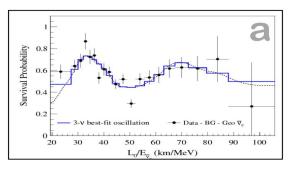
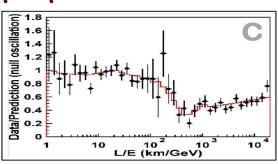
New Physics v.s. Nuclear Physics from Neutrino Physics (NP3)

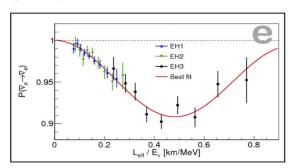
Yu-Feng Li (李玉峰)
Institute of High Energy Physics &
University of Chinese Academy of Sciences, Beijing

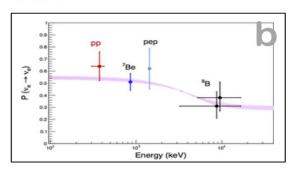

第四届高能物理理论与实验融合发展研讨会

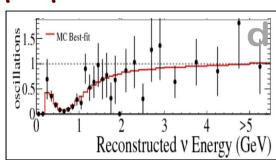
辽宁大连

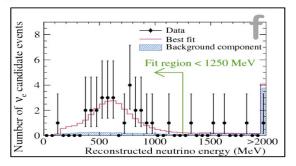

21st Sep. 2025

Neutrinos Do Oscillate!

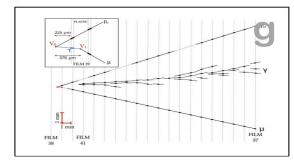



$\mu \rightarrow \mu$


e→e


e→e

$\mu \rightarrow \mu$

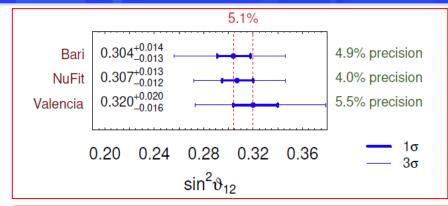

μ→е

Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric).

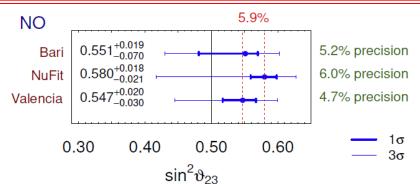
$\mu \rightarrow \tau$

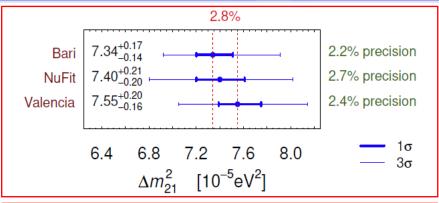
Three Neutrino Paradigm

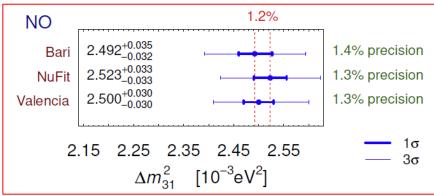
Standard Parameterization of Mixing Matrix

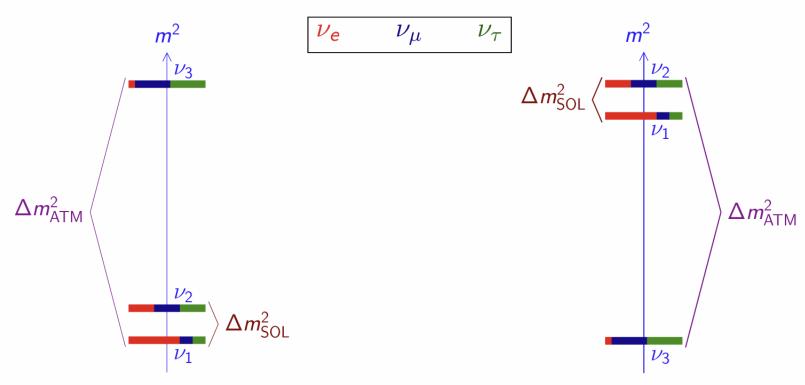

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$=\begin{pmatrix}c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}}\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13}\\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13}\end{pmatrix}\begin{pmatrix}1 & 0 & 0\\ 0 & e^{i\lambda_{21}} & 0\\ 0 & 0 & e^{i\lambda_{31}}\end{pmatrix}$$


$$c_{ab} \equiv \cos \vartheta_{ab}$$
 $s_{ab} \equiv \sin \vartheta_{ab}$ $0 \le \vartheta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi$


