsig

xy quantity is the
significance of the impact parameter of the second lepton track. Figures taken from Ref. [263].
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Figure 67: Observed 95% CL lower limits on the mass (left) and the proper lifetime (right) for
Majorana HNL production with cτN = 1 mm and mN = 4.5 GeV, respectively, as functions
of the relative coupling strengths to electrons ( fe), muons ( fµ ), and tau leptons ( fτ ). Figures
adapted from Ref. [263].

resolved from the pp interaction point. Therefore ω → and ω →→ form an SV and have typically large
impact parameters. If the HNL is of Majorana nature, ω and ω → (or ω and νω → ) may either have
the same chirality (LNV) or opposite chirality (LNC). In the case of an HNL decay mediated by
a W↑ boson, an LNV decay may lead to final states with no OSSF lepton pairs, namely e±e±µ↓

or µ±µ±e↓. Since the SM backgrounds in these final states are relatively small, these SRs are
very sensitive to HNL signals. In contrast, decays mediated by a Z↑ boson and LNC decays
are always accompanied by an OSSF lepton pair, resulting in final states such as e±e↓µ± or
µ±µ↓e±.

Selected events must contain a prompt electron or muon, and two displaced OS leptons in
any flavor combination. Prompt electrons are selected using a multivariate discriminant [19],
and prompt muons must pass tight track quality requirements [21]. Additional selections are
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Figure 67: Observed 95% CL lower limits on the mass (left) and the proper lifetime (right) for
Majorana HNL production with cτN = 1 mm and mN = 4.5 GeV, respectively, as functions
of the relative coupling strengths to electrons ( fe), muons ( fµ ), and tau leptons ( fτ ). Figures
adapted from Ref. [263].

resolved from the pp interaction point. Therefore ω → and ω →→ form an SV and have typically large
impact parameters. If the HNL is of Majorana nature, ω and ω → (or ω and νω → ) may either have
the same chirality (LNV) or opposite chirality (LNC). In the case of an HNL decay mediated by
a W↑ boson, an LNV decay may lead to final states with no OSSF lepton pairs, namely e±e±µ↓

or µ±µ±e↓. Since the SM backgrounds in these final states are relatively small, these SRs are
very sensitive to HNL signals. In contrast, decays mediated by a Z↑ boson and LNC decays
are always accompanied by an OSSF lepton pair, resulting in final states such as e±e↓µ± or
µ±µ↓e±.

Selected events must contain a prompt electron or muon, and two displaced OS leptons in
any flavor combination. Prompt electrons are selected using a multivariate discriminant [19],
and prompt muons must pass tight track quality requirements [21]. Additional selections are
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The MDS signature arises when LLPs decay within the muon system of the CMS detector,
where the material in the iron return yoke structure induces a particle shower, creating a ge-
ometrically localized and isolated cluster of hits in the detectors. Because of the shielding in
front of the muon system, MDSs are rarely produced by standard model background processes
and can be a powerful signature to search for LLPs. The analysis [270] utilizes the MDS signa-
ture to search for HNLs, which are reconstructed as an MDS. Since the decay products of any
hadronic decay modes of the HNL may be reconstructed as an MDS, the search is sensitive to
HNL mixing to all three generations of leptons, including tau leptons.

Jets, with significant energy leakage beyond the calorimeter systems, and bremsstrahlung from
muons, are the primary SM processes that may mimic MDS signatures. The MDS cluster se-
lection is designed to reject such background events. Those MDS clusters that are matched
to jets or muons with sufficiently high pT or specific detector patterns of hits and segments
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The MDS signature arises when LLPs decay within the muon system of the CMS detector,
where the material in the iron return yoke structure induces a particle shower, creating a ge-
ometrically localized and isolated cluster of hits in the detectors. Because of the shielding in
front of the muon system, MDSs are rarely produced by standard model background processes
and can be a powerful signature to search for LLPs. The analysis [270] utilizes the MDS signa-
ture to search for HNLs, which are reconstructed as an MDS. Since the decay products of any
hadronic decay modes of the HNL may be reconstructed as an MDS, the search is sensitive to
HNL mixing to all three generations of leptons, including tau leptons.

Jets, with significant energy leakage beyond the calorimeter systems, and bremsstrahlung from
muons, are the primary SM processes that may mimic MDS signatures. The MDS cluster se-
lection is designed to reject such background events. Those MDS clusters that are matched
to jets or muons with sufficiently high pT or specific detector patterns of hits and segments
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Figure 72: Expected and observed limits at 95% CL on |VN |2 as functions of mN, in the Majorana
(left column) and Dirac (right column) scenarios. The limits are shown for the mixing scenarios
(re , rµ , rτ ) = (0, 1, 0) (upper row) and (re , rµ , rτ ) = (1/3, 1/3, 1/3) (lower row). Results from
the CMS [261, 263, 270], ATLAS [265], LHCb [276], and Belle [277] Collaborations are superim-
posed for comparison. The mass range with no results shown corresponds to a vetoed region
around the D0 mass. Figures taken from Ref. [220].

Figure 73: Observed limits at 95% CL on cτN as a function of the mixing ratios (re , rµ , rτ ) for
mN = 1 GeV in the Majorana (left) and Dirac (right) scenarios. The red crosses indicate that
there is no exclusion found for that point. The orientation of the value markers on each axis
identifies the associated internal lines on the plot. Figures taken from Ref. [220].
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A crucial characteristic of HNLs, labeled as N, to consider is their lifetime, τN. Depending on
two main factors, namely their masses and mixing with the three lepton generations, HNLs
may exhibit a wide range of lifetimes, varying from short-lived to long-lived states. The proper
lifetime of an HNL may be described by the following equation:

1
τN

= Γtot(mN, VeN, VµN, VτN) = Γe + Γµ + Γτ , (5)

where Γtot is the total decay width of an HNL; Γe , Γµ , and Γτ are the partial widths for the decay
to an electron, a muon, and a tau lepton, or to their respective neutrino partners, respectively;
mN is the HNL mass; and VeN, VµN, and VτN are the mixing matrix elements of the three lepton
generations. The Γtot may be expressed as

Γtot ∝ G2
Fm5

N ∑
ω=e,µ,τ

|VωN |
2, (6)

with GF being the Fermi coupling constant. The proper lifetime of the HNLs, measured in sec-
onds, is inversely proportional to Γtot, as expressed in Eq. (5). Specifically, the lifetime is pro-
portional to 1/m5

N ∑ω=e,µ,τ |VωN |2. This means that for a fixed value of |VωN |2, smaller masses
correspond to longer lifetimes.

By probing these different properties of the HNLs, the CMS experiment attempts to cover a
broad spectrum of interactions and potential signatures, as discussed next.

The primary production of HNLs considered is through the decay of a W boson due to its par-
ticularly high production cross section [215–217]. The decay of the W boson yields a charged
lepton and a neutrino. The charged lepton arising from the W boson decay is an important com-
ponent in the trigger strategy of various analyses. The final states considered in each analysis,
depend on the HNL decay process. The Feynman diagram depicted in Fig. 55 encapsulates the
full spectrum of possible decay scenarios in the context of HNL production through the W and
Z boson decays.

W±/Z

N

W±/Zq→

q

q→→→/ω→→±/ε →→

q→→/ω→→↑/ε →→

ω→↑/ε →

ω±/ε

Figure 55: Representative Feynman diagram of a Majorana HNL, labeled as N, produced
through the decay of a W or Z boson.

The decay channel N → ω±qq↑, with N a Dirac HNL, is dominant with an approximate branch-
ing fraction of 50%, while the N → ω±ω↓ν decay channel follows closely with a branching
fraction of around 23%. Another significant decay channel is N → νqq↑, accounting for an
approximate branching fraction of 18%.

Figure 56 shows a hypothetical production mode of HNLs via Wε fusion [218, 219], which has
been considered in one of the searches to enhance the sensitivity to HNLs with masses above
several hundred GeV. This t-channel process is complementary to the search for HNLs in the
s-channel shown in Fig. 55.

CMS collaboration, arXiv:2405.17605 [hep-ex]
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Table 5: The discovery fit results. For SRM3, where the expected background slightly exceeds the observed number
of data events (see Table 4), the 𝐿-value is capped at 0.5, corresponding to a significance of zero.

SRE1 SRE2 SRE3 SRE4 SRM1 SRM2 SRM3 SRM4 SRM5

𝐿-value 0.11 0.061 0.041 0.12 0.18 0.21 0.5 0.38 0.19
Significance [𝑀] 1.2 1.5 1.7 1.2 0.90 0.82 0 0.30 0.87

8.3 Model-dependent limits

In the absence of a significant excess over the SM expectation, model-dependent exclusion limits are
derived using the CLs method [117, 118] with the statistical tools described in Section 8.2. Limits are
placed on the mixing parameters |𝑁𝐿 |

2 and |𝑁𝑀 |
2 for the HNL mass range 8–65 GeV. For a given signal

scenario, values of the mixing-parameter strengths (𝑂) yielding CLs < 0.05, where CLs is computed
using the asymptotic approximation [116], are excluded at → 95% CL. For the observed limit, the CLs is
computed using the test statistic calculated with the observed data set, while for the expected limit the CLs
is computed using the test statistic calculated from an Asimov data set with nuisance parameters set to
those extracted from a background-only fit to data [111]. For each signal mass point, the signal region
that minimizes the expected limit is used to quote the observed and expected upper limits on 𝑂. For the
𝑂
±
𝑂
±
𝑃
↑ signal channel, the most sensitive two-lepton and three-lepton signal regions are combined.
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Figure 4: Observed 95% confidence level (CL) exclusion limits for the (a) |𝑁𝐿 |
2 and (b) |𝑁𝑀 |

2 mixing parameters
versus the HNL mass. The expected (dashed line) exclusion limits are also shown. The 1𝑀 and 2𝑀 uncertainty bands
around the expected exclusion limit reflect uncertainties in signal and background yields.
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2 mixing parameters as a function of the HNL mass are presented in
Figure 4. For the 𝑃

±
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±
𝑂
↑ signal channel, the SRE1 signal region is the most sensitive one for HNL masses

