Dark particles twinkle in hadronic
calorimeters at future Higgs factories
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Long -lived particle (LLP) searches at colllders
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t In general, displaced charged particles have cleaner backgrounds thandlsplaced
 photons, thanks to the higher position resolution of the vertex detector and the tracker.




Large backgrounds for displaced mono-photon at future Higgs factories
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Dlsplaoed photons face substantial backgrounds unless |
high-granularity directional calorimetry Iis employed.




HCAL and the muon detector serving as photon far detectors
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X,: heavier dark sector particle
X,: lighter dark sector particle or SM neutrino
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( Using the ECAL as a shield against mono—photonibamte prive and
| - detecting displaced photons in the HCAL or muon detector.




HCAL and the muon detector serving as photon far detectors
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plates and scmtlllators when con3|dered as detectors for photons.




The HCAL serving as a photon far detector
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(radiation length 1.21 1.44 5.68
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Critical energy | ~20.7 MeV ~15.7 MeV ~20.7 MeV
Energy
threshold for 1.37 GeV 2.30 GeV 7332 TeV
five layers

We can only use the HCAL to detect photons elther GS HCAL or PSHCAL prowded that ]




The GS-HCAL serving as photon far detectors
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Sampling fraction ~1.6% (7=, MC) Sampling fraction ~31%

With high density and thick GS cell desirgn, e splin rctionG '
HCAL can be ilr1c3=rease=d by a factor of ~20 oa to tatf PSA. - *
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] ~_assume a 50% reconstruction efficiency.




GS-HCAL barrel serving as a photon far detector
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The HCAL barrel is surrounded by ECAL, HCAL engcap, undtctor, itget B
provide strong veto capabilities against beam-related backgrounds, cosmic rays, and neutral |

particles from the primary interaction.
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Backgrounds
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* Photon backgrounds Pl,=e /9% =78 x107°
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* Neutrino backgrounds ; " Penetrate the ECAL barrel
5 | and subsequently deposit
* Neutral hadron backgrounds energy in the HCAL barrel. |
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The dominant SM backgrounds for the HCAL-y ; signature originate from single photons, neutrinos, or
neutral hadrons produced at the primary vertex without any accompanying detectable particles. ]

These neutral particles evade detection in the inner tracker and ECAL, and subsequently deposit }
energy in the HCAL barrel. *
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Photon Backgrounds
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Neutrino Backgrounds
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- Simulate 10° e™ T = eventschh |
' pT > 1GeV, p]”3 < 10 GeV, and AR,; > 0.4
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Neutral hadron Backgrounds
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| Veto events If there are trakcswrch o

P > () 1 GeV or photons W|th E > O 1 GeV

- Select events with

one neutron or K; within the HCAL barrel.
Only one event is found (large uncertainty).

1
Nia * =~ 7o5 X 03 X £ x Pl = 858
Thmnduced by photon; differ edly from those of hadrons.
Hence, with full exploitation of the high granularity and high sampling fraction of the GS-
HCAL neutral hadron backgrounds can be effectlvelysuppressed o

Particle flow algorithms? 12



Backgrounds

Optimistic estimation
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Three mono-photon signatures
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Three Mono- photon S|gnatures give complementary senS|t|V|| nphoton portal LLPs
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Axion portal operator
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a. axion like particle

F,,: the field-strength tensor of the dark photon y’

B,,; the hypercharge field-strength tensor _
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CEPC sensitivities on axion portal operator
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The HCAL-y, signature provides |
exceptional sensitivity to LLPs with |

decay lengths between ~1 and 10° ]
meters and achieves the best sensitivity |

when L, = R}




CEPC sensitivities on axion portal operator
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The HCAL-y, signature shows better sensitivity for Iarge but Ioses senS|t|V|ty for
P 97 due to the photon energy threshold of the HCAL.




CEPC sensitivities on neutrino dlpole portal operator
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Summary

* We propose using the HCAL as a far detector for photons from LLP decays at future Higgs
factories, with the forward ECAL acting as a shield against SM particles from the primary
vertex.

 The HCAL mono-photon signature provides excellent sensitivity to LLPs with decay lengths
between ~1 and 10° meters.

 The dominant backgrounds, originating from neutral hadrons produced at the primary vertex,
are expected to be efficiently suppressed by particle flow algorithms.

* Next, we plan to compare the HCAL mono-photon sensitivity to photon-portal operators with
those of high-granularity directional ECALs and other proposed far detectors.
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