

Evidence for H \rightarrow $\mu\mu$ with CMS Run II Data and Projected Sensitivity at the HL-LHC

Qianying GUO, Peking University On behalf of $H \rightarrow \mu\mu$ working group

1. Introduction

1.1. Higgs Boson Properties

- Since the Higgs boson discovery in 2012, CMS and ATLAS have measured Higgs mass, width, couplings, and CP properties with steadily improving precision.
- In Runs 1 and 2, Higgs boson couplings to gauge bosons and third generation fermions (τ, b, t) were established with ≥5σ significance.
- Probe Higgs couplings to second generation fermion via H→μμ
 - Extend probe of Higgs interactions in mass scale by more than an order of magnitude.
 - A precise measurement of the muon Yukawa coupling can constrain or reveal deviations from the Standard Model, exploiting possible new physics in the Higgs sector.

Figure 1: Feynman diagram for Higgs to two muons decay

1.2. H $\rightarrow \mu\mu$ Decay Mode

- Experimentally challenging search:
 - Relatively rare decay mode:

$$\mathcal{B}(H \to \mu^+ \mu^-) = 2.18 \times 10^{-4}$$

 Very large DY background ⇒ very small S/B with inclusive selections.

2. Run2 Analysis

- Dataset: 137 fb⁻¹ of 13 TeV pp collisions (2016–2018 CMS Run-2)
- Events selection
 - Single-muon triggers
 - Required to contain two identified and isolated muons with opposite charge
 - Mass window cut 110 < Mμμ < 150 GeV
- Dimuon mass resolution improvements:
 - Track-fit correction using interaction point → 3–10% better dimuon mass resolution.
 - FSR photon recovery \rightarrow +2% signal efficiency, ~3% mass resolution gain.
- Sensitivity is enhanced by categorizing events according to the Higgs production processes.
- Signal is extracted with a **simultaneous fit** across all categories to observables chosen for each category.

2.1. ggH

• Phase space dominated by 0–1 jet events with only the μμ pair and multi-jet events are kept if not VBF-like.

• Event selection:

- \circ No extra leptons (beyond H \rightarrow µµ candidate)
- b-jet veto: no medium b-tags, <2 loose b-tags
- Jet categories: 0, 1, ≥2 jets (exclude events with $m_{ii} > 400 \text{ GeV}$ and $\Delta \eta_{ii} > 2.5 \rightarrow \text{VBF-like}$)

Background

• Event selection:

Background

Analysis Strategy

- Drell-Yan (dominant);
- tt and Dibosons (WW, WZ, ZZ)

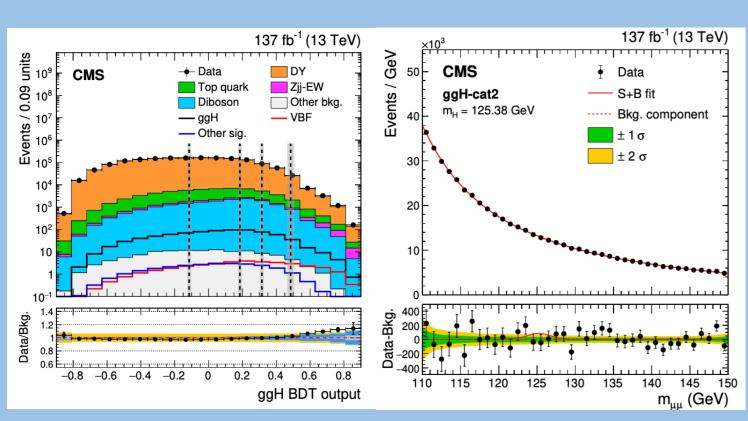


Figure 2: BDT output distribution in the ggH channel (left), data and total background extracted from a S+B fit performed in one ggH subcategory (right)

Jet categories: 2 jets (events with pT_{i1}>35GeV; pT_{i2}>25GeV;

No extra leptons (beyond H→μμ candidate)

 $m_{ii} > 400 \text{ GeV}$ and $\Delta \eta_{ii} > 2.5 \rightarrow \text{VBF-like}$)

tt and Dibosons (WW, WZ, ZZ)

Low signal event statistic

dimuon mass as input.

Signal extraction is fully <u>based on MC</u>

o b-jet veto: no medium b-tags, <2 loose b-tags

Drell-Yan (dominant); EWK-LLJJ (subdominant);

Reliable background modeling (DY+jets, VBF Z)

Train a DNN to distinguish signal from background including the

data directly to background shape predictions from simulation

 \circ VBF H $\rightarrow \mu\mu$ signal is extracted by **fitting DNN output score** in

Analysis Strategy

- Extract the signal by fitting dimuon invariant mass
 - Signal: sharp peak at 125 GeV
 - Background: smooth, falling distribution
 - → Enables data-driven background estimation via analytical fit
- BDT used to separate Higgs signals from expected backgrounds
- Divide event in categories characterized by different S/B
- Signal model: m(μμ) in signal events described with a Double Crystal-ball function.
- Background modeling: Core-PDF method
 - Core background function built as discrete profile of two physics-inspired (Breit-Wigner, FEWZ) and an agnostic (sum of exponentials) function.

