Study of χ_c production in pPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV energy with the CMS experiment Tongguang Cheng, on behalf of the CMS Collaboration e-mail: tongguang.cheng@cern.ch ### Introduction Proton-lead (pPb) collisions at the LHC provide an opportunity to study nuclear modification effects on quarkonia. Excited S-wave state $\psi(2s)$ shows different suppression than the ground state J/ψ by the ALICE experiment. A trend of increasing relative suppression of $\psi(2s)$ to J/ψ is observed as multiplicity or related variables increases [1]. P-wave state charmonia χ_c were studied in proton-proton collisions with 7 and 8TeV energies in the CMS experiment [2,3]. The results of polar anisotropy coefficients $\lambda_{\vartheta}^{\chi_{c1}}$, $\lambda_{\vartheta}^{\chi_{c2}}$ indicates that both χ_{c1} and χ_{c2} are strongly polarized [3]. The motivation of the analysis [4] is to study how χ_c are affected in pPb compared to pp collisions based on data collected by CMS at the LHC with an integrated luminosity of $175nb^{-1}$. It is also the step toward the χ_c measurements in PbPb collisions. # Signal yield extraction The χ_c candidates are reconstructed through the radiative $\chi_c \rightarrow J/\psi \gamma$ decays. The J/ψ is reconstructed through its decay to a muon pair, while the photon is reconstructed through its conversion to an e^-e^+ pair detected in the silicon tracker. The χ_c mass is calculated using the world average of experimentally values of the I/ψ mass instead of the invariant mass of the di-muon: $m_{\chi_c} = m_{\mu\mu\gamma} - m_{\mu\mu} + 3.097 GeV,$ which improves χ_c mass resolution by removing the di-muon resolution. The yields of χ_{c1} χ_{c2} are extracted from fitting the m_{χ_c} spectrum. The nonprompt χ_c contamination is evaluated and taken into account as a source of uncertainty. | | | Uncertainty [%] | | |--------------------------------------|------------|------------------------------|------------------------------------| | Source of uncertainty | | χ_c -to-J/ ψ ratio | χ_{c2} -to- χ_{c1} ratio | | χ_c fit shape | | 0.03-4 | 1-4 | | J/ψ fit shape | signal | 0.3-2 | _ | | | background | 0.05-0.3 | _ | | Conversion selection | | 12 | 23 | | Conversion selection - tag and probe | | 5 | 5 | | PYTHIA settings | | 6-12 | 0.1-0.5 | | Nonprompt contamination | | 5 | 8 | | | | | | ## Results and conclusions Results of the measurements are interpreted as the χ_c -to- J/ψ and χ_{c2} -to- χ_{c1} cross section ratios. Both χ_{c2} and χ_{c1} are assumed to be fully polarized with $J_z(\chi_{c2}) = J_z(\chi_{c1}) = 0$. \square χ_c -to- J/ψ (left panel) and χ_{c2} -to- χ_{c1} (right panel) ratio as a function of number of tracks in the event. \square χ_c -to- J/ψ ratio as a function of $p_T(J/\psi)$ comparing to pp in a similar kinematic range and collision energy from ATLAS(left panel) and LHCb (right panel) results. \square χ_{c2} -to- χ_{c1} ratio as a function of $p_T(J/\psi)$. No p_T trend and results are found to be similar to pp measurements from ATLAS [5] and CMS [2]. As a summary, no additional modification of χ_c compared to I/ψ is observed in pPb collisions. In contrast to $\psi(2s)[6]$, the lack of dependence of the χ_c -to- J/ψ ratio on event multiplicity suggests weaker modification effects for χ_c in pPb collision. #### Reference - [1] The ALICE Collaboration, JHEP 06 (2016) 050 - [2] The CMS Collaboration, EPJC 72 (2012) 225 [3] The CMS Collaboration, PRL 124 (2020) 162002 [4] The CMS Collaboration, CMS-PAS HIN-22-003 - [5] The ATLAS Collaboration, JHEP 07 (2014) 154[6] The CMS Collaboration, PRL 135 (2025) 092301