Rare Decays from Belle II

Caspar Schmitt
for the Belle II Collaboration

C. Schmitt for Belle II HQL Beijing, 19.09.2025 $1 \mid / 24$

Belle II at today's B factory SuperKEKB

Belle II focuses on (but is not limited to) flavor physics with B mesons in precision (indirect) BSM searches.

Advantages wrt. hadron colliders

- kinematically well-known initial state
- very low backgrounds, partly accessible at $\sqrt{s} < m[\Upsilon(4S)]c^2$
- low multiplicities; strong with neutral particles

Disadvantages wrt. hadron colliders

- \blacktriangleright low cms energy and B boost
- low cross section; need high luminosity!

$$e^+e^- \xrightarrow{\sqrt{s}=m[\Upsilon(4S)]c^2} \Upsilon(4S) \xrightarrow{\mathrm{BF}>96\%} B\overline{B}$$

Nano-Beam Scheme:

$$\mathcal{L}_{\text{peak}} = 5.1 \cdot 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$$

C. Schmitt for Belle II HQL Beijing, 19.09.2025 2 / 24

Inclusive $B \to X_s \nu \overline{\nu}$ with Hadronic B Tagging

- ▶ Probe flavor changing neutral currents (FCNC) in $b \to s\nu\bar{\nu}$.
- ▶ Suppression in standard model allows for precise tests on alternate theories.
- \blacktriangleright Limits enhanced by precise theory prediction, since no γ exchange.

Leading-order SM diagrams. Long-distance contribution via intermediate au is sub-dominant.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 3 / 24

[Belle II] $[B \to X_s \nu \overline{\nu}]$ $[B \to K \nu \overline{\nu}$ Reinterpretation] $[B^0 \to K^{*0} \tau^+ \tau^-]$ $[B^+ \to K^+ \tau^- \tau^+]$ $[B^+ \to \mu^+ \nu_\mu]$ [Summary]

Belle II at B Factory SuperKEKB

Search for $B \to X_s \nu \overline{\nu}$ only possible at Belle II due to neutrinos in final state.

$$e^+e^-\xrightarrow{\sqrt{s}=m[\Upsilon(4S)]c^2}\Upsilon(4S)\xrightarrow{\mathrm{BF}>96\%}B\overline{B}$$

Hadronic B Tagging at Belle II (HTA)

allows kinematic constraints on $B_{\rm sig}$

$$\begin{split} |\Delta E^{\rm tag}| &\equiv |E^*_{B_{\rm tag}} - \sqrt{s}/2| \\ M^{\rm tag}_{bc} &\equiv \sqrt{s/4 - |p^*_{B_{\rm tag}}|^2} \end{split}$$

C. Schmitt for Belle II HQL Beijing, 19.09.2025 4 \neq 24

Inclusive X_s Reconstruction by Summing 30 Exclusive Decay Modes

- ► Kinematic constraints $|\Delta E^{\text{tag}}| < 0.2 \,\text{GeV}$ and $M_{bc}^{\text{tag}} > 5.27 \,\text{GeV}/c^2$.
- ▶ Reconstructed total of 30 exclusive final states:
 - $\diamond K + i\pi$ with 0 < i < 4
 - \diamond $3K + i\pi$ with 0 < i < 1

with $K=K^+,K^0_S$ and each at most one $\pi^0.$

- **Exclusive modes amount to 93% of** $\mathcal{B}(B \to X_s \nu \overline{\nu})$.
- ▶ Require $E_{\mathrm{extra}}^{\gamma} < 1.3\,\mathrm{GeV}$ without extra tracks or π^0 or K_S^0 and with $\theta(\vec{p}_{\mathrm{miss}})$ in detector acceptance.
- ▶ Train BDT η on kinematic and topological features of $B_{\rm sig}$, $B_{\rm tag}$, $\vec{p}_{\rm miss}$ and reconstructed charm vetos $D \to K_{\rm sig} + i\pi$.

Event-shapes encode topology.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 5 / 24

Signal Extraction for $B \to X_s \nu \overline{\nu}$

➤ Signal region maximizes significance while excluding charm backgrounds.

$$[M_{X_s} < 1.84 \cup 1.89 < M_{X_s} < 2.0 \, \text{GeV}] \times [\eta > 0.86]$$

Maximum likelihood fit in $M_{X_s} \times \eta$ with 3×5 bins, maximizing sensitivity.