 $B_{cat}(m_{\mu\mu}, \overrightarrow{\alpha}, \overrightarrow{\beta}) = N_B \times F_{core}(m_{\mu\mu}, \overrightarrow{\alpha}) \times T_{SMF}(m_{\mu\mu}, \overrightarrow{\beta})$

Figure 3: DNN output distribution in VBF-

SB (upper) and VBF-SR (lower) regions

137 fb⁻¹ (13 TeV)

2.4. ttH

- At least one (two) additional jet(s) passing the DeepCSV medium (loose) WP.
- Separate categories targeting leptonic and hadronic decays.
 - Categories optimized following same strategy as ggH channel.
- Dominant background from tt and ttZ (mostly for ttH) leptonic).
- Background fit with simple exponential (ttH-lep) or polynomial (ttH-had)

• Measurement of $H\rightarrow \mu\mu$ combines four

with CMS Run-1 H→μμ search

o Measured signal strength $\mu =$

 $1.19^{+0.40}_{-0.39}(\text{stat})^{+0.15}_{-0.14}(\text{syst})$

and ttH production.

 (2.48σ)

decay to muons

separate analyses targeting ggH, VBF, VH,

Final results are obtained from combination

o Obsered (expected) significance 2.98σ

Higgs coupling to muons relative to SM κ,,

constrained at 95% CL to [0.59, 1.50]

• We observe evidence for the Higgs boson

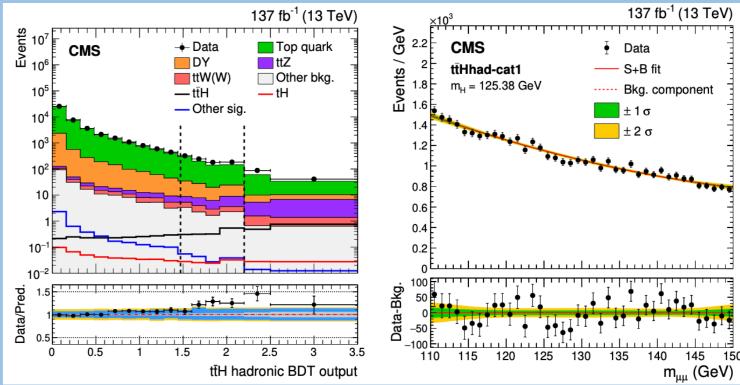


Figure 5: BDT output distribution in the ttH hadronic channel (left), data and total background extracted from a S+B fit performed in one ttH hadronic subcategory (right)

2.5. Combination

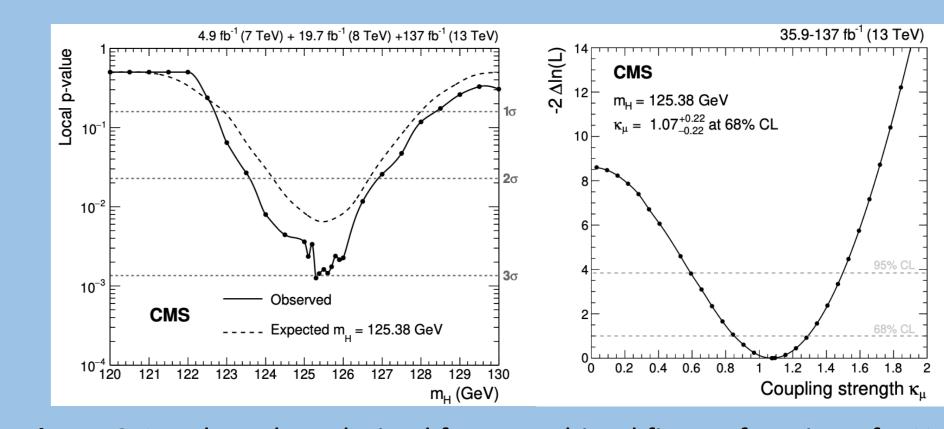
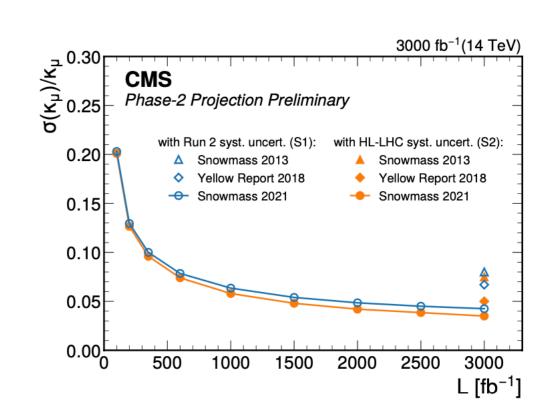


