

Recent spectroscopy results from Belle II experiment

Speaker: Junhao Yin (on behalf of Belle II experiment)

Nankai University

17th Heavy Quark and Lepton, Beijing

The Hadron spectroscopy

$$\mathcal{L}_{II}^{\rm peak} \approx 30 \times \mathcal{L}_{I}^{\rm peak}$$

$$\mathcal{L}_{\mathrm{II}} dt = 50 \; \mathrm{ab}^{-1} \approx 50 \int \mathcal{L}_{\mathrm{I}} dt$$

- So far collect 575 fb⁻¹
 - Mostly at $\sqrt{s} = 10.58$ GeV, $\Upsilon(4S) \rightarrow B\bar{B}$
 - Continuum data at $\sqrt{s} = 10.52$ GeV
 - $\Upsilon(10753)$ scan data around $\sqrt{s} = 10.75$ GeV
- World luminosity record: $5.1 \times 10^{34} / cm^2 / s$

- So far collect 575 fb⁻¹
 - Mostly at $\sqrt{s} = 10.58$ GeV, $\Upsilon(4S) \rightarrow B\bar{B}$
 - Continuum data at $\sqrt{s} = 10.52$ GeV
 - $\Upsilon(10753)$ scan data around $\sqrt{s} = 10.75$ GeV
- World luminosity record: $5.1 \times 10^{34} / cm^2 / s$

In this talk

- Investigate of $\Upsilon(10753)$
 - Observation of $e^+e^- \to \eta \Upsilon(2S)$ and search for $\Upsilon(10753) \to \gamma X_b$ near $\sqrt{s} = 10.75$ GeV arXiv:2509.01917
 - Search for $\Upsilon(10753) \rightarrow \gamma \chi_{bJ}$ arXiv:2509.01917
- Light hadron production and decays
 - Observation of $D_{s0}^*(2317)^+ \to D_s^* \gamma$ preliminary
 - Observation of $B^+ \to \Sigma_c (2455)^{++} \bar{\Xi}_c^-$ and $B^0 \to \Sigma_c (2455)^0 \bar{\Xi}_c^0$ arXiv: 2507.05094
 - Observation of $\Xi_c^+ \to p K_S^0$, $\Lambda \pi^+$, and $\Sigma^0 \pi^+_{\text{JHEP 03 2025, 061 (2025)}}$
 - Measurements of $\Xi_c^+ \to \Sigma^+ K_S^0$, $\Xi^0 \pi^+$, and $\Xi^0 K^+_{\text{arXiv:2503.17643}}$
- Mass difference of B^0/B^+ preliminary

Investigation of Y(10753)

Y(10753) — discovery and studies

- The $\Upsilon(10753)$ was firstly observed in the process of $e^+e^- \to \Upsilon(nS)\pi^+\pi^- (n=1,2,3)$ by Belle.
- Simultaneous fit to cross sections and $M_{
 m recoil}(\pi\pi)$

Existence of $\Upsilon(10753)$

Computed as blue dots in left plot

$$M = (10752.7 \pm 5.9^{+0.7}_{-1.1}) \text{ MeV/}c^2$$

$$\Gamma = (35.5^{+17.6}_{-11.3} + 3.9_{-3.3}) \text{ MeV}$$

Interpretation of $\Upsilon(10753)$

Bottomonium?

Phys. Rev. D 101, 014020 (2020)

Phys. Lett. B 803, 135340 (2020)

Eur. Phys. J. C 80, 59 (2020)

Phys. Rev. D 102, 014036 (2020)

Prog. Part. Nucl. Phys. 117, 103845 (2021)

Phys. Rev. D 104, 034036 (2021)

Phys. Rev. D 105, 074007 (2022)

etc...

Hybrid?

Phys. Rept. 873, 1 (2020)

Phys. Rev. D 104, 034019 (2021)

etc...

Tetraquark?

Phys. Lett. B 802, 135217 (2020)

Chin. Phys. C 43, 123102 (2019)

Phys. Rev. D 103, 074507 (2021)

Phys. Rev. D 107, 094515 (2023)

etc...

A little data may tell a big story

- In November 2021, Belle II collected $19 \, \mathrm{fb}^{-1}$ of unique data at energies above the $\Upsilon(4S)$: four energy scan points around 10.75 GeV
- Physics goal: understand the nature of the Y(10753).