↓ 10 GeV. The SRE2 signal region is then used up to 30 GeV, while the SRE3 signal region is used for the
40 GeV HNL mass point. Finally, SRE4 is used for the results in the HNL high mass region (→ 50 GeV).
For the 𝑂

±
𝑂
±
𝑃
↑ signal channel, SRM1 is the most sensitive three-lepton signal region in the HNL low

mass range (↓ 40 GeV), while the SRM2 signal region is used in the HNL high-mass region. The SRM3
and SRM4 two-lepton signal regions are used in the HNL low mass range: SRM3 for the ↓ 10 GeV and
20 GeV mass points, and SRM4 for the 15, 30, and 40 GeV mass points. SRM5 is used for HNL masses
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Figure 7: Expected and observed 95% CL limits on |𝐿𝐿 | vs. 𝑀N in the Majorana-limit case, with inner green and
outer yellow bands showing the one and two standard deviation (𝑁) spreads for the expected limits. (a) 1SFH scenario
with electron-only mixing, (b) 1SFH scenario with muon-only mixing, (c) 2QDH scenario with normal (NH) mass
hierarchy, (d) 2QDH scenario with inverted mass hierarchy (IH). The parameters corresponding to the area within the
contour are excluded.
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Figure 1: The 95% confidence level exclusion limits for the Heavy Neutral Lepton mixing to the first generation

lepton. The colored lines represent the exclusion limits while the corresponding shaded areas represent the mixing

parameters excluded by those analyses. All ATLAS results are for Majorana Heavy Neutral Leptons. Included in the

plot are the most recent ATLAS results for the respective analysis channels. Results from other experiments are

overlaid to demonstrate the unique parameter space which can be probed with ATLAS.

2

Figure 2: The 95% confidence level exclusion limits for the Heavy Neutral Lepton mixing to the second generation

lepton. The colored lines represent the exclusion limits while the corresponding shaded areas represent the mixing

parameters excluded by those analyses. All ATLAS results are for Majorana Heavy Neutral Leptons. Included in the

plot are the most recent ATLAS results for the respective analysis channels. Results from other experiments are

overlaid to demonstrate the unique parameter space which can be probed with ATLAS.
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Figure 4: (a) The observed 95% CLs limits of HNL mixing vs <N for each of the three channels alongside
the statistical combination assuming |+4 | = |+` | [7]. (b) The observed and expected 95% CLs contours
for <N=500 GeV and 1 TeV [7]. (c) and (d) show ATLAS’s whole analysis paradigm overlaid in one plot
alongside CMS searches [7, 10].

5. Conclusions

The ATLAS experiment at the LHC has a program of searches for HNLs with masses between
2 GeV and 20 TeV, encompassing signatures of prompt and displaced HNL decays as well as ,,

scattering. Recently, ATLAS has produced results for `4 and 44 ,, scattering with a statistical
combination of channels. These provide the first constraints for |+`+

⇤
4 |2 and ⇠

(5)
4` up to the TeV

scale.
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Flavour eigenstate = coherent superposition of mass eigenstates

Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an ℓ+ anti-lepton is produced together with

a heavy neutrino of ℓ-flavor Nℓ, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial Nℓ will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M ≫ Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products mℓ2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M ≪ Γ decays occur at a time tD ∼ τ ≪ 1/∆M , that

is before the onset of oscillation effects, so that Nℓ(tD) ≈ Nℓ(0). In this case only the LN

conserving transition Nℓ(tD) → ℓ− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll ̸= 0, 1.

From eq. (9) we can write the Nℓ heavy state produced in the decay W+
R → ℓ̄Nℓ and its

conjugate state Nℓ̄ produced in the decay W−
R → ℓNℓ̄ in terms of the mass eigenstates as:7

Nℓ =
1√
2
(N+ − iN−) , (25)

Nℓ̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states ℓiℓj , and we reiterate that for generic mixing structures, i ̸= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

Nℓ(t) = g+(t)Nℓ + g−(t)Nℓ̄ , (27)

Nℓ̄(t) = g−(t)Nℓ + g+(t)Nℓ̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− ≪ ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states ℓiℓj , and we reiterate that for generic mixing structures, i ̸= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

Nℓ(t) = g+(t)Nℓ + g−(t)Nℓ̄ , (27)

Nℓ̄(t) = g−(t)Nℓ + g+(t)Nℓ̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− ≪ ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an ℓ+ anti-lepton is produced together with

a heavy neutrino of ℓ-flavor Nℓ, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial Nℓ will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M ≫ Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products mℓ2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M ≪ Γ decays occur at a time tD ∼ τ ≪ 1/∆M , that

is before the onset of oscillation effects, so that Nℓ(tD) ≈ Nℓ(0). In this case only the LN

conserving transition Nℓ(tD) → ℓ− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll ̸= 0, 1.

From eq. (9) we can write the Nℓ heavy state produced in the decay W+
R → ℓ̄Nℓ and its

conjugate state Nℓ̄ produced in the decay W−
R → ℓNℓ̄ in terms of the mass eigenstates as:7

Nℓ =
1√
2
(N+ − iN−) , (25)

Nℓ̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states ℓiℓj , and we reiterate that for generic mixing structures, i ̸= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

Nℓ(t) = g+(t)Nℓ + g−(t)Nℓ̄ , (27)

Nℓ̄(t) = g−(t)Nℓ + g+(t)Nℓ̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− ≪ ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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where the oscillating amplitudes read

g+(t) = e−iMte−
Γ

2
t cos

(

∆M

2
t

)

, (29)

g−(t) = i e−iMte−
Γ

2
t sin

(

∆M

2
t

)

, (30)

with M = 1

2
(M++M−) and, according to the discussion above, we have neglected the effects

of ∆Γ. Since the typical heavy neutrino widths are too large to allow observing displaced

vertices (see next section), individual oscillation patterns cannot be resolved. The SS to

OS ratio Rll is then given by the ratio of the time-integrated amplitudes squared (note that

they include the time dependent weight factor of the heavy neutrinos lifetime):

Rll =

∫∞
0

|g−|2 dt
∫∞
0

|g+|2 dt
=

∆M2

2Γ2 +∆M2
. (31)

This result correctly reproduces the limiting cases discussed at the beginning of this section,

that is Rll → 1 as Γ/∆M → 0 (limiting Majorana case) and Rll → 0 as (Γ/∆M)−1 → 0

(limiting Dirac case).8

IV. LHC PHENOMENOLOGY

In searching for heavy RH neutrinos within the framework of LR symmetric models, both

the ATLAS [17, 18] and the CMS collaboration [19, 20] assume that the heavy neutrino

decays proceed via an off-shell WR bosons, with a branching ratio of 100% for the decay

mode N → l±jj where l represents a charged lepton of any flavor and N represents a

generic heavy neutrino. While this is a reasonable expectation for LR models with an

ordinary seesaw mechanism, the situation is very different in models based on the inverse

seesaw. In our framework in fact all the following decay modes can occur, and all with

sizeable branching ratios:

N → W±
L + l± , N → ZL + ν , N → h + ν , (32)

N → (WR)
∗ + l± → jjl± , N → (ZR)

∗ + ν → (jj or l+l−)ν ,

where WL and ZL are the (mostly) SM gauge bosons, h is the SM Higgs with mass mh ≃ 125

GeV, and ν represents a light neutrino of any flavor. In our analysis we also assume mN <

mWR
, where mN denotes collectively the pair of mass eigenvalues (M±

R )11 for the lightest

heavy neutrinos, so that the RH gauge bosons (WR)∗ and (ZR)∗ from N = N1± decays are

off-shell. We also assume for simplicity (M±
R )ii > mWR

for i > 1 so that a single pair of

RH neutrinos contributes to the signal (this second assumption is not necessary whenever

8 This result disagrees with eq.(7) of ref. [29] which displays an explicit dependence of Rll on the heavy

neutrino mass M .
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Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an ℓ+ anti-lepton is produced together with

a heavy neutrino of ℓ-flavor Nℓ, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial Nℓ will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M ≫ Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products mℓ2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M ≪ Γ decays occur at a time tD ∼ τ ≪ 1/∆M , that

is before the onset of oscillation effects, so that Nℓ(tD) ≈ Nℓ(0). In this case only the LN

conserving transition Nℓ(tD) → ℓ− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll ̸= 0, 1.

From eq. (9) we can write the Nℓ heavy state produced in the decay W+
R → ℓ̄Nℓ and its

conjugate state Nℓ̄ produced in the decay W−
R → ℓNℓ̄ in terms of the mass eigenstates as:7

Nℓ =
1√
2
(N+ − iN−) , (25)

Nℓ̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states ℓiℓj , and we reiterate that for generic mixing structures, i ̸= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

Nℓ(t) = g+(t)Nℓ + g−(t)Nℓ̄ , (27)

Nℓ̄(t) = g−(t)Nℓ + g+(t)Nℓ̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− ≪ ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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decay after decoherence (Majorana limit)

Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an ℓ+ anti-lepton is produced together with

a heavy neutrino of ℓ-flavor Nℓ, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial Nℓ will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M ≫ Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products mℓ2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M ≪ Γ decays occur at a time tD ∼ τ ≪ 1/∆M , that

is before the onset of oscillation effects, so that Nℓ(tD) ≈ Nℓ(0). In this case only the LN

conserving transition Nℓ(tD) → ℓ− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll ̸= 0, 1.

From eq. (9) we can write the Nℓ heavy state produced in the decay W+
R → ℓ̄Nℓ and its

conjugate state Nℓ̄ produced in the decay W−
R → ℓNℓ̄ in terms of the mass eigenstates as:7

Nℓ =
1√
2
(N+ − iN−) , (25)

Nℓ̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states ℓiℓj , and we reiterate that for generic mixing structures, i ̸= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

Nℓ(t) = g+(t)Nℓ + g−(t)Nℓ̄ , (27)

Nℓ̄(t) = g−(t)Nℓ + g+(t)Nℓ̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− ≪ ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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oscillations do not develop (Dirac limit)

Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an ℓ+ anti-lepton is produced together with

a heavy neutrino of ℓ-flavor Nℓ, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial Nℓ will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M ≫ Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products mℓ2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M ≪ Γ decays occur at a time tD ∼ τ ≪ 1/∆M , that

is before the onset of oscillation effects, so that Nℓ(tD) ≈ Nℓ(0). In this case only the LN

conserving transition Nℓ(tD) → ℓ− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll ̸= 0, 1.