- 3 Mixing Angles: ϑ_{12} , ϑ_{23} , ϑ_{13}
- 1 CPV Dirac Phase: δ_{13}
- 2 independent $\Delta m_{kj}^2 \equiv m_k^2 m_j^2$: Δm_{21}^2 , Δm_{31}^2
- > Absolute Mass Scale
- > Two CPV Majorana Phases


Global picture



- > 5 parameters: measured with rather high accuracy
- Mass ordering, CP violation to be determined

Unknowns: mass ordering and CP violation

Normal Ordering

$$\Delta m_{31}^2 > \Delta m_{32}^2 > 0$$

Inverted Ordering

$$\Delta m_{32}^2 < \Delta m_{31}^2 < 0$$

absolute scale is not determined by neutrino oscillation data

Unknowns: mass ordering and CP violation

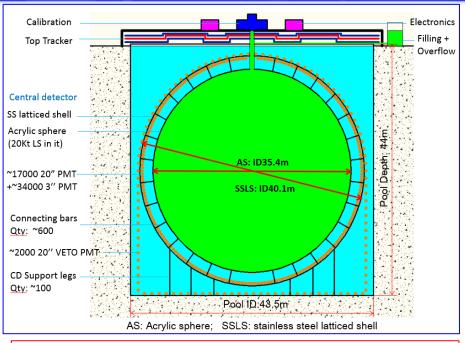
$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \delta_{\alpha\beta} - 4 \sum_{k>j} \text{Re} \left[U_{\alpha k}^* \ U_{\beta k} \ U_{\alpha j} \ U_{\beta j}^* \right] \sin^2 \left(\frac{\Delta m_{kj}^2 L}{4E} \right)$$

$$- 2 \sum_{k>j} \text{Im} \left[U_{\alpha k}^* \ U_{\beta k} \ U_{\alpha j} \ U_{\beta j}^* \right] \sin \left(\frac{\Delta m_{kj}^2 L}{2E} \right)$$

$$- \text{CP violating}$$

► The oscillation probabilities depend on the quartic rephasing invariants

$$U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^*$$

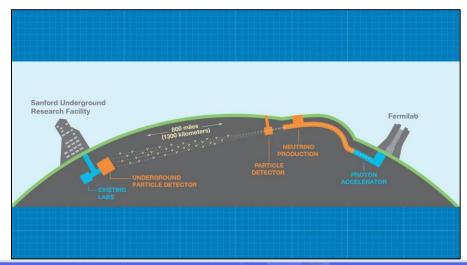

CP violation depends on the Jarlskog invariant

$$J_{\text{CP}} = \pm \operatorname{Im} \left[U_{\alpha k}^* \ U_{\beta k} \ U_{\alpha j} \ U_{\beta j}^*
ight] = c_{12} s_{12} c_{23} s_{23} c_{13}^2 s_{13} \sin \delta_{13}$$

