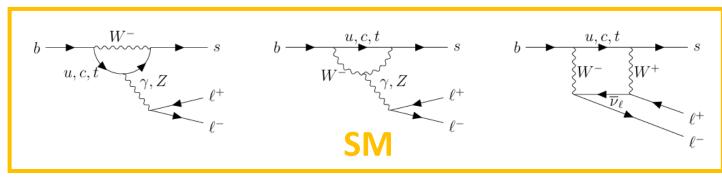
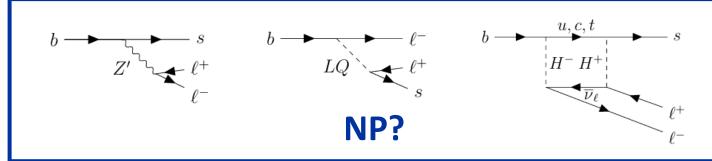

Full angular analysis of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay in proton-proton collisions at CMS


Xuelong Qin^{1,2}
On behalf of CMS Collaboration

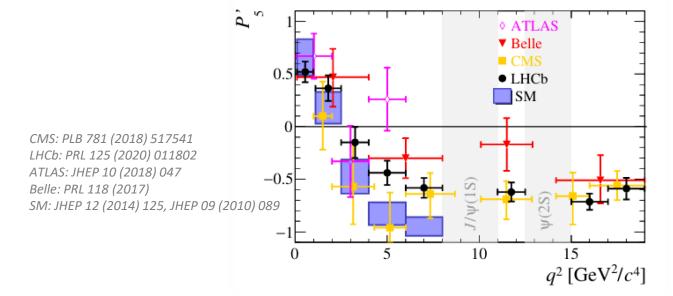

HQL meeting 2025 16/09/2025

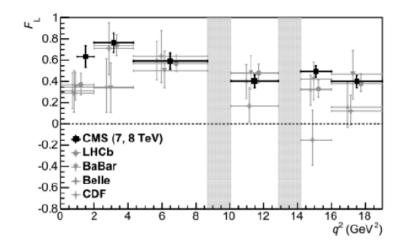
$b \rightarrow sll$ process

- ightharpoonup b
 ightharpoonup sll is a Flavour-changing-neutral-current (FCNC) transition: transitions between quarks of the same electric charge
- SM: forbidden at tree level, need more complex diagrams to achieve
- ➤ Enhanced in many BSM theories: new particles can contribute at the loop or tree level
- NP can modify angular parameters, decay rates ...

$B^0 o K^{*0} \mu \mu$ process

- Experimentally good channel: Easy to identified muons; fully charged final states; Many B0 produced at LHC
- Can be fully described by the three angles (θ_l , θ_k , ϕ) and the dimuon invariant mass squared q^2
- Angular analysis compared to measuring the branching fractions: give access to large range of observables with reduced theory uncertainties


bin index	q^2 range [GeV 2]
0	1.1 - 2
1	2 - 4.3
2	4.3 - 6
3	6 - 8.68
4	8.68 - 10.09 (J/ψ control region)
5	10.09 - 12.86
6	12.86 - 14.18 ($\psi(2S)$ control region)
7	14.18 - 16
8	16 - 19

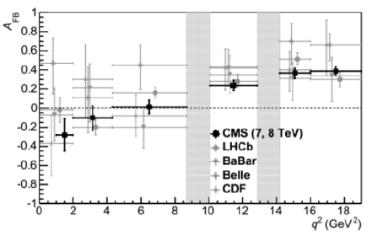

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2}\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_l\mathrm{d}\cos\theta_K\mathrm{d}\phi} = \frac{9}{32\pi}\begin{bmatrix} \frac{3}{4}F_T\sin^2\theta_K + F_L\cos^2\theta_K \\ & + (\frac{1}{4}F_T\sin^2\theta_K - F_L\cos^2\theta_K)\cos2\theta_l \\ & + \frac{1}{2}P_1F_T\sin^2\theta_K\sin^2\theta_l\cos2\phi \end{bmatrix}$$

$$+ F_T = 1 - F_L$$

$$= 8 \text{ angular parameters}$$

$$= P_l' \text{ basis: form factor uncertainties}$$

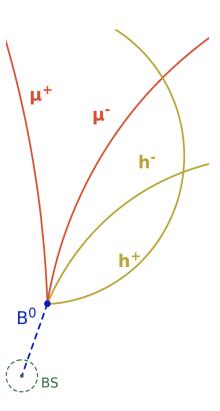
$$= \frac{9}{32\pi}\begin{bmatrix} \frac{3}{4}F_T\sin^2\theta_K + F_L\cos^2\theta_K \\ & + (\frac{1}{4}F_T\sin^2\theta_K - F_L\cos^2\theta_K)\cos2\theta_l \\ &$$