From eq. (9) we can write the Nℓ heavy state produced in the decay W+
R → ℓ̄Nℓ and its

conjugate state Nℓ̄ produced in the decay W−
R → ℓNℓ̄ in terms of the mass eigenstates as:7

Nℓ =
1√
2
(N+ − iN−) , (25)

Nℓ̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states ℓiℓj , and we reiterate that for generic mixing structures, i ̸= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

Nℓ(t) = g+(t)Nℓ + g−(t)Nℓ̄ , (27)

Nℓ̄(t) = g−(t)Nℓ + g+(t)Nℓ̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− ≪ ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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oscillations

In summary, we have obtained estimates for the
typical mass splittings �M of the almost degenerate
sterile neutrinos in low scale seesaw scenarios as func-
tions of the light neutrino masses (respectively the
mass splittings). In case of the minimal linear seesaw
model, the values �M

lin

NO
and �M

lin

IO
are predictions,

whereas in the inverse seesaw case or the general lin-
ear seesaw case with more pairs of sterile neutrinos,
one should view the given values as guidelines only.

Heavy neutrino-antineutrino oscillations:

When heavy neutrinos are produced from W decays
together with charged leptons or antileptons, we
refer to them as heavy antineutrinos N or neutrinos
N , respectively. When they decay via the charged
current, they again produce either a lepton or an
antilepton, N ! `

�
W

+ or N ! `
+
W

�.
If the “lepton number”-like symmetry is intact,

i.e. without its breaking to give light neutrinos its
mass, processes with the heavy neutrinos at colliders
are lepton number conserving (LNC). For instance at
proton-proton (pp) colliders, there would be only LNC
processes pp ! `

+
↵ `

�
� jj but no lepton number violat-

ing (LNV) processes pp ! `
±
↵ `

±
� jj. We will focus on

these processes as an example in the following, since
they can yield an unambiguous signal of LNV at pp

colliders.
In the presence of LNV perturbations in the mass

matrix of eq. (1) however, also LNV processes pp !

`
±
↵ `

±
� jj are possible. One can view these events as

stemming from N (or N) being produced together
with a charged antilepton (or lepton) which then oscil-
lates into a N (or N), decaying into a charged antilep-
ton (or lepton), finally producing a lepton-number vi-
olating final state.

When the heavy neutrinos have su�ciently small
decay widths, they can have macroscopic lifetimes
such that their decay occurs displaced from the pri-
mary vertex, which allows for powerful searches and
opens up the possibility to observe the oscillation pat-
terns in the decay spectra. We show in figure 1 for
which parameters M and |✓|

2 macroscopic lifetimes
are possible.

Due to heavy neutrino-antineutrino oscillations, fol-
lowing [12, 21], the ratio between LNV and LNC
events between times t1 and t2 after heavy neutrino
production will be referred to as R``(t1, t2) and is
given as:

R``(t1, t2) =

R t2
t1

|g�(t)|2dt
R t2
t1

|g+(t)|2dt
=

#(`+`+) + #(`�`�)

#(`+`�)
,

(8)

Figure 1: Contours of constant decay length of the heavy neu-
trinos x = ⌧ c in the proper frame, where ⌧ is the lifetime in
the proper frame (cf. discussion in section 3 of [20]). The decay

length in the laboratory frame is given by x
p

�2 � 1 with the
Lorentz factor �.

where g�(t) ' �ie
�iMt

e
��

2
t sin

�
�M
2

t
�
, g+(t) '

e
�iMt

e
��

2
t cos

�
�M
2

t
�
and where � is the heavy neu-

trino decay width. |g�(t)|2 corresponds to the time-
dependent probability that a heavy neutrino has os-
cillated into a heavy antineutrino and vice versa, and
|g+(t)|2 denotes the probability that no oscillation has
occurred.3

From the above formula, we can see that the os-
cillation period of the heavy neutrinos is given by
tosc = 4⇡

�M . In the minimal linear seesaw scenario
(using Eqs. (3) and (4)) and with our estimates for
the inverse seesaw scenario from Eq. (7), we obtain
for the oscillation length in the laboratory system:

�
lin,NO

osc
= 5.96 · 10�5

p
�2 � 1 m , (9)

�
lin,IO
osc

= 3.29 · 10�3
p

�2 � 1 m , (10)

�
inv

osc
⇡ 2.48 · 10�6

✓
|✓|

2

10�4

◆✓
10�4 eV

m⌫i

◆p
�2 � 1 m .

(11)

Especially when the Lorentz factor is large, the os-
cillation length in the laboratory system can be large
enough to be resolved in an experiment. The case
of the minimal linear seesaw with IO looks particu-
larly promising in this context. For observability it is
also important that the decay of the heavy neutrinos
is su�ciently displaced from the primary vertex (cf.
figure 1).

3We note that here we neglect CP violating e↵ects, which
can be introduced by perturbations of the mass matrix of eq. (1)
and could leave imprints in the distribution of the `±↵ `±� jj and

`+↵ `�� jj final states.

3

Rll (0,∞) =
∆M2

2Γ2 +∆M2
(1)

∆M

ΓN
= 0 (2)

ψα =
π

2
(3)

iM ∝ Mνs

Γνs

≡ Mνsτνs (4)

A0ν2β ∝
!

i

Mi U2
ei M

0ν2β(Mi) (5)

M0ν2β(Mi) ≃ M0ν2β(0)
p2

p2 −M2
i

(6)

p2 ≈ −(125 MeV)2 (7)

Γ0ν2β ∕= 0 (8)
νci = eiφνi (9)

M1 ≃ M2 (10)
Ue1 ≃ i Ue2 (11)

(12)

Mi = 0 (13)

Uαi = 0 (14)

M2 −M1

M1 +M2
≪ 1 (15)

Uα1 ≃ i Uα2 (16)
(17)

Mi ≪ Mj ∕=i (18)

|Uα,i| ≪ |Uα,j ∕=i| (19)
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Figure 1: Parameter regions where generic parameter choices yieldR`` < 1/3 (above the green
line) or R`` > 1/3 (below the red line) in the minimal model with n = 2. Within these regions
a deviation from this generic behaviour is only possible for fine tuned parameter choices. The
two regions are separated by a third regime where both possibilities can coexist without
fine-tuning. The solid and dashed lines apply to normal and inverted ordering of the light
neutrino masses, respectively. Note that the suppression applies to the branching fraction of
lepton number violating decays, which is proportional to the quantity R`` defined in (6), not
to the total number of LNV events, which is proportional to �NR``. If all final state masses
are negligible and �N ⌧ �Mphys one can approximate �N / U2 and R`` / U�4, so that the
number of LNV events is quadratically suppressed by the mixing angle above the red lines.
The shaded areas mark the regions that are excluded by experiments, based on the global
scans in refs. [76, 78]. In the gray region constraints from various direct searches at colliders
and fixed target experiments dominate, cf. e.g. refs. [17, 69, 78] for a discussion. In the blue
region the mixing is too small to explain the observed values of the light neutrino masses,
cf. e.g. ref. [79] for a discussion. For this plot we used the simple analytic estimates for �N

that are given in ref. [17], more refined computations can e.g. be found in refs. [63, 68, 80, 81].
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overcome by a separation of scales between the frequency of the heavy neutrino oscillations
and their lifetime. A quantitative treatment requires the use of resummed propagators
and solving the equations of motion in real time rather than computing the S-matrix
perturbatively.

For the minimal model with n = 2 that we study in section 3 small perturbations
around (3) that can be characterised by

F =

0

B@
Fe(1 + ✏e) iFe(1� ✏e)
Fµ(1 + ✏µ) iFµ(1� ✏µ)
F⌧ (1 + ✏⌧ ) iF⌧ (1� ✏⌧ )

1

CA , MM =

 
M̄(1 + µ) 0

0 M̄(1� µ)

!
(5)

with µ, ✏a ⌧ 1. This explicit form can also be used to study interference within one
pseudo-Dirac pair in scenarios with n > 2. Interference between members of di↵erent pairs
is usually not relevant because those resonances in general lie on di↵erent mass shells. We
discuss the important exception that there is a mass degeneracy between di↵erent pairs at
the end of section 3.

The frequency of heavy neutrino oscillations in the laboratory frame is roughly given
by ! ⇠ (M2

j
�M2

i
)/(2EN), where EN is the heavy neutrino energy. The coherence of the

quantum state is e↵ectively destroyed if the heavy neutrinos undergo many oscillations
during their lifetime ⌧N , i.e., ⌧N! � 1. The lifetime is ⌧N ⇠ �/�N with the Lorentz factor
� = EN/Mi and the heavy neutrino decay width �N .8 For relativistic neutrinos with similar
masses the condition ⌧N! � 1 translates into �N/�Mphys ⌧ 1. Here �Mphys = Mj �Mi

the physical mass splitting between the two heavy neutrinos. A more precise criterion
has e.g. been defined in ref. [18, 36], where it was found that the branching ratio of the
opposite and same sign dilepton events is then given by the quantity9

R`` =
�M2

phys

2�2
N
+�M2

phys

. (6)

The simple criterion Mphys = �N is reproduced for R`` = 1/3, which we will use as a crite-
rion to distinguish suppressed from unsuppressed LNV branching ratios in the following.

neutrinos [65], it turns out that this only leads to a di↵erent angular distribution when it comes to the
decay of heavy neutrinos, cf. e.g. ref. [66, 67]. One way to understand this is that the loss of definite
chirality (governed by the heavy neutrino masses Mi) always happens quicker than the flavour oscillations
(governed by the physical splitting �Mphys between their masses).

8In principle the decay widths of the individual heavy neutrinos are di↵erent. Moreover, the mass and
interaction basis of the heavy neutrinos are in general not identical because MM and F †F can in general
not be diagonalised simultaneously. When the lifetime and oscillation frequency are of the same order one
has to solve a matrix valued equation of motion that involves correlations between the di↵erent species.
However, due to the approximate symmetry (3) the di↵erent damping rates in that equation are all of the
same order, and we can use a single parameter �N .

