XVII International Conference on Heavy Quarks and Leptons

Recent results on heavy quarks and leptons from the ALICE experiment

Beijing, China, 15th - 19th, Sep. 2025

Hard probes of the heavy-ion collision

Heavy flavor, quarkonium and jets, are excellent hard probes to study the initial state, QGP properties and hadronisation mechanisms in heavy-ion collisions

ALICE, Eur. Phys. J. C 84 (2024) 813

ALICE in Run 3 (Ongoing)

Major upgrades installed in 2019- 2021

LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN 6
2019-2021	2022-2026	2026-2029	2030-2033	2034-2035	2036-2041

Charmonia in pp collisions at $\sqrt{s} = 13.6 \text{ TeV}$

- \triangleright Significantly higher integrated luminosity collected in Run 3 allows reconstruction of $\psi(2S)$ in dielectron decay channel at midrapidity
- The data are described by ICEM and NRQCD based models coupled with FONLL to account for the non-prompt J/ψ contribution

 ICEM: Y.-Q. Ma et. al, Phys. Rev. D 94, 114029 (2016)

NRQCD: B. A. Kniehl, et al, Phys. Rev. D 73, 074022 (2006)

$\sum_{c}^{0,++}$ in pp collisions at $\sqrt{s} = 13.6$ TeV

- First measurement of the production of $\sum_{c}^{0,++}(2520)$ relative to $\sum_{c}^{0,++}(2455)$ in pp collisions at $\sqrt{s} = 13.6$ TeV No evidence of difference w.r.t. e^+e^- collisions (Belle) considering current uncertainties
- > PYTHIA 8 Monash (default tune) overestimates the ratio, PYTHIA 8 with with additional color reconnection topologies underestimates the ratio

PYTHIA: EPJC 74 (2014) 8, 3024, JHEP 08 (2015) 003 GSI-SHMc:JHEP 07 (2021) 035

Prompt D_s^+ and D^+ in pp collisions at $\sqrt{s} = 13.6$ TeV

- Catania (coalescence) gives best description, while POWLANG (local color recombination) and PYTHIA (string fragmentation) can not describe the data
- ➤ No evidence of dependence of Ds⁺/D⁺ ratio on collision energy

Catania: Phys. Lett. B 821, 136622 (2021) POWLANG: POWLANG: PRD 109, L011501

D^0D^0 and J/ψ - D^0 production associate production

$$\sigma_{ ext{eff}} = rac{m}{2} \cdot rac{\sigma_{pp o A} \cdot \sigma_{pp o B}}{\sigma^{DPS}_{pp o A + B}}$$

New Preliminary

- \triangleright D⁰D⁰ and J/ ψ -D⁰ production offer the possibility to compute σ_{eff} , with the very large $|\Delta y|$ available (1.9 < $|\Delta y| < 4.6$
- \triangleright PYTHIA 8: overestimates the J/ ψ -D⁰ cross section, HELAC-onia: reproduces the J/ ψ -D cross section considering $\sigma_{\rm eff} = 31 \text{ mb}$

Charm production and fragmentation fractions

ALICE, JHEP 12 (2023) 086

- > Total charm production cross section: values at the edge of FONLL uncertainty band at midrapity
- **Charm fragmentation fractions are different** w.r.t e⁺e⁻ and ep collisions
- > Baryon production is not fully understood

FONLL: JHEP 05 (1998) 007

B-meson production

- First observation of fully reconstructed open-beauty hadrons with ALICE
- \triangleright New measurement extends the CMS measurement down to low p_T
- ➤ In agreement with FONLL calculations

FONLL: JHEP 05 (1998) 007

Recent results from Pb—Pb collisions

J/ψ (re-)generation Pb-Pb collisions

P. Braun-Munzinger, J. Stachel, Nature 448 (2007) 302

ALICE, PLB 849 (2024) 138451, JHEP 02 (2024) 066

- \triangleright High R_{AA} at low p_T in central collisions at midrapidity -> evidence for J/ψ (re-)generation
- $holdsymbol{R}_{AA}$ extended down to $p_T = 1.5 \text{ GeV}/c$; compatible within uncertainties with ATLAS and CMS measurements in the common p_T range

Charmonium Polarization

ALICE, PRL 131 (2023) 4, 042303

- First measurement of quarkonium polarization w.r.t the event plane
- \triangleright Significant polarization (\sim **3.9** σ) observed in semicentral collisions
- ➤ Polarization measurements are ongoing at midrapidity with Run 3 data

Strange and non-strange D-mesons elliptic flow

New Preliminary

- \triangleright Prompt D-meson v_2 measured using Run 3 Pb-Pb data sample
 - No significant difference between strange and non-strange D mesons
 - Strange D-meson elliptic flow reproduced by the transport models

$$rac{dN}{d\phi} \propto 1 + 2 \sum^{\infty} v_n \cos\left[n\left(\phi - \Psi_n
ight)
ight]$$

Charmonium elliptic flow in Run 3

New Preliminary

- M. He, et al., PRL.128, 162301 (2022)
- \triangleright The new result at forward rapidity is consistent with Run 2 measurement: statistical precision improved at low p_T
- \triangleright A significant J/ ψ v_2 is observed at forward rapidity, consistent with significant charm quark thermalization

Upgrading the ALICE detector (RUN 4)

ITS upgrades: ITS 3

- ➤ Replacing the ITS2 inner lightweight "silicon-dominated" layers
- ➤ Innermost radius 19 mm, x2 improvement in pointing resolution
- ➤ Improve the measurements of heavy flavor and dielectrons at midrapidity

New detector Focal FoCal

- ➤ FoCal-E calorimeter: High-granularity Si-W, FoCal-H: Cu-scintillator
- \triangleright Direct photons, π^0 , jets at forward rapidity
- \triangleright Unexplored regions of small-x and low Q^2 gluons

LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN 6
2019-2021	2022-2026	2026-2029	2030-2033	2034-2035	2036-2041

Summary

- Significant improvement in Run 3 for several ALICE heavy-flavour measurements thanks to the detector upgrade
- \triangleright Significant non-zero polarization and v_2 are observed for charm mesons
- \triangleright Dominant contribution from (re-)generation for J/ψ at low p_T in central Pb-Pb collisions at LHC