

Determination of the spin and parity of all-charm tetraquarks at CMS

Xining Wang

Tsinghua University / Nanjing Normal University

HQL2025 Sep 16, 2025

Decay Angles

decay angles (consistency check): distinguish models

Optimal Observable

• 1D projection of data, optimal for $j = 0^-(2_m^-)$ vs $i = 2_m^+$

optimal observable

$$\mathcal{D}_{ij}(\overrightarrow{\Omega} \mid m_{4\mu}) = \frac{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu})}{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu}) + \mathcal{P}_{j}(\overrightarrow{\Omega} \mid m_{4\mu})}$$

1D projections from 2D ⇒ limited information

background model from MC control in sidebands systematic variations

2D parameterization:

$$\mathcal{P}_{ijk}(m_{4\mu},\mathcal{D}_{ij}) = \mathcal{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathcal{D}_{ij} \mid m_{4\mu})$$

Statistical Analysis

- Hypothesis test with toy MC for $J_1^P = 2_m^+$ vs $J_2^P = 0^-$
- Test statistic $q = -2\ln(\mathcal{L}_{J_2^P}/\mathcal{L}_{J_1^P})$
- Consistency of data with J_1^P/J_2^P using p-value:

$$p = P(q \le q_{obs}|J_1^P + bkg)$$

$$p = P(q \ge q_{obs}|J_2^P + bkg)$$

• Significance:

Converted from p-value via Gaussian one-sided tail integral

Confidence level

$$CL_{s} = \frac{P(q \ge q_{obs}|J_{2}^{P} + bkg)}{P(q \ge q_{obs}|J_{1}^{P} + bkg)}$$

		Observed		Expected	
		p-value	Z-score	p-value	Z-score
$0^{-} \text{ vs } 2_{m}^{+}$	$0^{-} \ 2^{+}_{m}$	2.7×10^{-13} 4.2×10^{-1}	7.2 0.2	$6.5 \times 10^{-14} \\ 0.50$	7.4 0.0

• Combine 2D fit: $\mathscr{P}_{ijk}(m_{4\mu}, \mathscr{D}_{ij})$

$$-J^P = 2_m^+$$
 model survives

			- :	-
	J_{X}^{P}	p-value	Z-score	•
			reject J_X^P	
	0-	2.7×10^{-13}	7.2	
	0_m^+	4.3×10^{-5}	3.9	
	$0^+_{ m mix}$	$1.4 imes 10^{-2}$	2.2	; mix
	0_h^+	3.1×10^{-9}	5.8	_
	1-	8.0×10^{-8}	5.2	
	1+	4.7×10^{-3}	2.6	
	2_m^-	4.1×10^{-12}	6.8	_
	2_{mix}^{-}	6.5×10^{-4}	3.2	; mix
_	2_h^-	2.2×10^{-8}	5.5	-

Summary

J^{PC} analysis of exotic hadron decays at LHC (production-independent)

- consistent picture: set of 3 exotic teraquark resonances with the same J^{PC}

$$-PC = ++$$
 very certain

$$n = (1,)2,3,4$$

$$-J \neq 1$$
 at > 99 % CL

$$-J \neq 0$$
 at > 95 % CL

$$-J > 2$$
 possible, but highly unlikely, require $L \ge 2$

-J=2 consistent, rare in nature, naively expected J=0

_