https://indico.ihep.ac.cn/event/25730/ 1

Achieving 10⁻⁴ luminosity with LumiCal @ CEPC

- LumiCal group (weekly meetings, onging 2yrs)
- \circ $\,$ TDR design accomplished, aim for 10^{-4}
- Goal: IP BPM, Radiative Bahbha, Survey monitoring
- **Prototyping**: Diamond, Tracking multi-scattering forward LYSO, BPM @BES III
- 高能所 IHEP: MDI, beam-pipe, mechanics: Haoyu Shi, Quan JI, Longyan He, ... BPM: Jun He, ...

AC LGAD: Mei Zhao, ...

- 物理所 AS: Generator, GEANT: Suen Hou
- 吉林大学: Generator, BESIII BPM: Weiming Song, Jiading Gong
- 南京大学: Generator, GEANT4: Lei Zhang, Renjie Ma, Yilun Wang Diamond, LYSO: Jialiang Zhang, ... Si tracking: Changhua Hao, Yuhui Miao, Xingyang Sun, Ligang Xia
- LumiCal : IHEP: Xiao Cai , Sheng Dong, Jingzhou Zhao, Jie Zhang
- prototype : NJU: Lie Zhang, Liangliang Han, Zhenwu Ge

2025.04.21

S. Hou

SM LEP to CEPC

SMZ-lineshape $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ QEDLuminosity by Bhabha $e^+e^- \rightarrow e^+e^-$

LEP: 17 Million Z (4 IP) L= 4.3 10³¹/cm²s (E=46GeV) = 1x10³²/cm²s (E=100 GeV)


```
CEPC Z-pole : 2x10<sup>12</sup> events
L~ 10<sup>36</sup>/cm<sup>2</sup>s (Z-pole)
dL/L < 10<sup>-4</sup>
```

still BHLUMI ??

Ζ,γ

$N_v = 2.9840 \pm 0.0082$

M _z = 91187.5 ± 2.1 MeV	2.3 × 10 ⁻⁵
G _z = 2495.2 ± 2.3 MeV	1‰
$N_v = 2.9840 \pm 0.0082$	
Precision luminosity	3‰

Bhabha generator

was BHLUMI 4.04 → S. Jadach [CPC 101 (1997) 229]

2020 systematic 0.037%

[PLB 803 (2020) 135319]

Hardronic correction to reach 0.01%

Framework of YFS exponentiation

 $e^+e^- \rightarrow e^+e^- n\gamma$

predict *n*γ Poisson photons (not confirmed)

$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\rm acc}}{\sigma^{\rm vis}} \quad \sigma = \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right)$$

 Z,γ

LEP luminosity achieved

Bhabha events Not calibrated

EPJC 14 (2000) 373 OPAL precision σ_{Bhabha} 79 nb Expt **3.4x10**⁻⁴ Theo 5.4x10⁻⁴

6.2 - 14.2 cm, $\theta = 25 - 58$ mrad

Si pad 2.5mm pitch

pad 11.25°

0.05 mm region between pads and guard ring

x 2.5 mm

Silicon Wedge

 $\frac{32}{31}$ $\frac{3}{3}$

11.25 11.25

62 mm

Radiative Bhabha expt results

(only @LEP)

4

Bhabha event counting to 10⁻⁴

Luminosity systematics due to event counting in/out fiducial edge \rightarrow offset on the mean of θ_{min}

QED BHLUMI $e^+e^- \rightarrow e^+e^-(n\gamma)$ at CEPC

BHLUMI demo.f cuts

- ACC 0 CMS 10 mRad < $\theta(e^{\pm})$ < 80 mRad
- ACC 1 .and. s'(P2,Q2)/s(P1,Q1) >0.5

Beam crossing, 33 mRad

→ Boost in x direct e⁺, e⁻ offset by 33 mRad

10 M events generated for 10 - 80 mRad, $\theta(e^{\pm})$ distributed from 7 mRad ACC0 = 47.9 %

ACC1 = 45.9 %

θ(e[±]) shown
for CMS
and boosted
of all generated

events with 0 photos Show δ back-back distribution

CEPC LumiCal design

1400

374

- > L=2x10³⁶/cm²s¹ @Z-pole,
- ø 20 mm racetrack, beam-crossing 33 mRad
- O IP bunch :