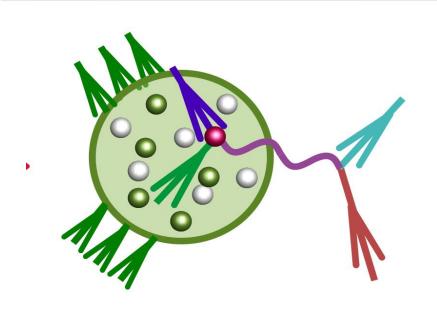
Open questions

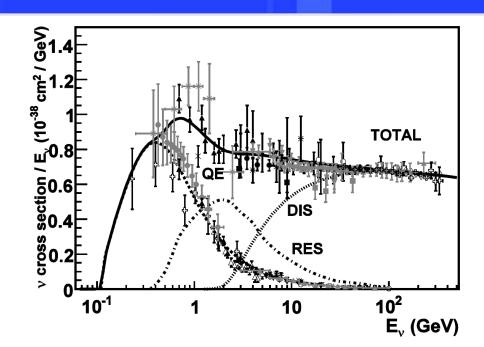
- $\triangleright \ \vartheta_{23} \leqslant 45^{\circ}$?
 - ► T2K (Japan), NOvA (USA), ...
- ► CP violation ? $\delta_{13} \approx 3\pi/2$?
 - ► T2K (Japan), NOνA (USA), DUNE (USA), HyperK (Japan), ...
- Mass Ordering ?
 - ► JUNO (China), PINGU (Antarctica), ORCA (EU), INO (India), ...
- Absolute Mass Scale ?
 - \triangleright β Decay, Neutrinoless Double- β Decay, Cosmology, ...
- Dirac or Majorana?
 - ightharpoonup Neutrinoless Double- β Decay, ...
- Beyond Three-Neutrino Mixing ? Sterile Neutrinos ?

Three future experiments


JUNO: 2025 (running)
Reactor neutrinos for MO

Hyper-Kamiokande: 2028


Acc. & Atm. neutrinos, MO & CP


DUNE: 2031

Acc. & Atm. neutrinos, MO & CP

A: GeV neutrino-nucleus interactions

quasielastic scattering

$$\frac{v_l + n \to l^- + p}{\overline{v_l} + p \to l^+ + n}$$

Fermi motion, binding energy, M_A, 2p2h,

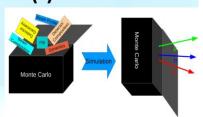
resonance production

$$v_l + n \rightarrow l^- + \Delta^+ \ v_l + p \rightarrow l^- + \Delta^{++} \ \overline{v_l} + n \rightarrow l^+ + \Delta^- \ \overline{v_l} + p \rightarrow l^+ + \Delta^0$$
Hardon production, FSI

deep-inelastic scattering

$$\frac{v_l + N \rightarrow l^- + N' + n\pi}{v_l + N \rightarrow l^- + N' + n\pi}$$

Parton Model, FSI


GeV neutrino interaction generators

Status overview

- Well established generator
 - Used by many experiments around the world
 Main new addition is JUNO
 - Main generator for all the LAr experiments
- Two main efforts
 - Model developmen
 - Tuning
- Contacts, details and code are all available from our website: www.genie-mc.org/
- Latest release: version 3.04.02, released in April 2024
 - Previous release was 3.04.00, released in March 2023
 http://releases.genie-mc.org/
- o <u>intip//releases.geme-inc.or</u>
- Recent publications
 - Neutrino-nucleon cross-section model tuning in GENIE v3 Phys.Rev.D 104 (2021) 7, 072009
 - Hadronization model tuning in genie v3 Phys.Rev.D 105 (2022) 1, 01200

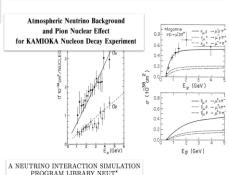
NuWro - general information (1) Jan T. Sobczyk @ NUINT24

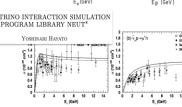
- · Monte Carlo generator of neutrino interactions
- Beginning ~ 2005 at the University of Wrocław
- · Optimized for ~1 GeV
- · Can handle all kind of targets, neutrino fluxes, equipped with detector interface
- · Written in C++
- · Output files in the ROOT format
- PYTHIA6 used for hadronization in DIS
- Open source code, repository: https://github.com/NuWro/nuwro

