Study of the $D_s \to \phi \ell \nu_\ell$ semi-leptonic decay with (2+1)-flavor lattice QCD

Gaofeng Fan (樊高峰)^{1,2}

In Collaboration with: Yu Meng (孟雨)³, Zhaofeng Liu (刘朝峰)², Lei Zhang (张雷)¹

¹Nanjing University, ²Institute of High Energy Physics, ³Zhengzhou University

Based on arXiv:2510.xxxx

17th International Conference on Heavy Quarks and Leptons

Outline

- Motivations
- Lattice set up
- Methods
- Results
- Summary

Motivations

- Semi-leptonic decays offer an ideal place to deeply understand hadronic transitions in the nonperturbative region of QCD, and can help to explore the weak and strong interactions in charm sector
- Vector meson decay makes this transition notoriously difficult to model due to theoretical complexity
- Combining with the experimental data, the CKM matrix element can be extracted, and it helps to test unitarity of CKM matrix and search for new physics beyond SM
- Calculating branching fractions helps to test $\mu-e$ lepton flavor universality

 $D_{s}^{+} \left\{ \begin{array}{c} c \\ \bar{s} \end{array} \right. \left. \begin{array}{c} c \\ \bar{s} \end{array} \right] \phi$

[BESIII, <u>JHEP 12, 072</u> (2023)]

$$\frac{\mathrm{d}\Gamma(D_s \to \phi \ell \nu)}{\mathrm{d}q^2} = \frac{G_{\mathsf{F}}^2 |V_{cs}|^2 |\boldsymbol{p}_{\phi}| \ q^2}{96\pi^3 M_{D_s}^2} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left[\left(1 + \frac{m_\ell^2}{2q^2}\right) \left(|H_+|^2 + |H_-|^2 + |H_0|^2\right) + \frac{3m_\ell^2}{2q^2} |H_t|^2 \right]$$

2025/9/16 Experimental data non-perturbative 2/9

Lattice set up

- (2+1)-flavor Wilson-clover gauge ensembles [CLQCD, PRD 111, 054504 (2025)]
- Computer resources: "SongShan" supercomputer at Zhengzhou University

Ensemble	C24P29	C32P23	C32P29	F32P30	F48P21	G36P29	H48P32
<i>a</i> (fm)	ı)	0.10524(05)(62)		0.07753(03)(45)		0.06887(12)(41)	0.05199(08)(31)
am_l	-0.2770	-0.2790	-0.2770	-0.2295	-0.2320	-0.2150	-0.1850
am_s	-0.2400	-0.2400	-0.2400	-0.2050	-0.2050	-0.1926	-0.1700
$am_s^{ m V}$	-0.2356(1)	-0.2337(1)	-0.2358(1)	-0.2038(1)	-0.2025(1)	-0.1928(1)	-0.1701(1)
$am_c^{ m V}$	0.4159(07)	0.4190(07)	0.4150(06)	0.1974(05)	0.1997(04)	0.1433(12)	0.0551(07)
$L^3 \times T$	$24^3 \times 72$	$32^3 \times 64$	$32^3 \times 64$	$32^3 \times 96$	$48^3 \times 96$	$36^3 \times 108$	$48^{3} \times 144$
$N_{ m mea}$	$450 \times 72 \times 4$	$200 \times 64 \times 3$	$397 \times 64 \times 2$	$180 \times 96 \times 2$	$150 \times 48 \times 4$	$200 \times 54 \times 2$	$150 \times 72 \times 2$
$m_{\pi} \; (\mathrm{MeV}/c^2)$	292.3(1.0)	227.9(1.2)	293.1(0.8)	300.4(1.2)	207.5(1.1)	297.2(0.9)	316.6(1.0)
t	2 - 17	2 - 20	2 - 20	4-22	4 - 26	2 - 32	8 - 30
Z_V^s	0.85184(06)	0.85350(04)	0.85167(04)	0.86900(03)	0.86880(02)	0.87473(05)	0.88780(01)
Z_V^c	1.57353(18)	1.57644(12)	1.57163(14)	1.30566(07)	1.30673(04)	1.23990(13)	1.12882(11)
Z_A/Z_V	1.07244(70)	1.07375(40)	1.07648(63)	1.05549(54)	1.05434(88)	1.04500(22)	1.03802(28)

Methods

• The parameterization for $P \rightarrow V$ semileptonic matrix element

$$\langle \phi_{\sigma}\left(\vec{p}\right)|J_{\mu}^{W}\left(0\right)|D_{s}\left(p'\right)\rangle = \frac{F_{0}\left(q^{2}\right)}{Mm}\epsilon_{\mu\sigma\alpha\beta}p'^{\alpha}p^{\beta} + F_{1}\left(q^{2}\right)\delta_{\mu\sigma} + \frac{F_{2}\left(q^{2}\right)}{Mm}p_{\mu}p'_{\sigma} + \frac{F_{3}\left(q^{2}\right)}{M^{2}}p'_{\mu}p'_{\sigma}$$

$$\langle \phi\left(\varepsilon,\vec{p}\right)|J_{\mu}^{W}\left(0\right)|D_{s}\left(p'\right)\rangle = \varepsilon_{\nu}^{*}\varepsilon_{\mu\nu\alpha\beta}p'_{\alpha}p_{\beta}\frac{2V}{m+M} + (M+m)\varepsilon_{\mu}^{*}A_{1} + \frac{\varepsilon^{*}\cdot q}{M+m}\left(p+p'\right)_{\mu}A_{2} - 2m\frac{\varepsilon^{*}\cdot q}{Q^{2}}q_{\mu}\left(A_{0}-A_{3}\right)$$