9This derivation assumes that many oscillations happen within the detector volume. Highly boosted
heavy neutrinos could in principle change this conclusion. However, the boost factors expected at future
colliders should not exceed O(100), which cannot compete with the short oscillation length of the heavy
neutrinos which scales as ⇠ 1/�Mphys and is typically smaller than O(10�4)m.
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Other than ν masses, HNL can provide a solution to other SM observational issues

New source of CP violation

Leptogenesis

M. Drewes, Y. Georis and J. Klarić, 
arXiv:2106.16226 [hep-ph]

Long-lived particles

Dark matter

A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens 
and O. Ruchayskiy, arXiv:1807.07938 [hep-ph]

Figure 14: Constraints on sterile neutrino DM. The solid lines represent the most important constraints
that are largely model independent, i.e., they can be derived for a generic SM-singlet fermion N of mass
M and a mixing angle ✓ with SM neutrinos, without specification of the model that this DM candidate is
embedded in. The model independent phase space bound (solid purple line) is based on Pauli’s exclusion
principle (c.f. Section 3.1). The bounds based on the non-observation of X-rays from the decay N ! ⌫�
(violet area, see Section 3.2 for details) assume that the decay occurs solely through mixing with the active
neutrinos with the decay rate given by eq. (29). In the presence of additional interactions, these constraints
could be stronger, see e.g. [520]. All X-ray bounds have been smoothed and divided by a factor 2 to account
for the uncertainty in the DM density in the observed objects. They are compared to two estimates of the
ATHENA sensitivity made in ref. [234]. The blue square marks the interpretation of the 3.5 keV excess as
decaying sterile neutrino DM [184, 188]. All other constraints depend on the sterile neutrino production
mechanism. As an example, we here show di↵erent bounds that apply to thermally produced sterile
neutrino DM, cf. section 4.2. The correct DM density is produced for any point along black solid line
via the non-resonant mechanism due to ✓-suppressed weak interactions (24) alone (Section 4.2.1). Above
this line the abundance of sterile neutrinos would exceed the observed DM density. We have indicated
this overclosure bound by a solid line because it applies to any sterile neutrino, i.e., singlet fermion that
mixes with the SM neutrinos. It can only be avoided if one either assumes significant deviations from the
standard thermal history of the universe or considers a mechanism that suppresses the neutrino production
at temperatures of a few hundred MeV, well within the energy range that is testable in experiments, cf. e.g.
[521]. For parameter values between the solid black line and the dotted green line, the observed DM density
can be generated by resonantly enhanced thermal production (Section 4.2.2). Below the dotted green line
the lepton asymmetries required for this mechanism to work are ruled out because they would alternate the
abundances of light elements produced during BBN [584]. The dotted purple line represents the lower bound
from phase space arguments that takes into account primordial distribution of sterile neutrinos, depending on
the production mechanism [22]. As a structure formation bound we choose to display the conservative lower
bound on the mass of resonantly produced sterile neutrinos, based on the BOSS Lyman-↵ forest data [268]
(see Section 3.3 for discussion). The structure formation constraints depend very strongly on the production
mechanism (Section 4). The dashed red line shows the sensitivity estimate for the TRISTAN upgrade of the
KATRIN experiment (90% C.L., ignoring systematics, c.f. Section 5.2).
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Figure 1: Allowed parameter space for leptogenesis with 3
heavy neutrinos for vanishing (inside solid black line) and
thermal (inside dashed black line) initial conditions and
mlightest = 0 eV (upper panel) or mlightest = 0.1 eV (lower
panel). The gray area indicates the experimentally excluded
region identified in the global scan [50], complemented by
the updated BBN bounds from [53, 54]. The coloured lines
indicate the estimated sentitivities of the LHC main detec-
tors (taken from [103–105]) and NA62 [102] along with that
of selected planned or proposed experiments (DUNE [106],
FASER2 [44], SHiP [107, 108] MATHUSLA [43], Codex-b [45])
as well as future lepton colliders [109] or proton colliders [30].

been made in [78], where only the freeze-in and M̄ below
50 GeV were considered. Amongst the various di�erences
between n = 2 and n = 3 discussed in [78], two are most
relevant here. i) Lepton asymmetries can be preserved
from large washout by a flavor hierarchical washout, since
the ratios U2

–i/U2
i with n = 3 are much less constrained by

neutrino oscillation data than for n = 2 [50]. ii) Thermal
e�ects can cause a level-crossing between the Ni dispersion
relations (similar to the well-known MSW e�ect) that
resonantly enhances the asymmetry production, which
cannot be realised in the B ≠ L̄ limit for n = 2. For the
freeze-out (where the Ni are non-relativistic) these two
e�ects appear to play a much smaller role since we find
a large population of points that do not satisfy either
of these two criteria. We instead find that a crucial
element in preventing washout is that one direction in

the ‹Ri flavor space can remain weakly coupled and can
have a much more significant deviation from equilibrium.
This is in contrast to the case with n = 2, where both
reach equilibrium soon after they become non-relativistic
because they form a pseudo-Dirac pair. The deviation
from equilibrium during decays is typically of the order
”ni ¥ ṅeq/≈ , where ≈ ¥ ≈1 ¥ ≈2 is the inverse lifetime
of the two neutrinos ‹R1 and ‹R2 that form the pseudo-
Dirac pair with M2 ƒ M3. If we include a third neutrino
‹R3, its lifetime is not necessarily determined by the
mixing angle U2, it can have a much bigger deviation
from equilibrium. If M3 is very di�erent from M2 and
M1, the B ≠ L̄ symmetry dictates that ‹R1 and ‹R2 form
a pseudo-Dirac pair of mass eigenstates Ni (first two
columns in (4)) with mixings of order U2, while the third
mass eigenstate N3 remains feebly coupled (third column
in (4)). However, in the triple mass-degenerate scenario,
‹R3 can mix with the pseudo-Dirac pair through the mass
term. This explains not only point 1), but also point 3)
because smaller mlightest allow for smaller couplings of ‹R3.
Regarding 2), leptogenesis with thermal initial conditions
is possible for M̄ π v because the enhancement of the
asymmetry due to resonant and flavour e�ects can be
su�cient to overcome the suppression by (M̄/T )2 of the
deviation from equilibrium [86, 110–112].9 Finally, point
4) is a result of the well-known fact that the asymmetries
generated during freeze-in and freeze-out have opposite
signs [115] (cf. [116] for a recent discussion) and partially
cancel each other in the case of vanishing initial conditions.

The much larger range of masses and mixings for which
leptogenesis is feasible for n = 3 compared to n = 2
do not only imply considerably better chances for exist-
ing experiments to discover the Ni, but also imply that
a much larger number of them may be observed. The
price at which this comes is the larger number of model
parameters, which makes the model with n = 3 less pre-
dictive than with n = 2, where in principle all model
parameters can be constrained experimentally [99, 100].
In spite of this, with such a large number of events, one
can perform several consistency checks of the hypotheses
that the model (1) can simultaneously generate the light
neutrino masses and the matter-antimatter asymmetry in
the universe. For instance, if U2 happens to lie near the
current experimental limit, we estimate (using the results
of [104]) that the HL-LHC could observe thousands of
displaced vertex events. This would permit a percent
level determination of the fractions U2

–/U2 (cf. appendix
B of [109]). Moreover, the amount of B ≠ L̄ breaking

9 The late decay of the Ni in this scenario could potentially generate
a lepton asymmetry that greatly exceeds the baryon asymmetry,
which can have interesting phenomenological consequences, in-
cluding enhanced singlet fermion DM production [8] and a�ect
the nature of the QCD transition [113] and primordial black hole
production [114].
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FIG. 3. Prospects to probe the parameter space generating
10→1 <→ FDM

<→ 5. In the upper panel we show correlations
between the invisible decay width of the Z-boson and searches
for µ ↑ eω, together with prospective sensitivities for FCC-
ee and MEG-II. In the lower panel we present the relevant
parameter space for the active-heavy mixing |UµN |2 and mN

including relevant experimental bounds [38, 60]. The purple
line corresponds to the sensitivity of FCC-hh [79].

candidate, with mass O (10) keV and almost decoupled,
and two heavy Majorana neutrinos with almost degener-
ate masses, mN , and large mixings with the active ones.
We find that the heavy neutrino decay into the DM candi-
date dominates its production, which translates into the
rough upper bound mN

<
→ 1 TeV. Above these masses,

the heavy neutrinos would not be abundant enough in the
thermal plasma after SSB and the generation of mixings.

The phenomenological implications of such a DM pro-
duction mechanism are very rich, as it introduces strong
synergies between the expected signal in the usual in-
direct DM probes, such as X-ray searches or constraints
from structure formation, and the size of the active-heavy
neutrino mixings controlling the final DM abundance. In-
deed, current EWPO and searches for cLFV place the

leading constraints on this scenario. We find that MEG-
II, currently taking data, will be able to probe part of the
parameter space for which all the observed DM is gener-
ated. In the longer term, the simultaneous improvement
of indirect DM searches with experiments like XRISM, as
well as the measurement of EWPO in FCC-ee together
with searches for cLFV (or even direct searches in FCC-
hh) has the potential to completely test this DM gener-
ation mechanism.
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the heavy neutrinos would not be abundant enough in the
thermal plasma after SSB and the generation of mixings.

The phenomenological implications of such a DM pro-
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direct DM probes, such as X-ray searches or constraints
from structure formation, and the size of the active-heavy
neutrino mixings controlling the final DM abundance. In-
deed, current EWPO and searches for cLFV place the

leading constraints on this scenario. We find that MEG-
II, currently taking data, will be able to probe part of the
parameter space for which all the observed DM is gener-
ated. In the longer term, the simultaneous improvement
of indirect DM searches with experiments like XRISM, as
well as the measurement of EWPO in FCC-ee together
with searches for cLFV (or even direct searches in FCC-
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ation mechanism.
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any region above the red line overcloses the Universe and
is e!ectively ruled out, we show it to better understand
the dependence on

∑
|UωN |

2. The gray shaded area cor-
responds to the bound on

∑
|UωN |

2 from EWPO and
cLFV for NO [38]. While it is obvious that larger Yukawa
couplings translate into a larger DM abundance, we note
from this plot that the whole parameter space can be
probed with future experiments. On the one hand, con-
straints pertaining the DM such as X-ray searches or Ly-
ω tend to close the allowed parameter space over the
diagonal.13 On the other hand, bounds from EWPO and
cLFV on

∑
|UωN |

2 shut the parameter space in a com-
plementary direction. Similar conclusions are found for
the IO case and we do not show the corresponding plots.

