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Jet in a detector

Jet is collimated spray of energetic detectable particles, that supposed
to have the same origin.

At the LHC, most jets are originated from energetic quark and gluon.
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Jet formation: parton shower and hadronization

For a collinear emission:

σn+1 ∼ σn

∫ dp2
a

p2
a

∫
dzαs

2π
P̂(z) ≡ σn

∫
dtW(t)

For multiple emissions

σn+m ∼ σn ·
∫

dt1 · · ·
∫

dtmW(t1) · · ·W(tm)

≡ σn ·
1

m!
(

∫
dtW(t))m

exp(−
∫

dtW(t)) is Sudakov form factor = No
emission probability

The probability for the next emission at t:

dProb(t) = dtW(t) exp(−
∫ t

t0
dtW(t))

The Lund String Model:
• String breaking probability

dP ∝ N exp(bA)dA
N, b are free parameters
A is the space-time area

• Excited quark
P ∝ exp(−πp2

⊥q
κ

) exp(−πm2
q

κ
)

Jinmian Li (Sichuan University) ML detectoin of SM jets Dalian 4 / 22



Jet tagging procudure
Jet sequential recombination algorithm

Different jet clustering algorithms use different definition of distance measure.
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Figures from Gavin P. Salam Eur.Phys.J.C67:637-686,2010
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Jet image representation
Each calorimeter cell as a pixel and the energy deposition as the intensity
A jet can be viewed as a digital image
Proceeded by 2-dimensional convolutional neural networks
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Graph and sequence representation
Sequences/trees formed through sequential parton showering and hadronization →
recurrent neural networks, transformer network, recursive neural networks
Graphs/point clouds with the information encoded in the adjacency nodes and edges →
graph neural networks
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The state-of-art performance of NN

• The ParticleNet, Particle Transformer, LorentzNet and PELICAN
are among the state-of-the-art methods, AUC values of over 0.98
for top tagging, without pileup effects.

• The momentum reconstruction component of PELICAN network
can predict the pT and mass of W boson with standard deviations
of a few percent.
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Possible drawbacks

• Performance depends on jet clustering algorithms and their
parameters.

• For new physics search, we do not know the jet mass, may be
difficult to choose an appropriate jet size.

• Image presentation breaks Lorentz symmetry, the jet mass
information is lost.

• May sensitive to pileup events.
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Object detection and Instance Segmentation
Instance Segmentation is a computer vision task in which the goal is to categorize each
pixel in an image into a class or object.

Mamba is a revolutionary State Space Model architecture
that excels in both efficiency and long-range modeling.
Linear-time complexity, a hardware-aware design inspired
by FlashAttention, unique selection mechanism allows it to
intelligently compress context and selectively capture long-
range dependencies.
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Objects and Methods

• Treat the entire event as a single image in the
pseudorapidity-azimuth (η − ϕ) plane.

• Employ a vision-adapted Mamba network (VMamba-V2) as the
core feature extractor

• Simultaneous instance segmentation, classification, and kinematic
regression for H, t, W/Z, b and q/g jets.

• Recognize their subsequent decay products.
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Data Preparation

• Simulate the SM processes:

jjjj, bb̄WW,Hbb̄,HHWW,Ht̄t, tb, t̄t, t̄tW, t̄tZ, t̄tt̄t
WH,WW,WZ,ZH,ZZ,ZZZZ

• Transverse momentum (pT) cuts of pb/W/Z/H
T > 200GeV and

pt
T > 300GeV were applied at parton level.

• Heavy particles were required to decay hadronically: t → Wb,
H → bb̄, W/Z → jj.

• Average number of 50 pileup events are superposed on each one of
the hard events.

• Granulate the event image: the transpose momenta as grayscale
on the η − ϕ plane, with pixel size ∆η ×∆ϕ = 0.02× 0.02.
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Defination of jet constituents for quarks

• Due to color confinement, some of the quark fragmentation final states
could have multiple ancestors

• Classify final-state hadrons into two categories based on their ancestral
traceability: U (unambiguously mapped to a single parent quark), C
(momentum inherited from a group of color-connected ancestor quarks)

• The momentum of the k-th initial-state quark is

pk =
∑

u∈Uk

pu +
∑
c∈C

αkcpc

• Determination of α corresponds to a Mixed-Integer Linear Programming
problem:

α̂ = arg min
α

L(α), subject to
K∑

k=1

αkj = 1, ∀j ∈ C, αkj ∈ 0, 1

with

L(α) =
k=K∑
k=1

∆pk ≡
k=K∑
k=1

|pqk − pk(αkc)|
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The inputs to the network

• Grid covers η ∈ [−π, π] and ϕ ∈ [0, 2π] and has a fine granularity
of 0.02× 0.02.