 $\sigma_x \sigma_v \sigma_z = 6 \ \mu m$, 35 nm, 9 mm • Bunch crossing: 23 ns

before Flange z = 560~700 mm

• Low-mass beampipe window:

Be 1mm thick

traversing @22 mRad traversing L= 45 mm, $= 0.13 X_0 (Be), 0.50 X_0 (AI)$

- **Two Si-wafers** for e^{\pm} impact θ
- O 2X₀ LYSO = 23 mm

behind Bellow z= 900~1100 mm

- Flange+Bellow : ~60 mm, 4.3 X₀
- o 13X₀ LYSO 150 mm

LumiCal acceptance, racetrack beampipe

LumiCal acceptance at |z|=1000mm, with RaceTrack pipe r=10mm

ONE <i>e</i> ⁺ or <i>e</i> [−] detected		e ⁺ , e ⁻ back-to-back detected	
θ>25 mRad	θ>25mR & y >25mm	θ>25 mRad	θ>25mR & y >25mm
133.5 nb	81.8 nb	85.4 nb	78.0 nb

Front 2X₀ LYSO, on radiative e,γ

Bhabha hits on LYSO, |y|>12mm

Incident particles are e^{\pm} ,(γ)

- GEANT sum dE/dx in each LYSO bars 3x3mm², 23 mm long, 2X₀
- **Deviation to e**^{\pm} **truth** (impact hit >E_b/2) mostly < 0.2mm
- **Hit distributions in a Bar** distributed due to Bhabha θ , w./w.o. photon

Ein(dR)/SumE GeV

Ein(dR)/SumE GeV

GEANT LumiCal electron shower

LumiCal electron LYSO, 5% resolution

马仁杰1

王翊伦

Challenge: QED $\alpha^2 L^2$ shall be measured

Jiading Gong Renjie Ma

photons Differ very much Comparison

Trial3 : th1= 0.01rad, th2= 0.1rad

BHLUMI E(γ)>5MeV

Event final states	BHLUMI generated
e⁺e⁻	36.4%
e⁺(e⁻γ) or (e⁺γ)e⁻	47.8%
(e⁺γ)(e⁻γ) <i>,</i>	15.8%

Detecting photons in $e^+e^- \rightarrow e^+e^-(n\gamma)$

±z Hemispheres	BHLUMI generated	& P2,Q2 y >12mm
e⁺	60.3 %	3.87 %
e [±] γ	39.7 %*	3.16 %

*ISR 20.3%, FSR 19.4%

Detectable Bhabha, e⁺,e⁻,γ: |y|>12 mm

±z Hemispheres	P2,Q2 y >12mm	& E(γ)>0.1GeV y(γ) >12mm	
e⁺	55.1 %	14.7 %	
e [±] γ	44.9 %	ISR 0.89 % FSR 13.8 % FSR 2.96%*	

*FSR $\Omega(e^{\pm},\gamma) > 5 \text{ mRad}$

y distribution

n

-50

-40

-60

-80

-100 +- -100

50 10 x(el.), |z|=647 (mm)

100

Bhabha electron θ (set by 2 points) : IP – Si.hit

Requirement: 1 μRad on mean of θ

- **1. IP by BPM** (beam position monitor) on beam current x,y by BPM, z by timing
- 2. LumiCal Si-wafer position mounted on Flanges reference to "beam center" at Flanges
 - → 1. construction survey to sub-micron
 2. monitoring on Flanges z position