UNIVERSAL NEUTRINO GENERATOR

& GLOBAL FIT

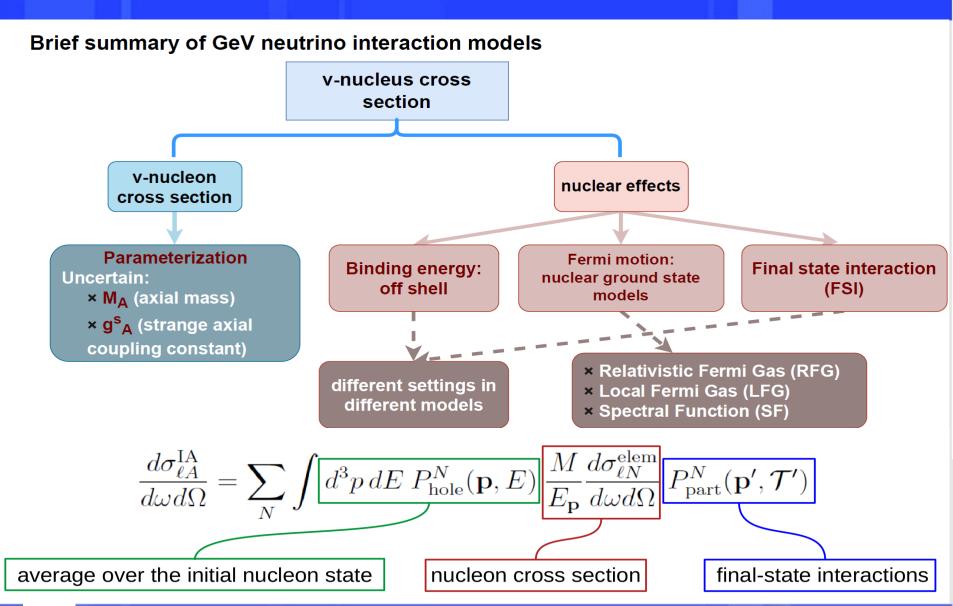
- GiBUU is presently used to describe
 - Dilepton and pion production in heavy-ion collisions (HADES experiment at GSI)
 - 2. Inelastic electron scattering at JLAB (and SLAC, MAMI)
 - 3. Neutrino-nucleus reactions at Fermilab, T2K and FASER
- All with the same theory input and code!
- We provide the code for download from gibuu.hepforge.org,

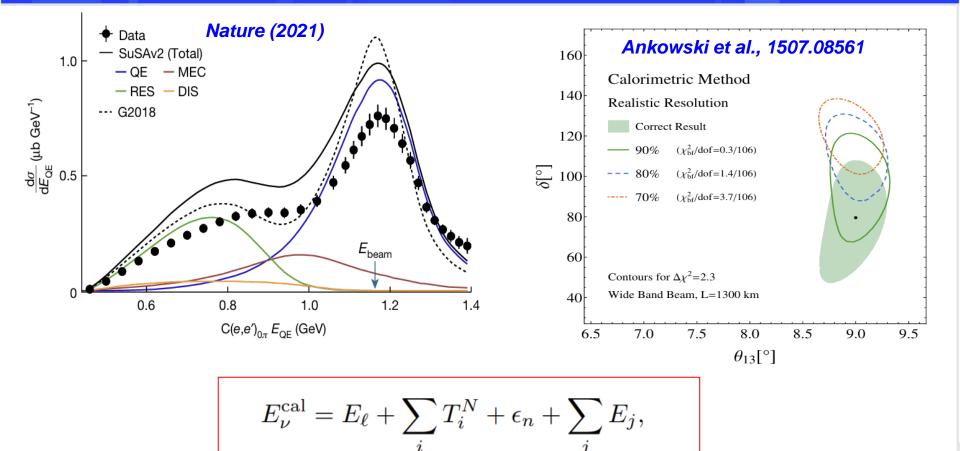

The NEUT neutrino interaction simulation program library


Tomasa Ingato o and Law I calling

The European Physical Journal Special Topics volume 230, pages 4469–4481 (2021)