			$\mathcal{B} [10^{-5}]$		
$M_{X_s} \left[\text{GeV}/c^2 \right]$	ϵ	$N_{ m sig}$	Central value	$\mathrm{UL}_{\mathrm{obs}}$	$\mathrm{UL}_{\mathrm{exp}}$
[0, 0.6]	0.25%	$10^{+18}_{-17}{}^{+18}_{-16}$	$0.5^{+0.9}_{-0.8}{}^{+0.9}_{-0.8}$	2.5	2.4
[0.6, 1.0]	0.11%	$36^{+27}_{-25}{}^{+31}_{-26}$	$3.8^{+2.8}_{-2.6}{}^{+3.2}_{-2.7}$	10.0	7.2
$[1.0,M_{X_s}^{\rm max})$	0.06%	$33^{+44}_{-42}{}^{+64}_{-53}$	$7.2^{+9.6}_{-9.2}{}^{+13.9}_{-11.6}$	35.3	28.3
Full range	0.11%	$80^{+61}_{-59}^{+93}_{-79}$	$11.5^{+8.9}_{-8.5}{}^{+13.5}_{-11.4}$	35.6	27.9

No signal at $\mathcal{B}=\left[1.2^{+0.9}_{-0.9}(\mathrm{stat.})^{+1.4}_{-1.1}(\mathrm{syst.})\right]$, vielding best upper limit $3.6\cdot 10^{-4}$ at 90% CL.

 $M(X_s)$ regions enriched in K, K^* and $(Kn\pi)_{\mathrm{non-res}}.$

C. Schmitt for Belle II HQL Beijing, 19.09.2025 6 / 24

Reinterpreting $B^+ \to K^+ \nu \bar{\nu}$ in BSM Scenarios [arXiv:2507.12393,2402.08417]

ITA+HTA exceeds SM prediction by 2.7σ . What BSM models does this favor?

C. Schmitt for Belle II HQL Beijing, 19.09.2025 7 / 24

Reweighting the SM-dependent likelihood

- $ightharpoonup B^+ o K^+
 u \overline{\nu}$ was measured using SM signal templates.
- ▶ Reweighting these to some BSM model must take into account experimental acceptance and efficiencies.
- ▶ Re-simulating event-by-event is expensive and non-reproducible by community.
- ▶ Re-weight the number density n(x) of expected events after selection from one onto another theory prediction for the cross section $\sigma(q^2)$.

$$n_{\rm BSM}(x) = L \int dq^2 \, \epsilon(x|q^2) \sigma_{\rm BSM}(q^2) = L \int dq^2 \, \underbrace{\epsilon(x|q^2) \sigma_{\rm SM}(q^2)}_{n_{\rm SM}(x,q^2)} \, \frac{\sigma_{\rm BSM}(q^2)}{\sigma_{\rm SM}(q^2)} \label{eq:BSM}$$

Knowledge of joint number density $n_{SM}(x,q^2)$ and kinematic theory predictions for $\sigma(q^2)$ suffices for reinterpretation!

C. Schmitt for Belle II HQL Beijing, 19.09.2025 8 / 24

Reweighting $B^+ \to K^+ \nu \bar{\nu}$

In practice, we evaluate the relations only in a finite number of bins.

$$n_{\rm BSM}(x,q^2) \rightarrow n_{{\rm BSM},x,q^2} = \sum_{q^2 \, {\rm bins}} n_{{\rm SM},x,q^2} \frac{\sigma_{{\rm BSM},q^2}}{\sigma_{{\rm SM},q^2}}$$

▶ We publish n_{SM,x,q^2} for $B^+ \to K^+ \nu \bar{\nu}$ in sufficiently fine binning.

Redist Python Package

C. Schmitt for Belle II HQL Beijing, 19.09.2025 9 / 24

Reinterpreting $B^+ \to K^+ \nu \bar{\nu}$ in Weak Effective Theory

▶ Reweight n_{SM,x,a^2} to WET prediction using 6 dimensional operators.

$$\frac{d\mathcal{B}}{dq^2} \propto \frac{\lambda_{BK}}{24q^2} |f_+(q^2)|^2 |C_{VL} + C_{VR}|^2 + \frac{(M_B^2 - M_K^2)^2}{8(m_b - m_s)^2} |f_0(q^2)|^2 |C_{SL} + C_{SR}|^2 + \frac{2\lambda_{BK} |f_T(q^2)|^2}{3(M_B + M_K)^2} |C_{TL}|^2$$

Reinterpreting in WET yields POI $|C_{VL}+C_{VR}|,|C_{SL}+C_{SR}|,|C_{TL}|,$ with $C_i^{\rm SM}=0$ except

$$C_{VL}^{\rm SM} = 6.6 \pm 0.1$$

C. Schmitt for Belle II HQL Beijing, 19.09.2025 10 / 24

Reinterpreting $B^+ \to K^+ \nu \bar{\nu}$ in Weak Effective Theory

Parameters	Mode	68% HDI	95% HDI
$ C_{ m VL} + C_{ m VR} $	11.3	[7.82, 14.6]	[1.86, 16.2]
$ C_{\rm SL} + C_{\rm SR} $	0.00	[0.00, 9.58]	[0.00, 15.4]
$ C_{\mathrm{TL}} $	8.21	[2.29, 9.62]	[0.00, 11.2]

WET is favored over SM with large $|C_{VL} + C_{VR}|$ and non-zero $|C_{TL}|$.

