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Experiment setup and method
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Performance testing of the PDS
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for BGO scintillation coupled with a PMT. positron detection efficiency measurement.
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Conclusion

O A preliminary test was conducted on the positron detection
system. The BGO-PMT achieve a good time resolution for
the coincidence of the annihlation gamma-ray process,
which 1s approximately 2.9 ns in our experiment.

O The lead-free MCP achieves a detection efficiency of
approximately 30% for positrons with impact energies
ranging from 400 eV to 1200 eV. The positron detection
efficiency increases with higher impact energies. In the
future experiments, a delay line anode or multi-anode will
be used to acquire the spacial information of the detected
particles.
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