Rare Heavy Flavor Decays from ATLAS/CMS

Dayong Wang Peking University

The XVII International Conference on Heavy Quarks and Leptons Beijing, 2025.09.19

ATLAS and CMS for HF studies

- Large silicon tracker
- Strong magnetic field
- Broad acceptance
- Superb muon systems

(CMS parameters, ATLAS similar)

- Three different devices, coverage up to $|\eta| < 2.4$
- Dimuon mass resolution ~ 0.6 -1.5% (depending on |y|).
- Fake rate $\leq 0.1\%$ for pi,K; $\leq 0.05\%$ for proton, with very tight ID
- Flexible triggers, novel & dedicated data-taking schemes

Complementary to LHCb

Evolution of BPH triggers and data-taking schemes

- Many heavy-flavor analyses on dimuon triggers
- a set of triggers dedicated to specific dimuon mass regions or topologies=> inclusive dimuon trigger with loose requirements on the momenta

PARKING

Data Parking and scouting

opening up otherwise inaccessible low-mass phase space

$$\eta
ightarrow \mu^+ \mu^- \mu^+ \mu^-$$

PRL131, 091903 (2023)

$${\cal B}({
m J}/\psi
ightarrow \mu^+\mu^-\mu^+\mu^-)$$
 :

PRD109, L111101 (2024)

Flavor-changing neutral current(FCNC) transitions

- Flavour-changing neutral current (FCNC) transition: transitions between quarks of the same electric charge
- > SM: forbidden at tree level, need more complex diagrams to achieve
- Enhanced in many BSM theories: new particles can contribute at the loop or tree level
- NP can modify angular parameters, decay rates ...

FCNC processes $b \rightarrow \mu + \mu -$ and $b \rightarrow s\mu + \mu -$

golden indirect probes of NP μ^+

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\text{tb}} V_{\text{tq}}^* \sum_{i} \underline{\mathcal{C}_i \mathcal{O}_i} + \underline{\mathcal{C}_i' \mathcal{O}_i'} + \sum_{i} \frac{c}{\Lambda_{\text{NP}}^2} \mathcal{O}_{\text{NP}}$$

i = 1, 2Tree Gluon penguin Photon penguin i = 9, 10EW penguin i = S, P(Pseudo)scalar penguin

Left handed Right handed,

 $\frac{m_s}{m_h}$ suppressed

$3_{s,d}$ —	$\rightarrow X_{c}$	du^{+}	μ^{-}	$B_{s,d}$
- 3.u	· · · · · · · · · · · · · · · · · · ·	u r	P	-3.0

$$B_{s,d} \to \mu^+ \mu^- \quad B_{s,d} \to X_{s,d} \gamma$$

 $\mathcal{O}_7 \sim m_b(\bar{s_L}\sigma^{\mu\nu}b_R)F_{\mu\nu}$

Operator \mathcal{O}_i

different processes are

$$\mathcal{O}_9 \sim (ar{s_L} \gamma^\mu b_L) (ar{\ell} \gamma_\mu \ell)$$

$$\checkmark$$

$$\mathcal{O}_{10} \sim (ar{s_L} \gamma^\mu b_L) (ar{\ell} \gamma_5 \gamma_\mu \ell)$$

$$\mathcal{O}_{S,P} \sim (ar{s}b)_{S,P} (ar{\ell}\ell)_{S,P}$$

ATLAS/CMS Run-II results on $B_{(s)} \rightarrow \mu\mu$ decays

$$\tau_{\mu\mu}^{\rm Obs} = 0.99^{+0.42}_{-0.07} \, ({\rm stat.}) \pm 0.17 \, ({\rm syst.}) \, {\rm ps.}$$

$$\mathcal{B}(\mathrm{B}_s^0 o \mu^+ \mu^-) =$$
 [3.83 $^{+0.38}_{-0.36}$ (stat) $^{+0.19}_{-0.16}$ (syst) $^{+0.14}_{-0.13}$ ($f_\mathrm{s}/f_\mathrm{u}$)] $imes$ 10 $^{-9}$, $au =$ 1.83 $^{+0.23}_{-0.20}$ (stat) $^{+0.04}_{-0.04}$ (syst