Future machines like FCC-ee aim to improve current
measurements of EWPO reducing uncertainties by at
least one order of magnitude [74], while the quest to find
cLFV is still ongoing with the notable example of MEG-
II [75–77], searching for µ → eε and currently running.
We show in the upper panel of Fig. 3 the consequences
large

∑
|UωN |

2 has on the invisible decay width of the
Z-boson ”Z

inv, and on B (µ → eε), after taking into ac-
count existing constraints. The color code (in both pan-
els) represents once again the DM abundance for each
point, with 10→1 <

↑ FDM
<
↑ 5. The orange dash-dotted

line represents the potential lower 1ϑ region on ”Z

inv as-
suming the SM central value and the reduction of current
uncertainties by one order of magnitude [74, 78]. Further-
more, we show the prospects from MEG-II [76] with the
blue dashed vertical line. Finally, we show in the lower
panel of Fig. 3 our results as a function of the heavy
pseudo-Dirac pair mass and their mixing with the muon-
neutrino flavor for NO. The shaded blue area corresponds
to current collider bounds at 90 % CL, obtained using
HNLimits [60]. The gray horizontal region corresponds to
the bounds on |UµN |

2 from EWPO and cLFV [38] while
the lower gray area corresponds to the naive lower bound
on |UµN |

2 for which the observed mass-squared di!er-
ences [80] are generated. The light red cloud of points
shows regions of parameter space for which the produced
DM abundance is too small (10→5 <

↑ FDM
<
↑ 10→1). In

order to produce a non-negligible DM abundance we find
100GeV <

↑ mN
<
↑ 1TeV. Since production is only possi-

ble for T <
↑ 160 GeV, the DM abundance is exponentially

suppressed for mN
>
↑ 1TeV due to the Boltzmann sup-

pression of the heavy neutrino distribution. Prospects
from FCC-hh [79] are shown as a dash-dotted purple
line, covering relevant regions of parameter space for
mN

<
↑ 300 GeV.

Conclusions: In this letter we proposed a combined

13
Larger values of sin

2 ωωDM for a fixed
∑

|UωN |2 tend to corre-

spond to larger FDM.
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FIG. 2. Results for regions of parameter space producing
at least 1 % of the observed DM for NO. The upper panel
shows the results on the DM mixing vs DM mass plane, with
the color bar representing the DM fraction. The lower panel
shows the DM fraction as a function of the active-heavy mix-
ing. The DM mixing is shown in the corresponding color bar.
Relevant experimental and observational bounds are shown
in each slice of parameter space (see text for details).

solution for the neutrino masses and DM puzzles based
on a minimal low-scale seesaw framework, which might
also be compatible with leptogenesis. DM production is
accounted for through two-body decays of SM bosons,
as well as decays of the heavy neutrinos involving DM
and a SM boson, at temperatures below the electroweak
crossover. For the first time, we perform a complete
computation, based on the evaluation of neutrino self-
energies in the context of TFT, consistently accounting
for all the available production channels, and analyze the
phenomenological consequences of such a scenario.
In order for the production to be e#cient, approximate

lepton number conservation is necessary. This translates
into a heavy neutrino spectrum comprised by the DM

A. Abada, G. Arcadi, M. Lucente and S. Rosauro-Alcaraz, arXiv:2503.20017 [hep-ph]; A. Abada, G. Arcadi, M. Lucente, 
G. Piazza and S. Rosauro-Alcaraz, arXiv:2308.01341 [hep-ph]; M. Lucente, arXiv:2103.03253 [hep-ph]

ΩBh
2 = 0.02237± 0.00015 (1)

ΩDMh2 = 0.1200± 0.0012 (2)
ΩΛ = 0.6847± 0.0073 (3)

h = 0.6736± 0.0054 (4)

θ2 =
!

α

|Uαs|2 (5)

fWDM θ2 ≲ 10−4
" ms

keV

#−5
(6)

h

Ni

Nj

1

We computed the thermal correction in the 
production of DM from the decay of heavy states

Indirect Precision Collider

The DM solutions exist and are testable by different experimental searches
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Lepton number symmetry allows for low scale NP and sizeable couplings

But this symmetry generally suppresses LNV processes

HNL phenomenology is generally connected with ν mass generation mechanism

HNL can also provide simultaneous solution to the BAU and DM problems

LNV rates depend in general on the interference of multiple virtual states

Multiple testability opportunities 

• neutrinoless 2β decay 
• meson and tau decay 
• collider and fixed target 
• LFV/LNV and precision 
• neutrino telescopes 
• … 

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)
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Multiple possibilities, we focus on the simple RHN extension
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Accidental symmetries of the SM
The Standard Model has accidental perturbative symmetries, arising from:


 gauge group + field content + renormalizability

LB
Baryon number

Lα

Flavour numbers 
α = e, μ, τ

Lepton number 
L = Σα Lα(Individual quark flavour numbers 

are violated by CKM mixing)

Non perturbative effects violate both B and L, but preserve

Chapter 2. Early Universe Cosmology

this discussion applies in particular also to the B−L phase transition, during which the B−L
gauge symmetry actually becomes hidden rather than broken.

Electroweak Instanton and Sphaleron Transitions

As the temperature approaches the electroweak scale, also nonperturbative processes which

simultaneously violate baryon number B and lepton number L gain in importance. Their

emergence is a direct consequence of the fact that the electroweak dynamics are governed

by a chiral and non-Abelian gauge theory. First of all, we note that both global U(1)B and

U(1)L transformations represent accidental symmetries of the standard model Lagrangian.

Hence, both B and L are conserved in the standard model at the classical level. Due to

the chiral nature of the electroweak interactions, they are, however, violated at the quantum

level through the triangle anomaly, which results in the divergences of the baryon and lepton

number currents, Jµ
B and Jµ

L , being nonzero [12, 13],

∂µJ
µ
B = ∂µJ

µ
L =

Nf

32π2
ϵµνστ

(
−g2WTrWµνWστ + g2Y BµνBστ

)
. (2.29)

Here, Nf counts the number of fermion families, ϵµνστ represents the Levi-Civita symbol in

four dimensions,W a
µν andBµν are the field strength tensors of the weak and hypercharge gauge

fields, and gW and gY denote the corresponding gauge couplings. The second ingredient to the

nonconservation of B and L is the complicated structure of the vacuum of the SU(2)W gauge

theory. As for any non-Abelian gauge theory, the SU(2)W vacuum manifests itself in infinitely

many, homotopically distinct,25 pure gauge configurations, each of which is characterized by a

specific integer topological charge or Chern-Simons number NCS. An important observation is

that distinct realizations of the SU(2)W vacuum differing by ∆NCS = 1 are connected to each

other via a non-contractible loop in field configuration space [132]. The field configuration of

highest energy along this path is known as the sphaleron [133]. Corresponding to a saddle-

point of the energy functional of the gauge-Higgs system, the sphaleron represents a classical,

spatially localized and static, but unstable solution of the electroweak field equations. Its

energy Esph determines the height of the potential barrier by which two adjacent realizations

of the SU(2)W vacuum are separated,

Esph(T ) ≃
8π

gW

√
2vEW(T ) , vEW(T ) = ξ1/2EW(T ) . (2.30)

Now combining the nontrivial topology of the SU(2)W vacuum with the fact that the

currents Jµ
B and Jµ

L have nonzero divergences (cf. Eq. (2.29)), one can show that both B and

write v = ⟨s⟩, although we actually mean v =
〈
s†s

〉1/2
.

25Gauge configurations belonging to different homotopy classes are transformed into each other via large

gauge transformations.
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Accidental symmetries: experimental status

B No evidence 
of violation E.g. proton mean life  years CL=90%> 3.6 × 1029

PDG, Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

Lα

Violated in neutrino 
oscillations

L No evidence 
of violation

New physics BSM

Massive neutrinos violate it if 
they are Majorana particles

NuFIT 5.1 (2021)

|U |w/o SK-atm
3� =

0

B@
0.801 ! 0.845 0.513 ! 0.579 0.143 ! 0.156

0.232 ! 0.507 0.459 ! 0.694 0.629 ! 0.779

0.260 ! 0.526 0.470 ! 0.702 0.609 ! 0.763

1

CA

|U |with SK-atm
3� =

0

B@
0.801 ! 0.845 0.513 ! 0.579 0.144 ! 0.156

0.244 ! 0.499 0.505 ! 0.693 0.631 ! 0.768

0.272 ! 0.518 0.471 ! 0.669 0.623 ! 0.761

1

CA

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. 
Schwetz and A. Zhou, arXiv:2007.14792 [hep-ph]



Michele Lucente - Università di Bologna HQL 2025

Fermionic singlet extensions of the SM

37

SM + n gauge singlet fermions NI

After electroweak phase transition < Φ > = v ≃ 174 GeV

3 x n matrix 
Yukawa couplings

n x n matrix 
Majorana mass  

couplings

(3+n) dimensional 
mass matrix

L = LSM + iNI /∂NI −
(
FαIℓαLφ̃NI +

MIJ

2
N c

INJ + h.c.

)
(1)

L = LSM + i νRi/∂νRi −
1

2

(
νcRiMijνRj + νRiM

†
ijν

c
Rj

)
− FαiℓαLφ̃νRi − F ∗

αiνRiφ̃
†ℓαL (2)

η∆B = (6.13± 0.03)× 10−10 (3)

1

UTM U = M̂diag (20)

U =

"

# Uα, i=1,2,3
active-active Uα, i≥4

active-sterile
...

. . .