Survey/monitoring, for Beam IP position

15

multiple scattering, against 10⁻⁴

- **1. BHLUMI** scattered e^+ , e^- **Multi. Scatt. smearing 100 µRad** $\theta' = \theta \cdot \sigma (100\mu R), \quad \varphi' = \varphi \cdot \sigma (100\mu R)$
- 2. $\delta N/N$ due to $\sigma(100\mu R)$ smearing δN = deviation due to Multi.Scatt. effect is Gaussian, Symmetric at θ_{min} = 25 mRad, slope of Bbhabha in neiboring 100 μ Rad bins to 25mR $\delta N(@25mR)/N(25-80 mR) < 10^{-4}$

e⁺, e⁻ back-back, calibrate survey, if narrow

• Bunch size $\sigma_x = 6 \mu m$, $\sigma_y = .035 \mu m_z = 9 mm$ \rightarrow IP spot, 33mRad Xing $\sigma_x = 6 \mu m$, $\sigma_z = 380 \mu m$

6/2 µm

dZ = 0.19 mn

33-mR

• $Z \rightarrow e^+, e^-$ at $\vartheta = 30 \ mRad$ smearing at @z=560mm smeared width $\sigma(\vartheta) = 24 \ \mu Rad$ back-to-back $\sigma(\Omega) = 21 \ \mu Rad$

IP collision spot

BHLUMI scattered e^+ , $e^ \vartheta$, φ smeared 100 μR

Electron hits on 1st Si-wafer

1 mm Be thin pipe window 33 mm = $0.09 X_0$ traversing @ 30mR

IP $(\sigma_x, \sigma_z) = (6, 380 \ \mu m)$

50 GeV e⁺, e⁻

@ ($\vartheta = \pm 30 \text{ mRad}, \varphi = 1.0, 1.0 + \pi \text{ Rad}$) Si wafer @z=560mm

 $\circ |x| < 6.0 \text{ mm } \sigma(\vartheta) = 54 \ \mu \text{R}$ (1mm Be) $\circ |x| > 6.0 \text{ mm } \sigma(\vartheta) = 95 \mu R$ (1m Al pipe) o back-back Op.Ang $\sigma(\Omega) = 137 \,\mu R$

$e\pm$ GEANT hit – gen. |x|>6 hit – gen. |x|<6

Be

Low-mass

window

LumiCal detector/electronics options

Si-wafers for electron impact position

Strip detector 50 or 100 μm pitch, 2D x,y
AC LGAD, 2D long coupling layer
Readout: (LGAD) tracker readout, fast and pileup ID

Calorimetry, LYSO rad-hard bars

- \circ 2 X₀ (3x3x23mm3) position, e/ γ etc
- o 13 X0 (10x10x150 mm3) Ebeam electron ID
- **Readout:** SiPM + ECAL front-end, trigger and pileup ID

LumiCal trigger

- Single side, long LYSO E> Ebeam/2
- Coincidence +z,-z E> Ebeam/2, event rate @L=10³⁶ 0.003 /b.c. but Pileup ~10⁻⁴ shall be identified

Bhabha event pile-up rate @Z-pole

Multiple Scattering, test beam

南京大学-紫金山天文台 Si-strip station

- Cosmic ray Muon, > 1 GeV filtered
- ο 6 sets (x,y) 200 µm pitch, VA readout

hits (X) incoming track Event Number: 1148 incoming track (exptra.) $\Delta \theta = 0.051 \text{ rad}$ scattered track 100 80 **GEANT 30 mm Pb muon scattering** 60 F 40 20 30 mm Pb 100 200 300 400 500 600 700 800 Z [mm] journal.pone.0144679 **Cosmic Muon energy** MeV_1 (B) 2 GeV muon 1 GeV muon Sanuki et al. Flux S Haino et al. -2 S μ Flux * 0.1 Vertical Flux (cm⁻² 0 01 01 01 10 This Exp Work 2770m 11.2 GV 30m 11.4 GV 10^{4} 10^{3} Muon Energy (MeV)

Hao, Yuhui Miao, Xingyang Sun, Ligang Xia, Lei Zhang

Changhua

21

Prototyping, forward LYSO @BES III

BES III forward, between beam pipes, stack total length 120mm

• LYSO crystals 3x5 bars (9x10mm² frontface)

GEANT LYSO @BES III

BES III forward, between beam pipes

- Electron impact position analysis
- Position by Center-of-Gravity
- Calibrated for correction