CMS-BPH-21-006 PLB 842 (2023) 137955

HQL2025

New projection:

- Yields scaled for $\int L$ and cross section (14/13 TeV) ratio
- Improved mass resolution included as scaling factor
- Same integrated S/B ratio as in the current analysis
 - Stat. uncertainty from fits to pseudo-data
 - with s-plots weights for the lifetime
- Same syst. uncertainty as in Run2. Exceptions:
 - 1.5% instead 2.3% in tracking efficiency
 - 2.4% trigger efficiency uncertainty, uniform across categories
 - Total: 3.5% from fs/ fu ratio; 4.3% for all other sources
 - x2 improvement for lifetime fit bias and the mismodeling of the decay time distribution

ATLAS-PHYS-PUB-25-016 CMS-BPH-25-004 arXiv:2503.24346

Systematics becomes relevant for Bs; Clear observation of B₀ $\rightarrow \mu\mu$ possible

Measurements of $B^+ \rightarrow K^+ I I$ with B parking data

$$\mathcal{R}(K) = \frac{\mathcal{B}(B \to \mu \mu K)}{\mathcal{B}(B \to J/\psi(\to \mu \mu)K)} / \frac{\mathcal{B}(B \to eeK)}{\mathcal{B}(B \to (B \to J/\psi(\to ee)K))}$$

- Theoretical precision:1.00±0.01
- New data-acquisition technique: 2018 B-Parking
- Fit to Kll invariant mass in 3 q² regions,
 - SR: (1.1, 6.0) GeV, J/ψ CR: (8.41, 10.24) GeV ψ (2S)CR: (12.6,14.4) GeV
- Dedicated low-pT ID for electrons
- Main Backgrounds suppressed mostly through ID BDTs:
 - Partially reconstructed $B \to K^*(892)$ ll
 - J/ψ leakage and any other B decays
 - Combinatorial
- Ratio extracted from profile likelihood

$$R(K) = 0.78^{+0.46}_{-0.23} \text{ (stat)}^{+0.09}_{-0.05} \text{ (syst)} = 0.78^{+0.47}_{-0.23},$$

Source	Impact on the $R(K)$ ratio [%]	
	PF-PF	PF-LP
Signal and background description	5	5
J/ψ event leakage to the low- q^2 bin	4	9
BDT efficiency stability	2	5
BDT cross validation	2	3
Trigger efficiency	1	4
BDT data/simulation difference	1	2
J/ψ meson radiative tail description	1	1
Total systematic uncertainty	7	13
Statistical and total uncertainty	40	200

Consistent with the SM within $1\sigma!$

$$\mathcal{B}(B^{\pm} \to K^{\pm} \mu^{+} \mu^{-}) = (12.42 \pm 0.68) \times 10^{-8}$$

consistent with and has a comparable precision to the present world average

CMS-BPH-22-005 Rep. Prog. Phys. 87 (2024) 077802

Run2: Full angular analysis of $B^0 \rightarrow K^{*0}\mu\mu$

More details: X.Qin' s poster

CMS

140 fb⁻¹ (13 TeV)

4.3 < q² < 6 GeV²

150

150

150

150

CMS-BPH-21-002

PLB 864 (2025) 139406

Angular rate

$$+R \cdot \delta^{M}(m) \delta^{a}(-\cos\theta_{K}, -\cos\theta_{l}, -\phi) \epsilon^{M}(\cos\theta_{K}, \cos\theta_{l}, \phi)$$

Signal and bkg mass shapes

KDE efficiency

Bkg angular shape

 $m(K^{+}\pi^{-}\mu^{+}\mu^{-})$ (GeV)

2025/9/19 HQL2025

LHCb

111

12

CMS

100

23

ATLAS/CMS $B^0 o K^{*0}\mu\mu$: HL-LHC projections

New projection. For each q² bin:

- Yields scaled for $\int L$ and bb-cross section (14/13 TeV) ratio
- Stat. error obtained scaling the Run2 uncertainty by \sqrt{L} ratio
- Syst. error related to N(B) in the sideband scaled by \sqrt{L} ratio
- No syst. related to MC statistics
- For other systematics 2 scenarios: same as Run2 or reduced by a factor 2 wrt Run2