11 / 24

C. Schmitt for Belle II HQL Beijing, 19.09.2025

$$B^0 \to K^{*0} \tau^+ \tau^-$$
 with Hadronic Tag

- ► FCNC suppression and $b \to s$ analogous to $B^+ \to K^+ \nu \bar{\nu}$, but with intermediate γ .
- ▶ Constrain BSM for $B^+ \to K^+ \nu \bar{\nu}$ and $b \to c \tau \nu_{\tau}$ anomalies.
- \blacktriangleright HTA approach with $B_{\rm sig}$ reconstructed in combinations of

$$B_{\mathrm{sig}}^{0} \to K^{*0} \left[\to K^{+} \pi^{-} \right] \, \tau^{+} \tau^{-} \quad \begin{cases} \tau \to \mu \overline{\nu}_{\mu} \nu_{\tau} \\ \tau \to e \overline{\nu}_{e} \nu_{\tau} \\ \tau \to \pi \nu_{\tau} \\ \tau \to \rho \left[\to \pi \pi^{0} \right] \nu_{\tau}. \end{cases}$$

Challenges

- \blacktriangleright Low $\mathcal{B}_{\rm SM} = (0.98 \pm 0.10) \cdot 10^{-7}$ with best limit $< 3.1 \cdot 10^{-3}$ at 90% CL by Belle.
- Final states with up to 4 neutrinos and low-momentum K^{*0} provide **no peaking observables**.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 12 / 24

Selections in $B^0 \to K^{*0} \tau^+ \tau^-$

- ▶ Require $B_{\text{sig}} B_{\text{tag}} = B^0 \overline{B^0}$ of opposite flavor.
- ▶ Require no extra tracks and $\theta\left(p_{\text{extra}} = p_{\text{collider}} \sum p_i\right)$ in detector acceptance.
- ▶ Single-candidate selection with best $M(K^{*0})$, preferring first ρ then e, μ modes.

Split in 4 signal categories $ll, \pi l, \pi \pi, \rho$ which differ in number of neutrinos and hence kinematics.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 13 / 24

Signal Extraction in $B^0 \to K^{*0} \tau^+ \tau^-$

- ▶ Binary BDT classifier η trained separately for 4 signal categories, notably on $E_{\rm extra}$ and $q^2=(p_{\tau^+}+p_{\tau^-})^2$.
- lacktriangle Binned maximum likelihood fit of η in 4 signal categories.

No evidence for signal at $\mathcal{B}=[-0.15\pm0.86(stat.)\pm0.52(syst.)]\cdot10^{-3}$, yielding best upper limit of $1.8\cdot10^{-3}$ at 90% CL.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 14 / 24

$B^+ \to K^+ \tau^- \tau^+$ with Hadronic Tag

- ▶ HTA approach on **Belle and Belle II** with only leptonic $\tau \to l\nu_l$ i.e. $l = e, \mu$.
- Require no extra tracks and kinematically suppress $B^+ \to K^+ J \psi (\to l l)$ and $\gamma \to e^+ e^-$ and $B^+ \to \psi(2S) [\to \tau^+ \tau^-] K^+$.
- ▶ Charm-depleted signal region in $M(K^+l^-) > 1.9\,{\rm GeV}$ with large $M_{\rm miss}^2, p_l$ and small $E_{\rm extra}$.

Signal Extraction in $B^+ \to K^+ \tau^- \tau^+$

Compare counts with background-only expectation, extrapolated from sidebands in $E_{\rm extra}, q^2, M_{bc}.$

	Belle	Belle II
$N_{ m bkg}$	$14.05 \pm 1.60 \pm 1.85$	$3.48 \pm 0.73 \pm 0.91$
$N_{ m obs}$	11	6
$\epsilon_{\rm sig}(\times 10^{-5})$		$1.26 \pm 0.04 \pm 0.17$
$\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-)(\times 10^{-4})$	$-2.76^{+3.31}_{-2.70} \pm 2.24$	$5.05^{+5.62}_{-4.27} \pm 2.46$
Observed (expected) limit	$0.6 (1.0) \times 10^{-3}$	$2.1\ (1.2)\times 10^{-3}$

No evidence for signal, yielding combined best upper limit of $\mathcal{B}<0.87\cdot 10^{-3}$ at 90% CL.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 16 / 24