 $+2P_2F_T\sin^2\theta_K\cos\theta_l - P_3F_T\sin^2\theta_K\sin^2\theta_l\sin2\phi)$

Previous analyses

- Long history of measurement at B-factories and hadron colliders
- No deviation from SM for F_L and A_{FB}
- Long standing discrepancy in P_5' (since first measurement in 2013 at LHCb)
- CMS Run-1 partial angular analyses results consistent with SM
- CMS Run-2 collected 140 fb^{-1} of 13 TeV p-p data -> make it possible to perform a full angular analysis!

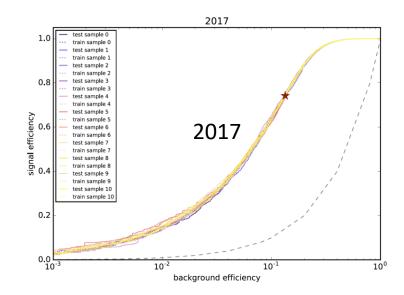
BaBar: PRD 86 (2012) 032012 Belle: PRL 88 (2001) 021801 PRL 103 (2009) 171801 CDF: PRD 79 (2009) 031102 PRL 108 (2012) 081807 CMS: PLB 727 (2013) 77

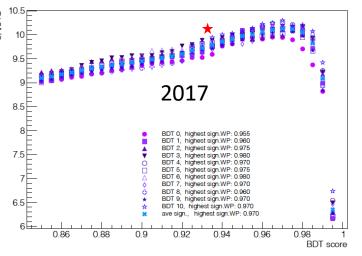

PLB 753 (2016) 424 LHCb: JHEP 08 (2013) 131

Reconstruction and Preselection

• Trigger: low mass displaced dimuon trigger: two muons and one track forming a displaced vertex

HLT path	Dimuon invariant mass window [GeV]
HLT_DoubleMu4_JpsiTrk_Displaced	2.9 - 3.3
HLT_DoubleMu4_PsiPrimeTrk_Displaced	3.3 - 4.05
HLT_DoubleMu4_LowMassNonResonantTrk_Displaced	1-2.9, 4.0 - 4.8


- B⁰ candidate reconstructed combining
 - ≥ 2 opposite-sign muons with SoftMuonID
 - ≥ 2 opposite-sign tracks with muon veto
- No PID to distinguish K from $\pi \to \text{ID}$ of kaon and pion assigned based on mass hypothesis closer to K^{*0} PDG mass (cause correctly-tagged and wrongly-tagged events in the signal)
- Offline selection:
 - \triangleright μ: single muon p_T > 3.5 GeV, |η| < 2.5, dimuon p_T > 6.9 GeV, 1 < $m(\mu\mu)$ < 4.8 GeV
 - ightharpoonup Hadron Track: p_T > 2.8 GeV, |η| < 2.4, | $m(K\pi) m(K^{*0}\ PDG)$ | < 150 MeV, m(KK) > 1.035 GeV (ϕ rejection)



BDT selection

Training sample:

- Signal MC sample
- Background from data mass sidebands
- Input variables: include decay-vertex quality and displacement, isolation, mass of $K\pi$ system
- Samples are split into 11 subsamples
 - > 7 for training, 3 for testing, applied to the last
 - repeated 11 times, each of the 11 subsamples used once as the analysis data to avoid correlations
- Working point optimization
 - \rightarrow Measure $S/\sqrt{(S+B)}$ vs BDT score in each subsample
 - \triangleright Choose the working point that maximizes the average of $S/\sqrt{(S+B)}$ value