LYSO dE/dx

GEANT 1 GeV electron passing 1.45 cm Cu beam pipe materials

Diamond fast beam monitor

- Beam monitoring
 Bhabha electrons of
 ~10 mRad (CMS)
 ~25 mRad (Lab 33 mRad beam crossing)
- front of Quadrupole |z|= 855~1110 mm
 diamond slab, on sides of beampipe
- o differing event rates on +z, -z sides for IP offset

50 GeV electron on diamond

- 50 GeV electrons at CMS 9 ~ 12 mRad, Lab 25.5 ~ 28.5 mRad
- 3 mm thick Cu beampipe (~300 mm traversing)
- o dE/step of charged tracks (>100 keV) in diamond

Diamond slab covering 8~15 mRad X-sec order of ~100 nb

Producing diamond pads

- Two prototype microstrip diamond sensor successfully fabricated
- Pitch of 1.0 mm on 10 mm imes 10 mm
- Pitch of 1.35 mm on 6 mm imes 6 mm diamond

Test PCBs preparation

TCAD simulation

Jialiang Zhang²⁶

Wang Yilun

Backup

Giovanni Abbiendi INFN – Sezione di Bologna

Introduction

Small-angle Bhabha scattering:

- ➤ virtues
- > new OPAL analysis (PR407)
- crucial experimental issues
- theoretical uncertainties
- results
- Existing measurements (s, t channel)
 - comparison with L3 result
- Conclusions
- 40th Rencontres de Moriond *Electroweak Interactions and Unified Theories*, La Thuile, 5-12.3 2005

Small-angle Bhabha scattering

an almost **pure QED** process. Differential cross section can be written as:

experimentally: high data statistics, very high purity

This process and method advocated by Arbuzov et al., Eur.Phys.J.C 34(2004)267

29

Small-angle Bhabha scattering

BHLUMI MC (S.Jadach et al.) calculates the photonic radiative corrections up to $O(\alpha^2 L^2)$ where $L = \ln(|t| / m_e^2) - 1$ is the Large Logarithm Higher order terms partially included through YFS exponentiation Many existing calculations have been widely cross-checked with BHLUMI to decrease the theoretical error on the determination of Luminosity at LEP, reduced down to 0.054% (0.040% due to Vacuum Polarization)

Canonical coefficients					
			$ heta_{min}=30\mathrm{mrad}$		60 mrad
		LEP1	LEP2	LEP1	LEP2
$\mathcal{O}(\alpha L)$	$\frac{lpha}{\pi}4L$	137×10 ⁻³	$152{ imes}10^{-3}$	150×10 ⁻³	165×10 ⁻³
$\mathcal{O}(\alpha)$	$2\frac{1}{2}\frac{lpha}{\pi}$	2.3×10 ⁻³	$2.3 imes 10^{-3}$	2.3×10 ⁻³	2.3×10 ⁻³
$\mathcal{O}(lpha^2 L^2)$	$\frac{1}{2}\left(\frac{lpha}{\pi}4L\right)^2$	9.4×10 ⁻³	11×10 ⁻³	11×10 ⁻³	14×10^{-3}
$O(\alpha^2 L)$	$\frac{\alpha}{\pi}\left(\frac{\alpha}{\pi}4L\right)$	0.31×10^{-3}	0.35×10^{-3}	0.35×10^{-3}	0.38×10 ⁻³
$\mathcal{O}(lpha^3 L^3)$	$\frac{1}{3!}\left(\frac{lpha}{\pi}4L\right)^3$	0.42×10^{-3}	0.58×10^{-3}	0.57×10^{-3}	$0.74 imes 10^{-3}$

Size of the photonic radiative corrections (w.r.t. Born = 1)

First incomplete terms $O(\alpha^2 L)$ $O(\alpha^3 L^3)$

30

19 Silicon layersTotal Depth 22 X0**18 Tungsten layers**(14 cm)

Each detector layer divided into 16 overlapping wedges **Sensitive radius: 6.2 – 14.2 cm**, corresponding to **scattering angle** of **25 – 58 mrad** from the beam line

G.Abbiendi