With 19.6 fb⁻¹ $\Upsilon(10753)$ scan data on Belle II:

$$\Upsilon(10753) \to \pi^{+}\pi^{-}\Upsilon(1,2,3S)$$

Precise measurement; intermediate state investigation

[JHEP 07 2024, 116(2024)]

$$\Upsilon(10753) \rightarrow \eta \Upsilon(1,2S)$$

Prediction of a sizable BF

 $\Upsilon(10753) \rightarrow \gamma \chi_{bJ}$

Prediction of a sizable BF

$$\Upsilon(10753) \rightarrow \omega \chi_{bJ}$$

Existence confirmation; new channel; indicating different nature against $\Upsilon(5S)$ [PRL 130, 091902(2023)]

$$\Upsilon(10753) \rightarrow \omega \eta_b$$

Indicating not a tetraquark; different structure from Y(4230)

[PRD 109, 072013(2024)]

$$\Upsilon(10753) \rightarrow B^{(*)}\bar{B}^{(*)}$$

Suggesting a new state near $B^*\bar{B}^*$ threshold [JHEP 10 2024, 114(2024)]

$\Upsilon(10753) \rightarrow \eta \Upsilon(2S)$

arXiv:2509.01917

- \clubsuit Clear signal found in $\eta Y(2S)$ signal region.
- Simultaneous fit performed
 - \$>6 σ significance

More events with smaller data

Fit to $e^+e^- \to \eta \Upsilon(2S)$ Born cross sections

arXiv:2509.01917

Unbinned maximum likelihood fit to the σ^{Born} together with Belle measurement.

Fit the with 3 different hypotheses:

- 1. $\Upsilon(5S)$ only (blue dashed curve);
- 2. $\Upsilon(5S) + \Upsilon(10753)$ (green dashed curve)
- 3. $\Upsilon(5S) + \Upsilon(10753) + \Upsilon_{new}$ (solid curve), *default*

All parameters fixed, including parameters of Υ_{new} , which is obtained from $e^+e^-\to B^\bar B^*$ measurement [JHEP 10 2024, 114 (2024)] **Other fit hypotheses tested, e.g. $\Upsilon(5S)$ + cont., significance of Υ_{new} is always greater than 3σ .

*** Not from tail of $\Upsilon(4S)$; $\sigma(\eta \Upsilon(2S))$ @ 10.58 GeV < 0.01 pb.

No evident signal of $\eta \Upsilon(1S)$ nor $\gamma X_b[\pi \pi \chi_{bJ}]$. Upper limits @90% C.L. estimated.

$$e^+e^- \rightarrow \gamma \chi_{h,I}$$

- The study of the radiative decay of $\Upsilon(10753)$ is helpful to understand its nature.
- If $\Upsilon(10753)$ is a pure 2D state, the BF for $\Upsilon(10753) \to \gamma \chi_{b1}$ can reach 12% [PRD 92,054034(2015), EPJC 78,915(2018)].

Light hadron production and decays

$$D_{s0}^{*}(2317)^{+} \rightarrow D_{s}^{*}\gamma$$
 $D_{s}^{*+} \rightarrow D_{s}^{+}\pi^{0}$

$$983 \text{ fb}^{-1}$$
 and 427.9 fb^{-1} Belle and Belle II

- $D_{s0}^*(2317)$ draws significant attention as its mass significantly lower than expectation
- Its radiative transition will provide a direct experimental constraint on various theoretical models.

• Simultaneous fit to $M(D_s^{*+}\gamma)$ from Belle and Belle II: Significance $> 10\sigma$; Relative ratio

$$\mathcal{R} \equiv \frac{\mathcal{B}(D_{s0}^{*}(2317)^{+} \to D_{s}^{*+}\gamma)}{\mathcal{B}(D_{s0}^{*}(2317)^{+} \to D_{s}^{+}\pi^{0})} = (7.14 \pm 0.70 \pm 0.23) \%$$

Not favor molecular interpretation.

Could be a mixture of pure $c\bar{s}$ and molecular state

$$B^{+/0} \to \Sigma_c(2455)^{++/0} \bar{\Xi}_c^{-/0}$$

• The tree-level two-body baryonic B decays can proceed through W-exchange (W_{ex}), W-annihilation (W_{an}), and internal W-emission (W_{em}) diagrams.

 W_{ex} and W_{an} : helicity suppressed

- The decays $B \to \Sigma_c(2455)\bar{\Xi}_c$ proceed through a pure W_{em} diagram, providing a clean and ideal environment for studying non-factorizable effects.
- BF predicted to be 4×10^{-3} (sum rule) [NPB 345, 137 (1990)] or of the order 10^{-4} (di-quark model) [ZPC 51, 445 (1991)].

