

Novel $|V_{cb}|$ extraction via Lorentz-boosted bc-tagging at the LHC

(for poster presentation)

Yuzhe Zhao, Congqiao Li*, Antonios Agapitos, Dawei Fu, Leyun Gao, Yajun Mao, Qiang Li

Peking University

17th International Conference on Heavy Quarks and Leptons (HQL 2025)

14 September, 2025

Introduction

O The decay of $W \rightarrow cb$ offers a clean, complementary

handle on $|V_{cb}|$, independent of traditional B-physics channels

Our method

1. Method

o Conventional LHC method: measuring $W \rightarrow cb$ decay from $t\bar{t}$

O New method: measuring highly Lorentz-boosted $W \rightarrow cb$ decay from $t\bar{t}$ (1 ℓ)

OBenefits of boosted channel:

- √ Significant background veto powered by "boosted bc-tagging"
- √ Better control of systematic uncertainties via an in-situ calibration

Our method

o Conventional LHC method: measuring W→cb decay from tt semi-leptonic (1 ℓ) phase space

 e/μ

1. Method

O New method:

measuring highly Lorentz-boosted $W \rightarrow cb$ decay from $t\bar{t}$ (1 ℓ)

Obenefits of boosted channel:

- ✓ Significant background veto powered by "boosted bc-tagging"
- ✓ Better control of systematic uncertainties via an in-situ calibration

Boosted bc-tagging

2.A Boosted bc tagging

Boosted bc-tagging

- Superior background suppression power in the boosted regime!
 - Retain 40% of signal while pushing
 QCD background to 0.02% level!
 - O Why so powerful? —thanks to the state-of-the-art DNN-based boosted-jet taggers in CMS/ATLAS
 - o <u>Already demonstrated</u> in recent bb or cc-tagging analyses

Boosted bc-tagging & uncertainties

2.B Flavour tagging uncertainties

o Improved flavour tagging uncertainties (traditionally the key challenge) thanks to in-situ calibration

Results

o ATLAS–CMS combination: 0.036 relative uncertainty.

Enable to offer critical insights to $|V_{cb}|$ puzzle

30% improved & sensitivity!

Results

Thank you for your attention—see you at the poster session!