Figure 6: Local p-values derived from combined fit as a function of mH (left) and observed profile likelihood ratio as a function of κ_{u} (right)

3. HL-LHC Prospects: Higgs → μμ Decay

HL-LHC & Detector Upgrades


- HL-LHC conditions: $\sqrt{s} = 14$ TeV, \mathcal{L} up to 3 ab⁻¹
- CMS Phase-2 upgrades:
 - \circ Extended muon detector coverage in $|\eta|$ up to ~ 2.8 (versus 2.4 in Run-2)
- Improved tracker, trigger, muon system, better muon momentum
- ~30% improved dimuon mass resolution

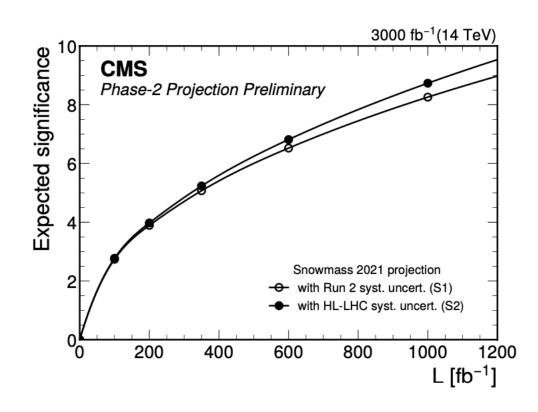
HL-LHC Extrapolation Strategy

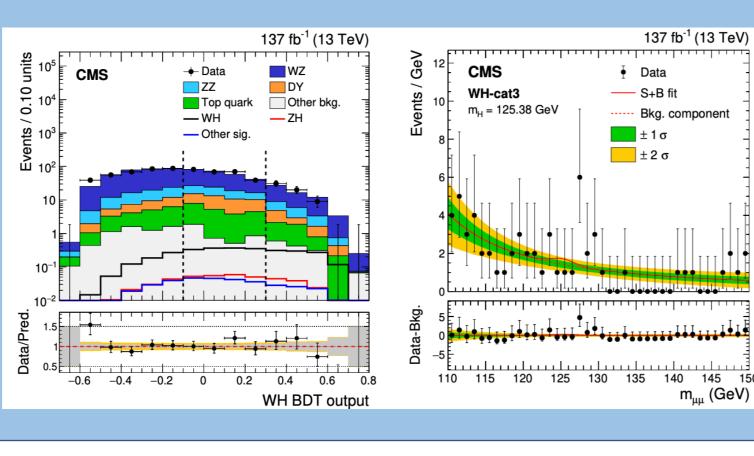
- Use Run-2 H→μμ analysis Strategy (categories, fit model, profile likelihood).
- Extrapolate yields to $\sqrt{s} = 14$ TeV and 3 ab⁻¹; include crosssection changes and acceptance gains.
- Two uncertainty scenarios considered:
 - S1: systematic uncertainties stay like Run-2. S2: experimental systematics scale down with VL (until some floor), theoretical uncertainties halved.

• HL-LHC Projection Results

- \circ HL-LHC (3 ab⁻¹):
 - Signal strength uncertainty: ~8.5% (S1), ~7.0% (S2).
- Coupling modifier uncertainty: ~4.3% (S1), ~3.5% (S2). With only 14 TeV data, 5σ significance could be be achieved with $\mathcal{L} \simeq 300\text{-}350 \text{ fb}^{-1}$.
- HL-LHC data will make it possible to measure the Higgsmuon coupling with high precision.

Figure 7: Uncertainty on coupling modifier κ_{ij}




Figure 8: Extrapolation of the expected significance for S1 and S2 uncertainty scenarios

2.3. VH

2.2. VBF

- Select one (two) additional lepton(s) consistent with W(Z) boson leptonic decay (electrons or muons).
- Separate WH and ZH categories with dedicated BDTs and categories optimized following same procedure as ggH channels.
- Background fit with BWZ function.

Figure 4: BDT output distribution in the WH channel (left), data and total background extracted from a S+B fit performed in one WH subcategory (right)

4. Summary and Plan

- First experimental evidence of H → µµ decay.
- Observed significance: 3σ with CMS Run-2 dataset (13 TeV, 137 fb⁻¹).
- Results consistent with the Standard Model Higgs—muon Yukawa coupling.
- Run-3 analysis ongoing, aiming for improved precision and potential discovery.
- HL-LHC era will enable precision Higgs flavor physics, probing Yukawa couplings at the few-percent level.