$

% (21)

−Lν
m =

1

2

&
νL N c

'
"

# δmloop
ν vF

vF T M

$

%

( )* +
M

"

# νcL

N

$

%+ h.c. (22)

c5 ≪ 1 (23)
ci6 ≈ O(1) (24)

c5 ≪ 1 (25)
cLNV,i
6 ≪ 1 (26)

cLNC,i
6 ≈ O(1) (27)

mν
αβ = cαβ

v

Λ
v ≲ eV ≪ v (28)

L = LSM +

,
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

-
, (29)

Lint(pp) = 5.79× 104 pb−1

Lint(ArAr) = 7.72 pb−1

Lint(PbPb) = 10−2 pb−1 (30)

Nd =
Lintσ

[A,Z]
B

9

.
1−

,
Mi

mB

-2
/2

U2
µ

&
e−l0λ − e−l1λ

'
fcut (31)

mν = −v2FM−1
M F T (32)

L = LSM +

,
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

-
, (33)

Nb

0
A
ZN

1
= Nb

0
208
82Pb

1, Z

82

-−p

(34)

2
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UTM U = M̂diag (1)

U =

!

" Uα, i=1,2,3
active-active Uα, i≥4

active-sterile
...

. . .

#

$ (2)

−Lν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (3)

c5 ≪ 1 (4)
ci6 ≈ O(1) (5)

c5 ≪ 1 (6)
cLNV,i
6 ≪ 1 (7)

cLNC,i
6 ≈ O(1) (8)

mν
αβ = cαβ

v

Λ
v ≲ eV ≪ v (9)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (10)

Lint(pp) = 5.79× 104 pb−1

Lint(ArAr) = 7.72 pb−1

Lint(PbPb) = 10−2 pb−1 (11)

Nd =
Lintσ

[A,Z]
B

9

)
1−

'
Mi

mB

(2
*2

U2
µ

%
e−l0λ − e−l1λ

&
fcut (12)

mν = −v2FM−1
M F T (13)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (14)

Nb

+
A
ZN

,
= Nb

+
208
82Pb

,' Z

82

(−p

(15)

1

UTM U = M̂diag (1)

U =

!

" Uα, i=1,2,3
active-active Uα, i≥4

active-sterile
...

. . .

#

$ (2)

−Lν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (3)

c5 ≪ 1 (4)
ci6 ≈ O(1) (5)

c5 ≪ 1 (6)
cLNV,i
6 ≪ 1 (7)

cLNC,i
6 ≈ O(1) (8)

mν
αβ = cαβ

v

Λ
v ≲ eV ≪ v (9)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (10)

Lint(pp) = 5.79× 104 pb−1

Lint(ArAr) = 7.72 pb−1

Lint(PbPb) = 10−2 pb−1 (11)

Nd =
Lintσ

[A,Z]
B

9

)
1−

'
Mi

mB

(2
*2

U2
µ

%
e−l0λ − e−l1λ

&
fcut (12)

mν = −v2FM−1
M F T (13)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (14)

Nb

+
A
ZN

,
= Nb

+
208
82Pb

,' Z

82

(−p

(15)

1

PMNS matrix: 
neutrino oscillations

Couples the heavy states 
with SM gauge bosons

Unobservable

3 light (mostly active) states

n heavy (mostly sterile) states

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)
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Accidental cancellations: quantify fine tuning
If a symmetry is present 
in the Lagrangian, it will 
be manifest at any order 

in perturbation theory

The neutrino mass 
scale is stable under 
radiative corrections

Compute neutrino masses mν at 1-loop, and 
quantify the level of fine-tuning of a solution as

Lagrangian). If there is no symmetry, although at tree-level accidental cancellations can result in

small neutrino masses, then the combination of large Yukawa couplings and low-scale seesaw, without

any symmetry protecting neutrino masses, will in general result in large loop corrections, spoiling

the tree-level result. One can still satisfy the experimental constraints in this framework by invoking

accidental cancellations among different orders in the perturbative expansion, although the solution

will result quite fine tuned in this case. A well known example of approximate symmetry protecting

neutrino masses in the total lepton number L: experimentally there is no evidence for lepton number

violation, but small neutrino masses break lepton number conservation if they are Majorana particles.

One can thus link the smallness of neutrino masses with the smallness of the lepton-number violating

parameters in the theory, rendering small neutrino masses natural since in the massless limit the

Lagrangian acquires an additional symmetry. In this framework, after having integrated out the

BSM new physics states, there is a decorrelation between the L-violating 5-dimensional operator in

the effective theory, giving rise to non-zero neutrino masses, and the 6-dimensional operators, which

encode new-physics effects other than neutrino oscillations and which can be either L-violating or

L-conserving [60]. Since there is only one unique 5-dimensional operator in the SM [61], whose

coefficient is determined by neutrino masses and mixing, any possibility to disentangle among the

different models for neutrino mass generation relies in detecting the effects of at least the 6-dimensional

effective operators. Neutrino mass generations mechanisms based on an approximate lepton number

conservation include for instance supersymmetric models with R-parity violation [62–67], low-scale

Seesaw realisations [68–70], the νMSM [12], the Linear Seesaw [71–73] and Inverse Seesaw [29,74–77]

mechanisms. The key rôle of lepton number symmetry in low-scale leptogenesis realisations was

previously addressed in [10, 11].

In the exploration of the parameter space we do not impose any symmetry, but we allow the

underlying parameters in the theory to vary as reported in Table 1, in order to generate symmetry

protected as well as generic solutions. The prediction of an underlying lepton number symmetry is

indeed a mass spectrum characterised by a pair of sterile neutrinos N1,2
PD strongly degenerate in mass

and coupled to form a pseudo-Dirac state, with relative Yukawa couplings Fα1 ≃ −iFα2, and a third

state N3
Dec almost decoupled2, |Fα3| ≪

∣∣Fα(1,2)

∣∣ [60, 78, 79]. We then quantify a posteriori the level of

fine-tuning for each solution, by defining the following quantity

f.t.(mν) =

√√√√
3∑

i=1

(
mloop

i −mtree
i

mloop
i

)2

, (27) {eq:fine_tuning}

where mloop
i are the light neutrino masses computed at 1-loop level, while mtree

i are the same observ-

ables computed neglecting loop corrections. Eq. (27) quantifies how important are loop correction in

order to reproduce the observed neutrino mass spectrum: the smaller it is the more neutrino masses

are stable under radiative corrections, suggesting the presence of an underlying symmetry if Yukawa

couplings are sizeable larger than the naive Seesaw scaling |F | ! 10−7
√

M/GeV.

2Notice that the third state can equivalently be heavier or lighter with respect to the pseudo-Dirac pair.

12

mi loop 

1-loop neutrino

mass spectrum

mi tree 

tree-level neutrino

mass spectrum
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Double beta decay
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These results are expected to be improved by the next generation of experiments:
KATRIN [138] and MARE [141] with a planned sensitivity of 0.35 eV (3-years running)
and 0.2 eV, respectively.

3.2.2 meff

⌫µ
and meff

⌫⌧
mass limits

Analogously to the definition (3.15), it is possible to define an effective mass for the
other neutrino flavours, meff

⌫µ and meff
⌫⌧ , by the replacement Uei ! Uµi and U⌧ i, respec-

tively [56].
A limit on the effective mass meff

⌫µ can be extracted from the pion decay

⇡+ ! µ+
+ ⌫µ, (3.18)

by measuring the muon energy, since the kinematics of the process gives

m2

⌫µ
= m2

⇡ + m2

µ � 2m⇡Eµ. (3.19)

The current bound on the effective muon neutrino mass is [142]

meff

⌫µ
< 170 keV at 90 % C.L. (3.20)

A limit on meff
⌫⌧ can be obtained by measuring the missing energy in the decays

⌧� ! 2⇡�
+ ⇡+

+ ⌫⌧ ,

⌧� ! 3⇡�
+ 2⇡+

+ ⌫⌧ , (3.21)

resulting in the upper bound [143]

meff

⌫⌧
< 18.2 MeV at 95 % C.L. (3.22)

Notice that, in the three-flavour paradigm, the above referred quantities are con-
strained to be orders of magnitude smaller than the bounds (3.20, 3.22), due to the com-
bination of the values of the mixing matrix elements, Table 3.1, and the upper bound on
the neutrino mass scale (3.17).

3.2.3 Neutrinoless double beta decay

The double beta (2�) decay is a second order weak process characterised by the transition

N (A, Z) ! N (A, Z + 2) + 2e�
+ 2⌫e. (3.23)

Being a second order process in the weak coupling, this process is relevant when the single
beta decay is kinematically forbidden, as is the case for instance of the nuclei 48Ca, 76Ge,
82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe, 150Nd [56], see Fig. 3.3 for the A = 76 case.

If neutrinos are Majorana particles they can mediate a variation of the 2�-decay
process, the neutrinoless double beta (0⌫2�) decay process [144]

N (A, Z) ! N (A, Z + 2) + 2e�. (3.24)

41

2β decay: 2nd order weak process 

Only relevant when the single β 
decay is kinematically forbidden

48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe, 150Nd

(Ep = 100 GeV) to produce a neutrino beam that is sent to the underground site of MINOS at a
distance of 730 Km. The detailed comparison of a “near” and a “far” detector functionally identical
(two iron/scintillator sampling calorimeters) with toroidal magnetic field should allow to confirm the
oscillation interpretation for atmospheric neutrinos, and to determine more accurately the oscillation
parameters. The beginning of the data taking is scheduled for the end of 2004.

In the CERN to Gran Sasso project 450 GeV p beam is the source of a higher energy neutrino
beam ⟨Eν⟩ ∼ 15 – 20 GeV that will be sent to the Gran Sasso underground laboratory, again at a
distance of 730 Km. The OPERA detector is designed to serch for the appearance of ντ charged current
interactions with a massive lead/nuclear emulsion target. The ICARUS detector is also sensitive to the
ντ ’s generated by the oscillations.

Fig. 42: Energy levels for the A = 76 nuclei.