: non-factorizable amplitude

$$B^{+/0} \to \Sigma_c(2455)^{++/0}\bar{\Xi}_c^{-/0}$$

$$(772 \pm 11) \times 10^6$$
 and $(387 \pm 6) \times 10^6 \Upsilon(4S)$
Belle and Belle II

2D fit to the unbinned $M(\Lambda_c^+\pi^\pm)$ and ΔE distributions, simultaneously using four data sets: events from the signal and sideband regions of $M(\bar{\Xi}_c^{-,0})$.

	N_{ss}^{sig}	S	$\mathscr{B}(\times 10^{-4})$
B^+	52.8 ± 10.2	7.3σ	$5.74 \pm 1.11 \pm 0.42^{+2.47}_{-1.53}$
B^0	31.1 ± 7.2	6.2σ	$4.83 \pm 1.12 \pm 0.37^{+0.72}_{-0.60}$

 Ξ_c decays

- First observation of $B^{+/0} \to \Sigma_c(2455)^{++/0} \bar{\Xi}_c^{-/0}$
- Consistent with expectation of the di-quark model
- Larger than $B^+ \to \Sigma_c(2455)^0 p$ by $\mathcal{O}(100)$
 - Similar size of CKM matrix elements $(V_{bc} * V_{cs} \sim V_{bc} * V_{ud})$
 - Smaller phase-space

$$\Xi_c^+ \to p K_S^0$$
, $\Lambda \pi^+$, and $\Sigma^0 \pi^+$

983 fb⁻¹ and 427.9 fb⁻¹

Belle and Belle II

JHEP 03 2025, 061 (2025)

- Study of charmed baryons is valuable for exploring the subtle interplay between the strong and weak interactions.
- With Belle and Belle II data, SCS decays $\Xi_c^+ \to p K_S^0$, $\Lambda \pi^+$, and $\Sigma^0 \pi^+$ are searched for the first time.

$$\frac{B(\Xi_c^+ \to p K_S^0)}{B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = (2.47 \pm 0.16 \pm 0.07)\%,$$

$$\frac{B(\Xi_c^+ \to \Lambda \pi^+)}{B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = (1.56 \pm 0.14 \pm 0.09)\%,$$
and
$$\frac{B(\Xi_c^+ \to \Sigma^0 \pi^+)}{B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = (4.13 \pm 0.26 \pm 0.22)\%$$

983 fb⁻¹ and 427.9 fb⁻¹ Belle and Belle II

arXiv:2503.17643

ullet Experimental results will give important inputs to understand the hadronic weak decays $\Xi_c^+ o B+P$

Comparison with various predictions

JHEP 03 2025, 061 (2025)

Zou *et.al* [12] Geng et.al [13] Geng et.al [14] Huang et.al [15] Zhong *et.al* (I) [16] Zhong *et.al* (II) [16] Xing et.al [17] Geng et.al [18] Liu [19] Zhong et.al (I) [20] Zhong et.al (II) [20] Zhao et.al [21] Hsiao et.al (I) [22] Hsiao et.al (II) [22]

arXiv:2503.17643

Consistent with different predictions.

Mass difference between B^+ and B^0

Mass difference between B^+ and B^0

- $\Delta m = m_{B^0} m_{B^+}$ is a basic property of B-meson system
- 571 fb⁻¹ and 365 fb⁻¹ $\Upsilon(4S)$ from Belle and Belle II

- Important input for quark model
- Contains information on $m_d m_u$
- $\mathcal{R} = \sigma(B^0\bar{B}^0)/\sigma(B^+B^-)$ vs. energy provides information about strong isovector potential in $B\bar{B}$ system, which is important for understanding of molecular states.
- Current WA is dominated by BaBar measurement $\Delta m = (0.33 \pm 0.05 \pm 0.03)~{
 m MeV}/c^2$ [PRD78, 011103(2008)]
 - PHSP hypothesis was used ($\mathcal{R}=(p_{B^0}/p_{B^+})^3$). Shift in Δm could be up to $0.4~{
 m MeV}/c^2$ [JHEP05 (2022)170]

Approach:

