

Study of χ_c production in pPb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV energy with the CMS experiment

Tongguang Cheng, on behalf of the CMS Collaboration e-mail: tongguang.cheng@cern.ch

Introduction

Proton-lead (pPb) collisions at the LHC provide an opportunity to study nuclear modification effects on quarkonia.

Excited S-wave state $\psi(2s)$ shows different suppression than the ground state J/ψ by the ALICE experiment. A trend of increasing relative suppression of $\psi(2s)$ to J/ψ is observed as multiplicity or related variables increases [1].

P-wave state charmonia χ_c were studied in proton-proton collisions with 7 and 8TeV energies in the CMS experiment [2,3]. The results of polar anisotropy coefficients $\lambda_{\vartheta}^{\chi_{c1}}$, $\lambda_{\vartheta}^{\chi_{c2}}$ indicates that both χ_{c1} and χ_{c2} are strongly polarized [3].

The motivation of the analysis [4] is to study how χ_c are affected in pPb compared to pp collisions based on data collected by CMS at the LHC with an integrated luminosity of $175nb^{-1}$. It is also the step toward the χ_c measurements in PbPb collisions.

Signal yield extraction

The χ_c candidates are reconstructed through the radiative $\chi_c \rightarrow J/\psi \gamma$ decays. The J/ψ is reconstructed through its decay to a muon pair, while the photon is reconstructed through its conversion to an e^-e^+ pair detected in the silicon tracker.

The χ_c mass is calculated using the world average of experimentally values of the I/ψ mass instead of the invariant mass of the di-muon:

 $m_{\chi_c} = m_{\mu\mu\gamma} - m_{\mu\mu} + 3.097 GeV,$ which improves χ_c mass resolution by removing the di-muon resolution.

The yields of χ_{c1} χ_{c2} are extracted from fitting the m_{χ_c} spectrum. The nonprompt χ_c contamination is evaluated and taken into account as a source of uncertainty.

		Uncertainty [%]	
Source of uncertainty		χ_c -to-J/ ψ ratio	χ_{c2} -to- χ_{c1} ratio
χ_c fit shape		0.03-4	1-4
J/ψ fit shape	signal	0.3-2	_
	background	0.05-0.3	_
Conversion selection		12	23
Conversion selection - tag and probe		5	5
PYTHIA settings		6-12	0.1-0.5
Nonprompt contamination		5	8

Results and conclusions

Results of the measurements are interpreted as the χ_c -to- J/ψ and χ_{c2} -to- χ_{c1} cross section ratios. Both χ_{c2} and χ_{c1} are assumed to be fully polarized with $J_z(\chi_{c2}) = J_z(\chi_{c1}) = 0$.

 \square χ_c -to- J/ψ (left panel) and χ_{c2} -to- χ_{c1} (right panel) ratio as a function of number of tracks in the event.

 \square χ_c -to- J/ψ ratio as a function of $p_T(J/\psi)$ comparing to pp in a similar kinematic range and collision energy from ATLAS(left panel) and LHCb (right panel) results.

 \square χ_{c2} -to- χ_{c1} ratio as a function of $p_T(J/\psi)$. No p_T trend and results are found to be similar to pp measurements from ATLAS [5] and CMS [2].

As a summary, no additional modification of χ_c compared to I/ψ is observed in pPb collisions. In contrast to $\psi(2s)[6]$, the lack of dependence of the χ_c -to- J/ψ ratio on event multiplicity suggests weaker modification effects for χ_c in pPb collision.

Reference

- [1] The ALICE Collaboration, JHEP 06 (2016) 050
- [2] The CMS Collaboration, EPJC 72 (2012) 225 [3] The CMS Collaboration, PRL 124 (2020) 162002 [4] The CMS Collaboration, CMS-PAS HIN-22-003
- [5] The ATLAS Collaboration, JHEP 07 (2014) 154[6] The CMS Collaboration, PRL 135 (2025) 092301