11. DOUBLE BETA DECAY

The most promising way to distinguish between Dirac and Majorana neutrinos is neutrinoless double
beta decay (for extensive reviews see [102]). Double beta decay is the process:

(Z,A) → (Z + 2, A) + 2e− + 2ν̄e (2νββ decay) , (177)

that can occur when single beta decay is kinematically forbidden. For example the nucleus 76Ge (Z=32)
cannot have a beta decay into the Z=33 state (76As) that has a mass 0.4 MeV larger, but can have a double
beta decay into the Z=34 state (76Se) that is 3.05 MeV lighter. The process (177) at the fundamental
(quark) level (see part (a) of Fig. 43) is the transition of two d quarks into two u quarks with the emission
of two electrons and two νe. The process is of second order in the weak coupling and therefore the
corresponding decay rates are very low with lifetimes of order T >∼ 1019–1021 years.

In the neutrino–less process:

(Z,A) → (Z + 2, A) + 2e− (0νββ decay) , (178)

there is no neutrino emission. The leading order diagram of this process is shown in part (b) of Fig. 43,
and can be pictured as one beta decay followed by the absorption of the emitted anti-neutrino by a
different neutron in the nucleus. The process has a very clear experimental signature because while in
the standard decay the sum of the energy of the two electrons in the final state has a broad distribution,
in the neutrinoless case one has that the sum of the energies of the two emitted electrons is equal to the

186

Figure from P. Lipari, Introduction to neutrino physics, in 2001 CERN-CLAF School of high-energy physics 
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The black box theorem
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J. Schechter and J. W. F. Valle, Phys. Rev. D 25 (1982) 2951; E. Takasugi, Phys. Lett. 149B (1984) 372; 
see also M. Duerr, M. Lindner and A. Merle, arXiv:1105.0901 [hep-ph]

Irrespectively of the underlying 
mechanism, a non-vanishing 0ν2β 
amplitude generates a Majorana 
mass term for the SM neutrinos

NEUTRINOLESS DOUBLE-P DECAY IN SU(2)XU(1). . . 2953

also results in new diagrams of the standard form
1(a) in which one or both of the W's is replaced by
a X . These diagrams, which also modify the
V—A structure of the single-P-decay interaction,
are quite small.
Thus we reach the conclusion that for the

SU(2) XU(1) theory defined by the Higgs content
(1), the effect of the new diagrams is quite small if
one considers only mass scales lower than that of
grand unification.
One type of neutrinoless diagram which may

conceivably be relatively strong without superheavy
masses is shown in Fig. 1(d). Here a new I'=—4
isosinglet Higgs field P is introduced in addi-
tion to the doublet and the triplet. The virtual

decays into two ez 's rather than two ei 's as
in the previous cases. In this case the g++ez ez
Yukawa interaction is not proportional to the neu-
trino mass (as was required previously since the
h++el eL Yukawa term is related by an isospin
transformation to the h vv term which generates
neutrino mass) and thus may be of order unity. '
The term in the Higgs Lagrangian which generates
the trilinear X X g++ coupling in Fig. 1(d) is

BLACK BOX

I
ct

I

l
I

4/

FIG. 2. Diagram showing how any neutrinoless
double-P decay process induces a v, -to-v, transition,
that is, an effective Majorana mass term.

P Htg, g+++H. c. (13)

The amplitude for Fig. 1(d) would then roughly be
of order co ms y/A, . The ratio of this to the usual
amplitude, which is suppressed by a factor of m„,
is about

co'ym, '(p')
m„A,4

(14)

This could be comparable to one if m„ is excep-
tionally small.
Other models with extra Higgs fields can also

boost the new contribution. For example, suppose
that we add to (1) another complex doublet P', as
one might have in an axion scheme. Then there
will be two physical singly charged fields and there
is in general no need to have a suppression' of
their Yukawa couplings to the quarks for small y.
The ratio of the d contribution to the standard one
[see Eq. (12)] is now roughly

10 13(p')'" d 10-6d

where we have taken y =1 eV. Thus an intermedi-
ate scale d =10 GeV could make the new dia-
grams important.
To sum up we can say that while neutrinoless

diagrams might not be dominant, a careful analysis
of (PP}c„decays should really take into account

their possible existence. This is because the general
structure (as opposed to detailed predictions) of
gauge theories seems to be the safest guide to the
parametrization of weak-interaction amplitudes. It
would be desirable to develop criteria" based on
angular distributions of the decay products for dis-
tinguishing these diagrams from the usual ones.
We will conclude this paper with a brief discus-

sion of the relation between the (PP}c„process and
nonzero neutrino mass. After noticing the ex-
istence of neutrinoless diagrams one might be
tempted to try to construct models without mas-
sive neutrinos and which would still give (PP)c„.
However, such a search would be in vain. For the
model based on the Higgs content (1) this result is
obvious since Eqs. (5) and (10) are proportional to
m„. It is also true for the model with g: Al-
though this model gives an amplitude with no m„
factor there is an overall factor of y = (hc). Now
in a natural theory H will couple to the basic lep-
ton doublet so that a nonzero value of y will gen-
erate a neutrino mass.
Still one might think that a yet more clever

choice of the Higgs-representation content could
do the job. Rather than attempt an enumeration
of all possible Higgs structures we will give a gen-
eral and yet very simple proof that the existence of
(PP)c„ implies that the electron neutrino has

Γ0ν2β ∕= 0 (1)
νcL = eiφνL (2)

M1 = M2 (3)
Uα1 = i Uα2 (4)

(5)

Mi = 0 (6)

Uαi = 0 (7)

M2 −M1

M1 +M2
≪ 1 (8)

Uα1 ≃ i Uα2 (9)
(10)

Mi ≪ Mj ∕=i (11)

|Uα,i| ≪ |Uα,j ∕=i| (12)

UTM U = M̂diag (13)

U =

!

" Uα, i=1,2,3
active-active Uα, i≥4

active-sterile
...

. . .

#

$ (14)

−Lν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (15)

c5 ≪ 1 (16)
ci6 ≈ O(1) (17)

c5 ≪ 1 (18)
cLNV,i
6 ≪ 1 (19)

cLNC,i
6 ≈ O(1) (20)

1

Γ0ν2β ∕= 0 (1)
νci = eiφνi (2)

M1 = M2 (3)
Uα1 = i Uα2 (4)

(5)

Mi = 0 (6)

Uαi = 0 (7)

M2 −M1

M1 +M2
≪ 1 (8)

Uα1 ≃ i Uα2 (9)
(10)

Mi ≪ Mj ∕=i (11)

|Uα,i| ≪ |Uα,j ∕=i| (12)

UTM U = M̂diag (13)

U =

!

" Uα, i=1,2,3
active-active Uα, i≥4

active-sterile
...

. . .

#

$ (14)

−Lν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (15)

c5 ≪ 1 (16)
ci6 ≈ O(1) (17)

c5 ≪ 1 (18)
cLNV,i
6 ≪ 1 (19)

cLNC,i
6 ≈ O(1) (20)

1

Non-vanishing 
0ν2β amplitude

Neutrinos are 
Majorana fermions
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Figures from A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, arXiv:1810.12463 [hep-ph]; 
see also J. Lopez-Pavon, S. Pascoli and C. f. Wong, arXiv:1209.5342 [hep-ph]; J. Lopez-Pavon, E. Molinaro 

and S. T. Petcov, arXiv:1506.05296 [hep-ph]

Blue points: not fine tuned Red points: fine tuned
f.t.

10-4 10-2 1

Figure 1: Active-sterile mixing for the viable BAU solutions as a function of the heavy neutrino mass, for

a normal (left) and an inverted (right) ordering in the light neutrino mass spectrum. From top to bottom:

electron U
2
ei, muon U

2
µi, tau U

2
⌧i and summed U

2
i mixings. The grey region is excluded by direct searches of

heavy neutral leptons (cf. Section 5.2), the lines show the expected sensitivities for the ongoing experiments

T2K [182], NA62 [39], Belle II [183], LHCb [180] with an integrated luminosity of 380 fb
�1

, and for ATLAS

and CMS with an integrated luminosity of 300 fb
�1

. The latter include di↵erent proposed searches: [22]

(continuous line), [17] (dashed line), [21] (dotted line).
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LNV decay
Current bound

ℓα = e, ℓβ = e ℓα = e, ℓβ = µ ℓα = µ, ℓβ = µ

K− → ℓ−α ℓβ
−π+ 6.4× 10−10 [41] 5.0 × 10−10 [41] 1.1 × 10−9 [41]

D− → ℓ−α ℓβ
−π+ 1.1 × 10−6 [41] 2.0× 10−6 [78] 2.2 × 10−8 [79]

D− → ℓ−α ℓβ
−K+ 9.0 × 10−7 [78] 1.9× 10−6 [78] 1.0 × 10−5 [78]

D− → ℓ−α ℓβ
−ρ+ ———– ———– 5.6 × 10−4 [41]

D− → ℓ−α ℓβ
−K∗+ ———– ———– 8.5 × 10−4 [41]

D−
s → ℓ−α ℓβ

−π+ 4.1 × 10−6 [41] 8.4× 10−6 [78] 1.2 × 10−7 [79]
D−

s → ℓ−α ℓβ
−K+ 5.2 × 10−6 [78] 6.1× 10−6 [78] 1.3 × 10−5 [78]

D−
s → ℓ−α ℓβ

−K∗+ ———– ———– 1.4 × 10−3 [41]
B− → ℓ−α ℓβ

−π+ 2.3 × 10−8 [80] 1.5× 10−7 [81] 4.0 × 10−9 [82]
B− → ℓ−α ℓβ

−K+ 3.0 × 10−8 [80] 1.6× 10−7 [81] 4.1 × 10−8 [83]
B− → ℓ−α ℓβ

−ρ+ 1.7 × 10−7 [81] 4.7× 10−7 [81] 4.2 × 10−7 [81]
B− → ℓ−α ℓβ

−D+ 2.6 × 10−6 [84] 1.8× 10−6 [84] 6.9 × 10−7 [85]
B− → ℓ−α ℓβ

−D∗+ ———– ———– 2.4 × 10−6 [41]
B− → ℓ−α ℓβ

−D+
s ———– ———– 5.8 × 10−7 [41]