• Simultaneous fit to $\bar{M}_{bc}=\sqrt{5.29^2-p_B^2}$, E_{cm} dependent $\mathcal{R}=\sigma(B^0\bar{B}^0)/\sigma(B^+B^-)$, $\sigma(e^+e^-\to b\bar{b})$, and $\sigma(e^+e^-\to b\bar{b}\to D^0/\bar{D}^0X)$

$$\sigma(e^+e^- o B^+B^-) = p_{B^+}^3 P_{11}(E_{
m cm})$$
 $\sigma(e^+e^- o B^0ar{B}^0) = p_{B^0}^3 P_{11}(E_{
m cm}) P_2(E_{
m cm})$

 P_{11} : 11^{th} -order polynomial for E_{cm} dependence P_2 : 2^{nd} -order polynomial for additional dependence

Fit results

571 fb⁻¹ and 365 fb⁻¹ $\Upsilon(4S)$ from Belle and Belle II

Fit results:

 $\Delta m = (0.495 \pm 0.024 \pm 0.005) \text{ MeV/}c^2$

$$\Delta m_{BaBar} = (0.33 \pm 0.05 \pm 0.03) \text{ MeV/}c^2$$

Very different to BaBar's result:

- Use PHSP hypothesis get:
 - $\Delta m = (0.386 \pm 0.006) \text{ MeV/c}^2$
 - Rejected by 10σ level
- lacktriangle Significantly depends on \mathcal{R}_{v} .

Summary

- As the world's highest-luminosity electron-positron collider, Belle II will become a cornerstone in the exploration the spectroscopy in his unique way.
 - SuperKEKB is a unique experimental facility in which the phenomena discussed can be studied under well controlled conditions.
 - Bottomonium states give us a lot of surprises with the new data
 - Understanding of the hidden bottom hadronic transitions is very incomplete.
 More experimental data are needed.
- Belle II will restart data taking in November 2025.

Thank you!

Backup

$\Upsilon(10753) \rightarrow \eta \Upsilon(1,2S)$

Final states of $\gamma\gamma\pi^+\pi^-\ell^+\ell^-[\ell=e,\mu]$ is used in this work.

E > 20(22.5) MeV from barrel and FW endcap (BW endcap)

Tracks with p < 1 GeV, at least one with eID<0.1, $\cos\theta_{\pi\pi} < 0.98$.

Tracks with p > 3 GeV,

Cross sections results of $e^+e^- \to \eta \Upsilon(1,2S)$ and γX_b

Mode	$N_{\rm prod} (\times 10^3)$	$(1+\delta)$	$\epsilon(\%)$	$\sigma_{ m B}^{ m (UL)}$ (pb)			
$\sqrt{s} = (10653.30 \pm 1.14) \text{ MeV}, \mathcal{L} = 3.512 \text{ fb}^{-1}$							
$\eta \Upsilon(2S)$	$(3.7^{+1.6}_{-1.3}), 4.2\sigma$	0.843	19.2/15.1	$1.16^{+0.51}_{-0.41} \pm 0.38$			
$\eta \Upsilon(1S)$	< 0.4	0.895	23.9	< 0.10			
γX_b	< 0.3	0.784	32.0	< 0.14			
$\sqrt{s} = (10700.90 \pm 0.63) \text{ MeV}, \mathcal{L} = 1.632 \text{ fb}^{-1}$							
$\eta \Upsilon(2S)$	$(0.0^{+1.0}_{-0.0})$	1.691	13.2/7.6	$0.00^{+0.34}_{-0.00} \pm 0.50$			
$\eta \Upsilon(1S)$	< 0.4	0.901	24.0	< 0.22			
γX_b	< 0.1	0.803	31.3	< 0.09			
$\sqrt{s} = (10746.30 \pm 0.48) \text{ MeV}, \mathcal{L} = 9.818 \text{ fb}^{-1}$							
$\eta \Upsilon(2S)$	$(3.2^{+1.6}_{-1.2}), 4.8\sigma$	0.673	17.4/14.2	$0.45^{+0.23}_{-0.17} \pm 0.05$			
$\eta \Upsilon(1S)$	< 0.9	0.906	23.8	< 0.09			
γX_b	< 1.4	0.817	29.8	< 0.17			
$\sqrt{s} = (10804.50 \pm 0.70) \text{ MeV}, \mathcal{L} = 4.689 \text{ fb}^{-1}$							
$\eta \Upsilon(2S)$	$(1.5^{+1.3}_{-0.9}), 2.8\sigma$	0.822	17.1/15.2	$0.36^{+0.33}_{-0.21} \pm 0.04$			
$\eta \Upsilon(1S)$	< 0.4	0.912	24.6	< 0.08			
γX_b	< 1.3	0.833	28.2	< 0.32			