Correlation functions —> Scalar functions —> Form factors

$$\langle \phi_{\sigma}\left(\vec{p}\right)|J_{\mu}^{W}\left(0\right)|D_{s}\left(p'\right)\rangle$$

$$ilde{\mathcal{I}}_i$$

$$V, A_0, A_1, A_2$$

Relationship with the form factor

$$V = rac{(m+M)}{2mM}F_0,$$
 $A_1 = rac{F_1}{M+m},$
 $A_2 = rac{M+m}{2mM^2}(MF_2 + mF_3),$
 $A_0 - A_3 = Q^2\left(rac{F_2}{4m^2M} - rac{F_3}{4mM^2}
ight).$

 A_3 is not an independent form factor

$$A_{3}\left(q^{2}\right) = \frac{M+m}{2m}A_{1}\left(q^{2}\right) - \frac{M-m}{2m}A_{2}\left(q^{2}\right)$$

 A_0 is then

$$A_0(q^2) = \frac{F_1}{2m} + \frac{m^2 - M^2 + Q^2}{4m^2M}F_2 + \frac{m^2 - M^2 - Q^2}{4mM^2}F_3$$

 $A_0(0) = A_3(0)$ is automatically perserved

• We extrapolate masses and decay constants of the ϕ meson to get physical results

$$m/f_{\phi} = c + da^2 + f\left(m_{\pi}^2 - m_{\pi, phys}^2\right)$$

 $m = 1.0138(80) \text{ GeV}/c^2$
 $f_{\phi} = 0.2435(50) \text{ GeV}$

(iv)
$$\phi$$
 decay constant at $a = 0.0$ fm.

• Extrapolate results to the continuum limit and the physical pion mass using z-expansion

$$z\left(q^{2}, t_{0}\right) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

$$V\left(q^{2}, a, m_{\pi}\right) = \frac{1}{1 - q^{2}/m_{D_{s}^{*}}^{2}} \sum_{i=0}^{2} \left(c_{i} + d_{i}a^{2}\right) \left[1 + f_{i}\left(m_{\pi}^{2} - m_{\pi, phys}^{2}\right)\right] z^{i}$$

$$A_{0,1,2}\left(q^{2}, a, m_{\pi}\right) = \frac{1}{1 - q^{2}/m_{D_{s1}}^{2}} \sum_{i=0}^{2} \left(c_{i} + d_{i}a^{2}\right) \left[1 + f_{i}\left(m_{\pi}^{2} - m_{\pi, phys}^{2}\right)\right] z^{i}$$

$$A_{0,1,2}\left(q^{2}, a, m_{\pi}\right) = \frac{1}{1 - q^{2}/m_{D_{s1}}^{2}} \sum_{i=0}^{2} \left(c_{i} + d_{i}a^{2}\right) \left[1 + f_{i}\left(m_{\pi}^{2} - m_{\pi, phys}^{2}\right)\right] z^{i}$$

$$A_{0,1,2}\left(q^{2}, a, m_{\pi}\right) = \frac{1}{1 - q^{2}/m_{D_{s1}}^{2}} \sum_{i=0}^{2} \left(c_{i} + d_{i}a^{2}\right) \left[1 + f_{i}\left(m_{\pi}^{2} - m_{\pi, phys}^{2}\right)\right] z^{i}$$

$$m_{\pi, {
m phys}}^2 = 135.0 \ {
m MeV}/c^2$$
, $m_{D_s^*} = 2112.2 \ {
m MeV}/c^2$, $m_{D_{s1}} = 2459.5 \ {
m MeV}/c^2$

• $A_3(0) - A_0(0) = 0.001(14)$, consistent with zero

$$r_{V} = \frac{V(0)}{A_{1}(0)} = \frac{(m+M)^{2}}{2mM} \frac{F_{0}(0)}{F_{1}(0)}$$

$$r_{2} = \frac{A_{2}(0)}{A_{1}(0)} = \frac{(m+M)^{2}}{2mM^{2}} \left[M \frac{F_{2}(0)}{F_{1}(0)} + m \frac{F_{3}(0)}{F_{1}(0)} \right]$$

$$|V_{cs}| = \sqrt{\frac{1}{\Gamma_{\text{latt}}}} \times \frac{\mathcal{B}_{\text{PDG}} \times \hbar}{\tau_{D_{s}}}$$

• Summary of preliminary results (form factor and $|V_{cs}|$)

Summary of preliminary results (branching fraction)

PDG
$$|V_{cs}|$$
 as input

$$\frac{\mathrm{d}\Gamma(D_s \to \phi \ell \nu)}{\mathrm{d}q^2} = \frac{G_{\mathrm{F}}^2 \left|V_{cs}\right|^2 \left|\boldsymbol{p}_{\phi}\right| q^2}{96\pi^3 M_{D_s}^2} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2}\right) \left(\left|H_{+}\right|^2 + \left|H_{-}\right|^2 + \left|H_{0}\right|^2\right) + \frac{3m_{\ell}^2}{2q^2} \left|H_{t}\right|^2\right]$$

$\mathcal{B}(D_s \to \phi \ell \nu_\ell) \times 10^{-2}$	μ channel	e channel	$\mathcal{R}_{\mu/e}$
This work	2.372(79)	2.514(86)	0.9433(14)
BaBar	_	2.61(17)	
CLEO	_	2.14(19)	_
BESIII (2018)	1.94(54)	2.26(46)	0.86(29)
BESIII (2023)	2.25(11)	_	
PDG	2.24(11)	2.34(12)	0.957(68)

Summary

- Mass and decay constant of the ϕ meson are calculated
- Form factors on seven lattice sets with different q^2 are calculated
- Extrapolate form factors to the continuum limit and the physical pion mass
- Differential decay width and branching fraction results are calculated
- Preliminary work on $D \to K^* l \nu$ form factors are ongoing

Thank you for your attention!