B− → ℓ−α ℓβ
−K∗+ 4.0 × 10−7 [81] 3.0× 10−7 [81] 5.9 × 10−7 [81]

LNV matrix mν mee
ν meµ

ν mµµ
ν

Table 2: LNV meson decay processes. The current bounds for Kaon, D and B meson decays were
obtained by Belle [84], BABAR [78, 80, 81] and LHCb [79, 82, 83, 85], and have been summarised
in [41,86].

cLFV decay
Current bound

ℓα = e, ℓβ = µ ℓα = e, ℓβ = τ ℓα = µ, ℓβ = τ

K+ → ℓ±α ℓβ
∓π+ 5.2× 10−10 (1.3 × 10−11) ———– ———–

D+ → ℓ±α ℓβ
∓π+ 2.9(3.6) × 10−6 ———– ———–

D+ → ℓ±α ℓβ
∓K+ 1.2(2.8) × 10−6 ———– ———–

D+
s → ℓ±α ℓβ

∓π+ 1.2(2.0) × 10−5 ———– ———–
D+

s → ℓ±α ℓβ
∓K+ 14(9.7) × 10−6 ———– ———–

B+ → ℓ±α ℓβ
∓π+ 0.17× 10−6 75× 10−6 72× 10−6

B+ → ℓ±α ℓβ
∓K+ 91× 10−6 30× 10−6 48× 10−6

B+ → ℓ±α ℓβ
∓K∗+ 1.4 × 10−6 ———– ———–

B0 → ℓ±α ℓβ
∓π0 0.14× 10−6 ———– ———–

B0 → ℓ±α ℓβ
∓K0 0.27× 10−6 ———– ———–

B0 → ℓ±α ℓβ
∓K∗0 0.53× 10−6 ———– ———–

Table 3: cLFV meson decay processes relevant in constraining the LNV modes [41].

2.2 Meson and tau lepton decay widths

We now proceed to discuss and highlight relevant points leading to the computation (theoretical
derivation) of the LNVmeson and tau semileptonic decay widths. These are schematically depicted
in Fig. 1 for the case of a semileptonic LNV meson decay.

6

B meson decay Current bound

B+ → e+ν 0.98 × 10−6

B+ → µ+ν 1.0× 10−6

† B+ → τ+ν = (106 ± 19) × 10−6

B0 → e±µ∓ 0.0028 × 10−6

B0 → e±τ∓ 28× 10−6

B0 → µ±τ∓ 22× 10−6

Table 4: Leptonic (flavour violating and flavour conserving) B-meson decay modes. The symbol
† denotes a measurement rather than an upper bound.

LNV decay
Current bound

ℓ = e ℓ = µ

τ− → ℓ+π−π− 2.0 × 10−8 3.9× 10−8

τ− → ℓ+π−K− 3.2 × 10−8 4.8× 10−8

τ− → ℓ+K−K− 3.3 × 10−8 4.7× 10−8

LNV matrix mν meτ
ν mµτ

ν

Table 5: LNV τ decay processes. The upper bounds are from the Belle collaboration [87].

M1

M2

W±

W±

νs

ℓ
±
1

ℓ
±
2

Figure 1: Dominant contribution to the lepton number violating semileptonic meson decay, M1 →
ℓ±1 ℓ

±
2 M2. Note that the ℓ±1 ↔ ℓ±2 exchanged diagram also exists.

2.2.1 Theoretical estimation

As already mentioned, leading to the computation of the LNV semileptonic decays, we have made
several assumptions, which we proceed to discuss.

• We consider semileptonic decay modes leading to three-body final states; moreover, we only
consider the decays of pseudoscalar mesons and do not address vector meson decays, as their
(non-perturbative) decay constants are plagued by larger theoretical uncertainties, and the
resonances (and excitations) are not well determined;

• The only source of lepton number violation (and lepton flavour violation) at the origin of the
distinct decays above mentioned stems from the presence of (heavy) Majorana neutrinos;

• In order to avoid excessive suppression due to the propagation of a virtual heavy state,

7

Tables (and list of references) from A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, arXiv:1712.03984 [hep-ph]
Meson decay

Results from 


Belle [84], 

BABAR [78,80,81] and 

LHCb [79,82,83,85]; 


summarised in PDG [41]

τ decay upper bounds from the Belle 
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Comprehensive analysis for τ and pseudo-scalar mesons in 1712.03984 
(all possible initial and 3-body final states)

upper bounds

New constraint
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S. Antusch, E. Cazzato and O. Fischer, arXiv:1709.03797 [hep-ph]
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Figure 3: Upper limits on |VµN |
2 at the 95% CL as a function of mN . The black dashed curve

is the expected upper limit, where one and two standard deviation bands are indicated in lime
green and light yellow, respectively. The solid black curve is the observed upper limit. The
red dashed curve indicates observed upper limits from Ref. [9], while the blue dashed curve
shows the observed upper limits from Ref. [12]. Starting from mN around 650 GeV, the analysis
presented in this note improves upon the upper limits from those references.

the first time such constraints have been obtained for this process.
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If new gauge mediators are too heavy, light N are still accessible
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When MWR ≫
√

ŝ but mN ! O(1) TeV, pp → Nℓ+ X production in the
LRSM and minimal Type I Seesaw are not discernible11

Signature: pp → ℓ±ℓ± + nj + X +
pℓ
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Equivalence between L conservation and massless neutrinos only holds in SM + singlet fermions
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J. M. Frere, T. Hambye and G. Vertongen, arXiv:0806.0841 [hep-ph]; 
F. F. Deppisch, J. Harz and M. Hirsch, arXiv:1312.4447 [hep-ph]
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2

cascade decays to the final state l±l±qq through on- or
off-shell decays. The parton level cross section can be
approximated by a Breit-Wigner resonance

σ(Q2) =
4π

9
(2JX + 1)

Γ(X → q1q2)Γ(X → 4f)

(Q2 −M2
X)2 +M2

XΓ2
X

, (2)

with JX being the spin of the produced boson and qi
indicating the initial partons. The partial decay width
Γ(X → 4f) describes the complete decay of X as shown
in Fig. 1. Integrating over the parton distribution func-
tions (PDFs) in narrow-width approximation of the res-
onance (2) yields the total LHC cross section [10]

σLHC =
4π2

9s
(2JX + 1)

ΓX

MX
fq1q2

(

MX√
s
,M2

X

)

× Br(X → q1q2)Br(X → 4f), (3)

with the LHC center of mass energy
√
s = 14 TeV and

fq1q2
(

r,M2
)

=

∫ 1

r2

dx

x
(q1(x,M

2)q2(r
2/x,M2)+

q2(x,M
2)q1(r

2/x,M2)). (4)

Here, qi(x,Q2) is the PDF of parton qi at momentum
fraction x and momentum transfer Q2. For masses M ≈
1 − 5 TeV, this integral can be well approximated as
exponentially decreasing with M/

√
s [10],

fq1q2

(

M√
s

)

≈ Aq1q2 × exp

(

−Cq1q2
M√
s

)

, (5)

where the coefficients Aqq and Cqq depend on the com-
bination of the relevant partons q1, q2, ranging between
Aūū ≈ 200 to Auu ≈ 4400 and Cuu ≈ 26 to Cd̄d̄ ≈ 51.

LEPTOGENESIS

The relevant Boltzmann equations for leptogenesis can
be generically written in terms of the heavy neutrino and
(B − L) number densities per co-moving volume [11] as
function of its decay rate ΓD, the CP asymmetry ϵ and
the scattering rate ΓW , which contains inverse N decays
as well as any other ∆L = 1, 2 processes.
The scattering rate ΓW induced by the process qq ↔

l±l±qq is calculated from the reaction density [11]

γ(qq ↔ l±l±qq) =
T

32π4

∫ ∞

0
ds s3/2σ(s)K1

(√
s

T

)

, (6)

with the nth-order modified Bessel functionKn(x). Here,
the process cross section is not averaged over the initial
particle quantum numbers. Based on the same underly-
ing process, the washout rate ΓW /H = (γ/nγ)/H and
the LHC cross section σLHC are directly related. The
equilibrium photon density nγ ≈ 2T 3/π2 and the Hub-
ble parameter H ≈ 1.66

√
g∗T 2/MP are temperature de-

pendent, with the effective number of relativistic degrees
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FIG. 2: Washout rate ΓW /H at T = MX as a function of
MX and σLHC (solid blue contours). The dotted light blue
contours denote the surviving lepton asymmetry at the EW
scale relative to its value at MX , ηEW

L /ηX
L . The red dashed

curves are typical cross sections of the process pp → l±l±qq.
The red shaded region at the top is excluded due to recent
searches for resonant same sign dileptons at the LHC [12].

of freedom g∗ (≈ 107 in the SM) and the Planck mass
MP = 1.2× 1019 GeV. This results in

ΓW

H
=

0.028
√
g∗

MPM3
X

T 4

K1 (MX/T )

fq1q2 (MX/
√
s)

× (sσLHC), (7)

a relation independent of the branching ratios of the par-
ticle X and therefore valid for all coupling strengths gi
and also independent of the potential presence of other,
lepton number conserving decay modes. Evaluated at
T = MX , i.e. the approximate onset of the washout
process, Eq. (7) yields the order of magnitude estimation

log10
ΓW

H
! 6.9 + 0.6

(

MX

TeV
− 1

)

+ log10
σLHC

fb
, (8)

using the conservative values Aqq = 5000 and Cqq = 26
for Eq. (5). From this approximation alone it is clear that
the observation of the resonant process pp → l±l±qq at
the LHC corresponds to a very strong washout of the
lepton asymmetry in the early universe. For example,
the observation of a resonance at MX ≈ 2 TeV with
a cross section σLHC ≈ 1 fb corresponds to ΓW /H ≈
3 × 107. The exact relation (7) is shown in Fig. 2,
based on the smallest washout among all parton combi-
nations. For any realistic cross section observable at the
LHC with σLHC ! 10−2 fb, the resulting lepton number
washout in the early universe is always highly effective
(ΓW /H ≫ 1). The dashed curves, for example, show

A LNV observation at LHC likely falsifies high-scale leptogenesis


