

Observation of X(6900) and evidence of X(7100) in the J/ψψ(2S) \rightarrow μ⁺μ⁻μ⁺μ⁻ mass spectrum

Liangliang CHEN* (Nanjing Normal University) on behalf of the CMS Collaboration The XVII International Conference on Heavy Quarks and Leptons, 15 Sep 2025, Beijing

Introduction

- > CMS have established candidates for all-charm tetra-quark family, each peak and each dip well over 5σ in complete dataset [1]:
 - \triangleright X(6900) observed by 3 experiment [2-4],
 - > X(6600) and X(7100) added by CMS [2].
- \rightarrow If seen in $J/\psi/J/\psi$, probably in $\psi(2S)J/\psi$?
- \succ X(6600) is below the J/ $\psi\psi$ (2S) threshold, but both X(6900) and X(7100) are above it.
- $\triangleright \psi(2S)J/\psi$'s model defined: **2 peaks with interference**.

Data samples & Event selections

- > 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- > 180 fb⁻¹ CMS data taken in 2022, 2023 and 2024 LHC runs

> Trigger:

- > HLT_Dimuon0_Jpsi_Muon
- HLT_Dimuon0_Jpsi3p5_Muon2
- HLT_DoubleMu4_3_LowMass
- Main selections:
 - > Fire corresponding trigger in each year;
 - \rightarrow Single μ from J/ ψ : $p_T(\mu)>=3.5$ GeV; soft muon ID;
 - \triangleright Single μ from $\psi(2S)$: $p_T(\mu)>=2.5$ GeV; loose muon ID;
 - > Single J/ψ: $p_T >= 11$ GeV; $m(\mu^+\mu^-)$ within 2.5σ; constraint to J/ψ mass;
 - \triangleright Single $\psi(2S)$: $p_T>=13.5$ GeV; $m(\mu^+\mu^-)$ within 2.5 σ ; constraint to $\psi(2S)$ mass;
 - $> |\eta(\mu)| <= 2.4;$
 - \triangleright 4 μ vertex probability > 0.005, total charge is 0;
 - \triangleright Exclude events with wrong combination within 2σ of $J/\psi J/\psi$
- Multiple candidates treatment:
 - \triangleright Select best combination of same 4 μ with

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{\psi(2S)}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

- Keep all candidates arising from more than 4μ
- > Signal and background MC samples are produced by JHUGen and Pythia8

*Projections of di-muon mass from 2 dimensional fit

Independent measurement - 1BW - X(6900)

 \rightarrow The J/ $\psi\psi$ (2S) mass spectrum with the fit including 1BW:

Signal shapes:

Relativistic Breit-Wigner functions convolved with **Gaussian resolution functions (BW)**

Background shapes:

Single-parton scattering (NRSPS, MC simulation) Double-parton scattering (**DPS**, data event-mixing) Combinatorial background (Comb, nine-tile method)

Fit model building:

- Based on J/ψJ/ψ analysis
- > X(6600) under J/ψψ(2S) mass threshold

For the 1BW model, it is evident that one additional peak need to be incorporated into consideration - X(7100)

Independent measurement - 2BW (Interference) - X(6900)&X(7100)

- Dips in the data show possible interference effects
- \rightarrow The J/ $\psi\psi$ (2S) mass spectrum with the fit including 2BW (interference):

- \triangleright Constrain mass & width of both peaks within 1σ of $J/\psi J/\psi$ values to calculate significances:
- **➤** Model I: 2BW interfered (NLL = -2056.83)
- ➤ Model II: X(6900) only (NLL = -2045.87)
- Model III: X(7100) only (NLL = -2021.63)
- **➤ Model I vs Model III -> X(6900)** Model I vs Model II -> X(7100)
- > The floating parameters differ by two
- \rightarrow Significance of X(6900) = 8.1 σ

Degrees of freedom = 2

 \triangleright Significance of X(7100) = 4.3 σ

Interf. term $Pdf(m) = N_{X-\text{interf}} \cdot \left| \sum \left(r_k \cdot \exp(i\phi_k) \cdot BW(m, M_k, \Gamma_k) \right) \right|^2 \otimes R(M_j) \cdot \epsilon(M_j)$ $+N_{SPS} \cdot f_{SPS}(m) + N_{DPS} \cdot f_{DPS}(m) + N_{Combinatorial} \cdot f_{Combinatorial}(m)$

Summary

CMS observed X(6900) and found evidence of X(7100) in $J/\psi\psi(2S)$ using 315 fb⁻¹ data.

- \triangleright They are consistent with those observed in J/ ψ J/ ψ channel [1,2]
- > A family of structures which are candidates for all-charm tetra-quarks
- > Provide critical insights into non-perturbative QCD dynamics, particularly within heavy-quark systems
- > Challenge traditional quark models and refine predictions from lattice QCD and effective theories
- Further searches in other decay modes will deepen our understanding of exotic hadrons

CMS has good sensitivity to all-muon final states in this mass region

		X (6600)	X (6900)	X (7100)
$J/\psi J/\psi$: Run 2 + 3	m (MeV)	$6593~^{+15}_{-14}\pm25$	$6847 \pm 10 \pm 15$	$7173^{~+9}_{~-10}\pm13$
	Γ (MeV)	$446_{-54}^{+66}\pm87$	$135~^{+16}_{-14}\pm14$	$73~^{+18}_{-15}\pm 10$
$J/\psi \psi(2S)$: Run 2 + 3	m (MeV)		$6876~^{+46}_{-29}\pm110$	$7169 \ ^{+26}_{-52} \ ^{+74}_{-70}$
	Γ (MeV)	_	$253~^{+290}_{-100}\pm120$	$154 \ ^{+110}_{-82} \ ^{+140}_{-160}$
J/ψ J/ψ: Run 2 [14]	m (MeV)	$6638 \ ^{+43+16}_{-38-31}$	$6847 \ ^{+44+48}_{-28-20}$	$7134 \ ^{+48+41}_{-25-15}$
	Γ (MeV)	$440\ ^{+230+110}_{-200-240}$	$191 {}^{+66+25}_{-49-17}$	$97 {}^{+40+29}_{-29-26}$

Bibliography

- [1] CMS collaboration, "Observation of a family of all-charm tetraquark candidates at the LHC", CMS-PAS-BPH-24-003 (2024).
- [2] CMS Collaboration, "New Structures in the J/ ψ J/ ψ Mass Spectrum in Proton-Proton Collisions at $\forall s = 13$ TeV", Phys. Rev. Lett. 132 (2024), no. 11, 111901, doi:10.1103/PhysRevLett.132.111901, arXiv:2306.07164.
- [3] LHCb Collaboration, "Observation of structure in the J/ ψ -pair mass spectrum", Sci. Bull. 65 (2020) 1983, doi:10.1016/j.scib.2020.08.032, arXiv:2006.16957.
- [4] ATLAS Collaboration, "Observation of an Excess of Dicharmonium Events in the Four-Muon Final State with the ATLAS Detector", Phys. Rev. Lett. 131 (2023), no. 15, 151902, doi:10.1103/PhysRevLett.131.151902, arXiv:2304.08962.