$P_5'(B^0 \to K^{*0} \mu^+ \mu^-)$						
₹ 400 •						
ESPPU 2026 Projections						
\bigcirc ATLAS $(q^2 \in [4.0, 6.0] \text{ GeV}^2)$						
$+_{3.300}$ CMS $(q^2 \in [4.3, 6.0] \text{ GeV}^2)$						
\triangle LHCb $(q^2 \in [4.0, 6.0] \text{ GeV}^2)$						
ESPPU 2026 Projections ATLAS $(q^2 \in [4.0, 6.0] \text{ GeV}^2)$ CMS $(q^2 \in [4.3, 6.0] \text{ GeV}^2)$ LHCb $(q^2 \in [4.0, 6.0] \text{ GeV}^2)$						
08 200 E 150						
100						
I I I I I I I I I I I I I I I I I I I						
0						
Current 2030s 2040s Time period						
Statistical error still dominant						

ATLAS

390

47-82

P5' (10⁻³)

Now

HL-LHC

Statistical error still dominant

Search for $D^0 \rightarrow \mu\mu$ decay

- Heavily suppressed in the SM (loop diagram + helicity)
 - BR prediction ~ 10⁻¹³
 - High sensitivity to new-physics phenomena
 - Previous best limit at: BR(D⁰→μμ) < 3.5 x10⁻⁹ (95% CL) by LHCb
- This analysis uses 2022+2023 CMS data with new low-momentum dimuon trigger
 - a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program.

Key points of the search

- Analysis Strategy
 - uses D0 from cascade decays: $D^{*+} \rightarrow D^0 \pi^+$
 - Exploits mass difference $\Delta m = m(D^{*+}) m(D^0)$ to strongly suppress combinatorial D^{*+} produced promptly or from B-hadron decays
 - Final state: opposite charged muons + track
- $D^0 \rightarrow \pi^+\pi^-$ used as normalization channel:

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \mathcal{B}(D^0 \to \pi^+ \pi^-) \frac{N_{D^0 \to \mu\mu}}{N_{D^0 \to \pi\pi}} \frac{\varepsilon_{D^0 \to \pi\pi}}{\varepsilon_{D^0 \to \mu\mu}}$$

- Source of backgrounds
 - Combinatorial: suppressed via gradient BDT, exploiting topological features
 - Peaking backgrounds for signal:
 - $D^{*+} \rightarrow D^0 (\pi\pi)\pi \rightarrow \mu\mu + X$
 - $D^{*+} \rightarrow D^0 (\pi \mu \nu) \pi$
 - Peaking background for normalization channel:
 - $D^{*+} \rightarrow D^0 (K\pi)\pi$

Search results

2D UML fits:

- to $[m(\pi\pi), \Delta m]$ in normalization sample
- to $[m(\mu\mu), \Delta m]$ in signal sample

B(D⁰ $\rightarrow \mu^{+}\mu^{-}$) < 2.1(2.4)x10⁻⁹ at 90(95)% CL, upper limit improved by ~40%

the most stringent upper limit set on any flavor changing neutral current decay in the charm sector

> CMS-BPH-23-008 arxiv:2506.06152 PRL accepted

Still 4 order of magnitude above SM prediction

Summary

- ATLAS/CMS is probing SM with heavy flavor rare decays extensively
- Some recent results from B and D FCNC processes
 - $B_{(s)} \rightarrow \mu\mu$: BF and lifetime measurements
 - Run2: Full angular analysis of $B^0 o K^{*0} \mu \mu$, PLB 864 (2025) 139406
 - BF measurement and LFU test of $B^+ \rightarrow K^+ II$: Rep. Prog. Phys. 87 (2024) 077802
 - $D^0 \rightarrow \mu\mu$: arxiv:2506.06152
- More flexible trigger and data-taking schemes implemented in Run3, more
 - sensitive results expected
 - HL-LHC coming in ~5 years, projections updated

More:

ATLAS HF Public Results
CMS HF Public Results