$B^+ o \mu^+ \nu_\mu$ with Inclusive Tag

- ▶ ITA approach with single high-momentum μ on signal side for **Belle and Belle II**.
- ▶ Boost μ to approximate $B_{\rm sig}$ rest frame using $p_{\rm ROE}$ knowledge. Signal peaks at ${\bf p}_{\mu}^{\rm B} = {\bf 2.64}$ GeV in B rest frame with improved resolution.
- \blacktriangleright Calibration of p_{ROE} in simulation accounts for unreconstructed particles.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 17 / 24

Signal Extraction in $B^+ \to \mu^+ \nu_\mu$

- **Re-weight continuum simulation** using BDT η_{RW} trained to distinguish simulated and observed continuum.
- ▶ Validate efficiencies and p_{μ}^{B} resolution in $B \to D^{0}[K\pi]\pi$ control channel.
- lacktriangle Binned maximum likelihood fit of p_μ^B in 4 bins of BDT η for each Belle & Belle II.

$$\mathcal{B} = [4.36 \pm 1.89(\text{stat.}) \pm 1.03(\text{syst.})] \cdot 10^{-7} \Rightarrow \mathcal{B} < [7.13(\text{bay.}), 6.24(\text{freq.})] \cdot 10^{-7} 90\% \text{ CL}$$

C. Schmitt for Belle II HQL Beijing, 19.09.2025 18 / 24

BSM constraints from $B^+ \to \mu^+ \nu$

Extracted $\left|V_{ub}\right|$ consistent with inand exclusive measurements.

For
$$p_l^B > 2.2 \, \mathrm{GeV}$$
, $\Delta \mathcal{B}(B \to X_u l \nu) = (0.286 \pm 0.031) \cdot 10^{-3}$.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 19 / 24

Summary

We present the latest results by Belle II on

- ▶ Best upper limit on $B \to X_s \nu \overline{\nu}$ using sum of 30 reconstructed exclusive X_s final states.
- Published model-agnostic likelihood for anomalous $B^+ \to K^+ \nu \overline{\nu}$. WET reinterpretation favors larger vector and non-zero tensor operators over SM.
- ▶ Best upper limit on $B^0 \to K^{*0}\tau^+\tau^-$ with total of 16 final states. Twice better than Belle with half the data.
- ▶ Best upper limit for $B^+ \to K^+ \tau^+ \tau^-$ combining Belle and Belle II, improved by a factor 2.6 relative to previous limits.
- ▶ Best upper limit for $B^+ \to \mu^+ \nu_\mu$ combining Belle and Belle II, constraining $|V_{ub}|$, $B \to X_u l \nu$, two-Higgs-doublets and weak annihilation.

Belle II is achieving world-leading results and investigating intriguing anomalies!

C. Schmitt for Belle II HQL Beijing, 19.09.2025 20 / 24

[Belle II] $[B o X_s \nu \overline{\nu}]$ $[B o K \nu \overline{\nu}$ Reinterpretation] $[B^0 o K^{*0} \tau^+ \tau^-]$ $[B^+ o K^+ \tau^- \tau^+]$ $[B^+ o \mu^+ \nu_\mu]$ [Summary]

Backup

Reconstruction Methods at B factories https://publikationen.bibliothek.kit.edu/1000078149

C. Schmitt for Belle II HQL Beijing, 19.09.2025 22 / 24

$B^+ \to \tau^+ \nu_\tau$ with Hadronic Tag

▶ Reconstruct $B_{\rm tag}$ in HTA and $B_{\rm sig}$ in 4 signal categories, covering 72% of τ decays

$$B_{\rm sig}^+ \to \nu_\tau \tau^+ \left[\to e \overline{\nu}_e, \, \mu \overline{\nu}_\mu, \, \pi, \, \rho(\to \pi \pi^0) \right].$$

- ▶ Require single track with $p > 0.5 \,\text{GeV}$.
- Train two BDT classifiers on event topologies for leptonic and hadronic modes.
- ▶ Binned maximum likelihood fit for 4 signal categories in $E_{\rm neutral\ clusters}^{\rm extra} \times M_{\rm miss}^2$.

Evidence for signal at

$$\mathcal{B} = [1.25 \pm 0.41(\text{stat.}) \pm 0.19(\text{syst.})] \cdot 10^{-4}.$$

C. Schmitt for Belle II HQL Beijing, 19.09.2025 23 / 24

 $\mathcal{B} = \frac{G_F^2 m_B m_\tau^2}{8\pi} \left[1 - \frac{m_\tau^2}{m_B^2} \right]^2 f_B^2 |V_{ub}|^2 \tau_B$

 $B^+ o au^+
u_ au$ provides direct measurement of $|{f V_{ub}}|$, independent of in- and exclusive semileptonic ${f B} o {f X_u}l$.

C. Schmitt for Belle II HQL Beijing, 19.09.2025 24 / 24