Analysis strategy

For each q² bin: **4D simultaneous fit** on three years' data samples

Angular decay rate

KDE efficiency functions

$$\begin{aligned} \operatorname{pdf}(m,\cos\theta_{K},\cos\theta_{l},\phi) &= Y_{S} \left[S^{C}(m) S^{a}(\cos\theta_{K},\cos\theta_{l},\phi) \epsilon^{C}(\cos\theta_{K},\cos\theta_{l},\phi) \right. \\ &\left. + R \cdot S^{M}(m) S^{a}(-\cos\theta_{K},-\cos\theta_{l},-\phi) \epsilon^{M}(\cos\theta_{K},\cos\theta_{l},\phi) \right] \\ &\left. + Y_{B} B^{m}(m) B^{a}(\cos\theta_{K},\cos\theta_{l},\phi) \right. \end{aligned}$$

Correctly-tagged(CT) events

Wrongly-tagged(WT) events

Background events

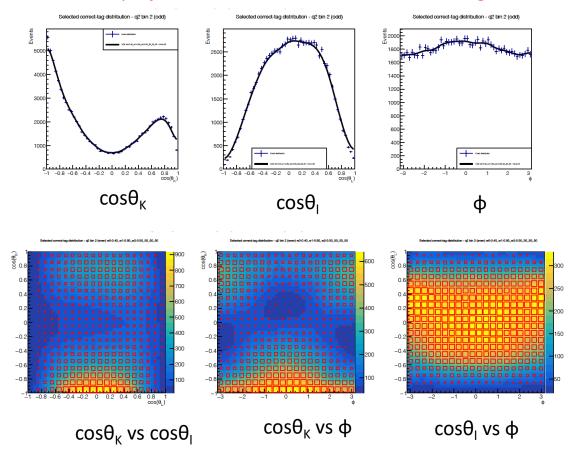
Signal and background mass shapes

Background angular shape

- ➤ **R parameter:** mistag correction value, the ratio between the mistag fraction in data and the one computed on MC, account for possible data/MC difference in mistag fraction
- Y_s, Y_B: yield of signal and background

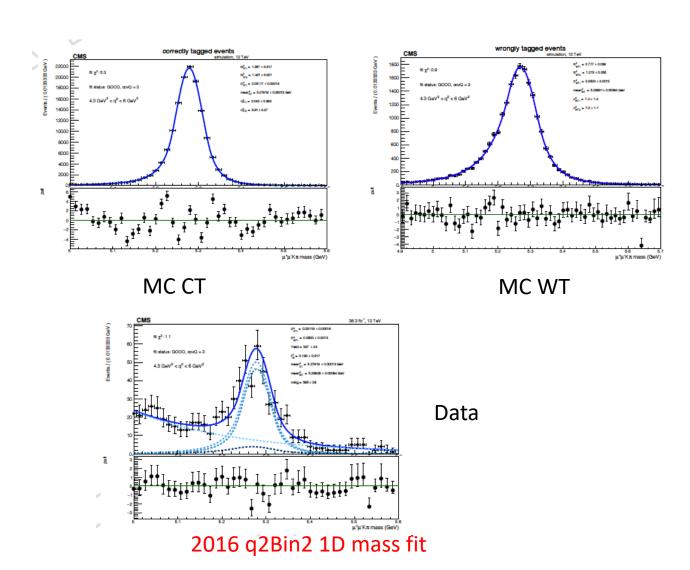
KDE Efficiency functions

Evaluated from MC for CT and WT separately

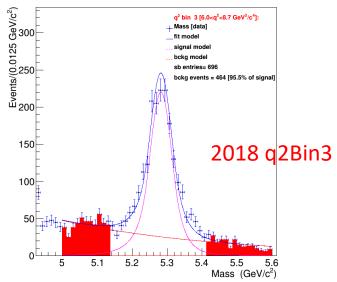

$$\epsilon^{C}(\cos\theta_{K},\cos\theta_{l},\phi) = \frac{N_{\text{acc}}(\cos\theta_{K},\cos\theta_{l},\phi)_{\text{GEN}}}{D_{\text{acc}}(\cos\theta_{K},\cos\theta_{l},\phi)_{\text{GEN}}} \cdot \frac{N_{\text{sel}}^{\text{corr}}(\cos\theta_{K},\cos\theta_{l},\phi)_{\text{RECO}}}{D_{\text{sel}}(\cos\theta_{K},\cos\theta_{l},\phi)_{\text{GEN}}}.$$

$$\epsilon^{M}(\cos\theta_{K},\cos\theta_{l},\phi) = \frac{N_{\text{acc}}(-\cos\theta_{K},-\cos\theta_{l},-\phi)_{\text{GEN}}}{D_{\text{acc}}(-\cos\theta_{K},-\cos\theta_{l},-\phi)_{\text{GEN}}} \cdot \frac{N_{\text{sel}}^{\text{mis}}(\cos\theta_{K},\cos\theta_{l},\phi)_{\text{RECO}}}{D_{\text{sel}}(-\cos\theta_{K},-\cos\theta_{l},-\phi)_{\text{GEN}}}.$$