• Base features include four-momenta components (px, py, pz,E),
the absolute charge |Q| and the transverse impact parameter d0

• Instance Segmentation Mask: 1). ensure IRC safety (constituent

particle with transverse momentum pT > 0.1 GeV, pseudorapidity |η| < π and at least 4 other

assigned constituents are present within a 20-pixel radius.) 2). 2D Gaussian
distributed mask with σ = 2 pixel. 3). each of the initial masks is
individually normalized by its own maximum value.

• Kinematic Regression Targets: Ancestor particle’s
four-momentum: pT, y, ϕ, m.
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The Network Architecture
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1. The input event image processed by a “Patching” module. 2. The VMamba V2
backbone processes these patches to produce an image embedding feature. 3. A Multi-Head
Attention module fuses the global event embedding with query tokens. 4. Output tokens
are then processed by two parallel prediction heads.
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Training the network

• The model consists of 4.75 million trainable parameters
• The model was trained for 120 epochs on two NVIDIA RTX 3090

(24GB) GPUs, a process that took approximately 194 hours.
• On a single RTX 3090 GPU, the average inference time per event

is approximately 10.6 milliseconds.
• Each event sample in every epoch was randomly overlaid with

pileup interactions.
• To improve the model’s rotational invariance and leverage the

detector’s azimuthal symmetry, we apply a random azimuthal
shift during training.

https://github.com/scu-heplab/seg-any-sm-jet.
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The network performance
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• Multi-level jet identification: recognizing primary heavy particles and
their decay products.

• Correctly associates these non-adjacent jets, grouping them to
reconstruct the parent Higgs boson.

• The shaded regions delineate the jet areas found using the anti-kT
algorithm with cone size parameter R = 0.8.
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The Confusion Matrix

t H W/Z b j
Prediction

t

H

W/Z

b

j

Tr
ut

h

0.884 0.015 0.098 0.002 0.002

0.026 0.906 0.037 0.028 0.003

0.055 0.002 0.922 0.003 0.019

0.011 0.016 0.023 0.895 0.055

0.002 0.002 0.147 0.077 0.772

• The diagonal elements represent
the recall (true positive rate) for
each category, indicating the
fraction of jets correctly classified.

• The highest recall is achieved for
H- and W/Z-jets, their
constituents can be
unambiguously identified from
the Monte Carlo truth.

• The tendency for top-jets to be
misidentified as W/Z-jets, due to
soft or merged b-jet.
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The Momentum Regression
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Effects of pileup events

Using the Average Precision at an IoU threshold of 0.5 (AP50)

⟨µ⟩ 5 20 50 100 150 200
t 0.537 0.527 0.505 0.47 0.426 0.364
H 0.482 0.472 0.458 0.429 0.392 0.341

W/Z 0.604 0.591 0.569 0.519 0.466 0.401
b 0.588 0.58 0.568 0.539 0.517 0.487

• Increasing pileup uniformly degrades the classification performance
across all jet classes

• Jets with complex internal structures, like hadronically decaying top-
and W/Z-jets, are more susceptible.

• The b-jet exhibits the highest resilience to pileup
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Reconstruction of BSM resonances
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• H+ from pp → H+(→ HW), t′ from pp → Zt′(→ tH)

• The model can generalize to successfully identify and reconstruct unseen BSM
signals (which did not seen in training).

• The nominal-cut samples consistently yield narrower peaks, indicating better mass
resolution.

• H+ resonance is reconstructed with much better resolution than the t′
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Conclusion

• Our model unifies instance segmentation, classification, and
kinematic regression into a single multi-task learning system,
allowing for the simultaneous identification of both primary jets
and their internal sub-jet structures.

• VMamba benefited from efficiency and long-range modeling
capabilities.

• Pileup mitigation can be implemented intrinsically.
• Applicable to events of general processes.

Future prospects:
• Improve the light-flavor, gluon jet reconstruction?
• The tracker has better angular resolution than the electromagnetic/hadronic

calorimeter. To incorporate the particle level information in event image?
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