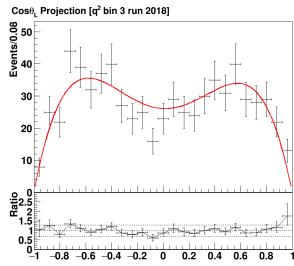
Using Kernel Density Estimators

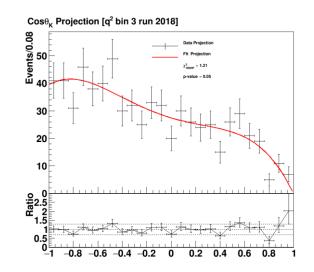

- Method to describe distributions as sum of multi-variate Gaussians
- Applied on numerators and denominators, then ratio is performed on the functions

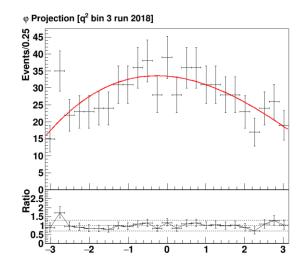
q² bin 2 2016
1D and 2D projections of KDE function for correct tag numerator


Mass shape

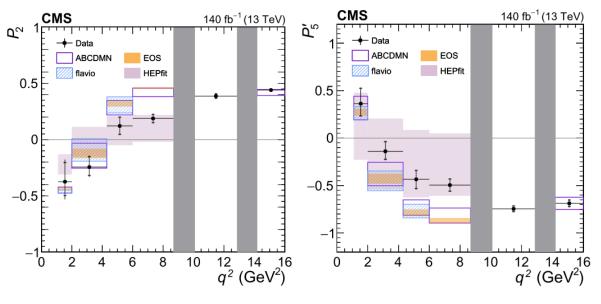
- Mass model for each signal component (CT and WT) are modeled on MC
 - parametrized by a **Double Crystal-ball** function or combination of **Gaussian and Crystal-ball functions** used (according to q²bin)
- The data mass distribution is then fit with the model defined on the MC
 - means, widths, mistag fraction have gaussianconstraints to values fitted on signal MC
 - The background is parametrized using an exponential function


Background angular shape


 $\rm B_0 \rightarrow K^{^*0} \mu^* \mu^* Mass$ - $\rm q^2$ bin 3 Run II 2018 [6.0< $\rm q^2 < 8.7~Gev^2/c^4$]



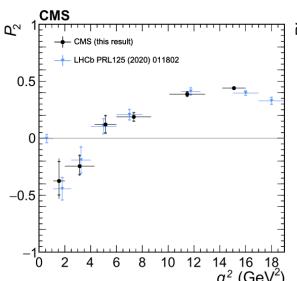
Bkg angular shape extracted from sidebands

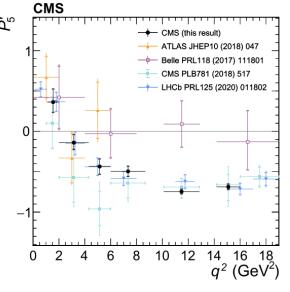

- Defined to have <6% of signal pollution
- Fit with multivariate Bernstein polynomials

Results

- First full angular analysis of $B^0 o K^{*0} \mu\mu$ at CMS, published on PLB (PLB 864 (2025) 139406)
- Among the most precise experimental measurements
- Deviation for P₅' with EOS predictions

$$4.3 < q^2 < 6.0 \text{ GeV/c}^2$$
: 3.2 σ


6. 0
$$< q^2 < 8.0 \text{ GeV/c}^2$$
: 4.9 σ


Deviation for P₂ with EOS predictions

$$4.3 < q^2 < 6.0 \text{ GeV/c}^2$$
: 2.2 σ

6. 0
$$< q^2 < 8.0 \text{ GeV/c}^2$$
: 6.4 σ

Measurements are compatible with previous results from CMS Run-1 and other experiments