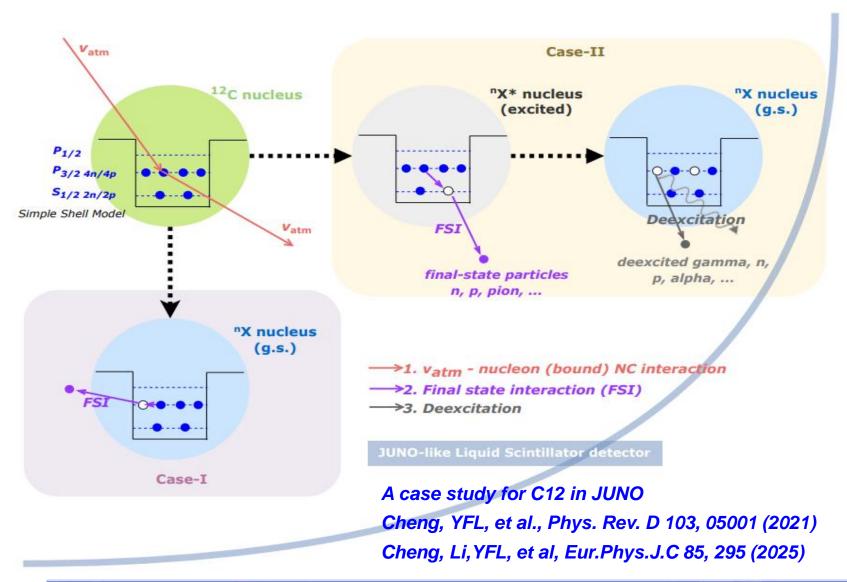
- MeV to TeV scale neutrino interaction generator originally created in the 70s to support neutrino backgrounds at Kamioka.
- ◆ Long history of development driven by evolving requirements of KamiokaNDE, Super-KamiokaNDE, and T2K.
- Currently the primary interaction generator for SK and T2K, used in all oscillation/cross-section analyses.
 - → See Laura, Stephen, Ulyesse, and Cesar's talks this NuINT!


Patrick Stowell @ NUINT24

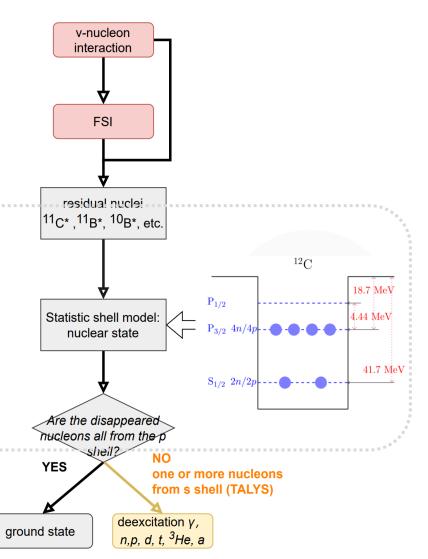


<u>D</u>

General components in generator



Nuclear effects on oscillation search



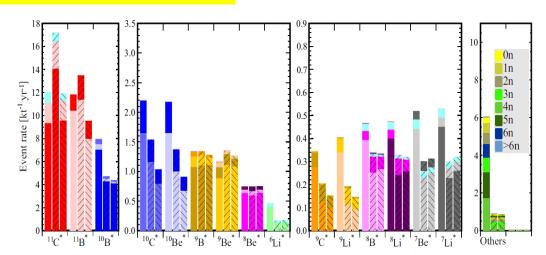
- The energy is reconstructed within the calorimetric method.
- Missing neutrons (pions) may bias the energy and then result in wrong oscillation parameters.

New Methodology: adding deexcitation

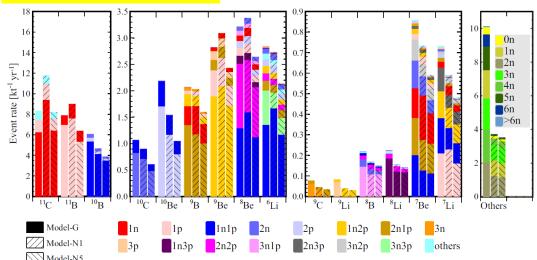
TALYS-based Deexcitation

Simple shell model → Status of the residual nuclei

- All residual nuclei with A>5 have been considered
- Taking 11C*, 11B*, 10C*, 10Be* and 10B* for example

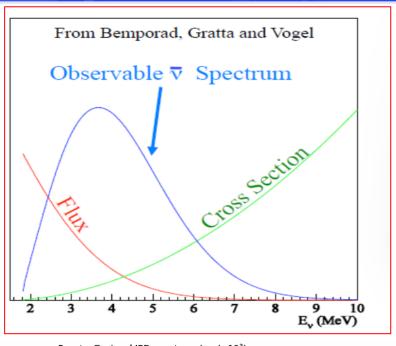

Daughter Nuclei	Shell Hole	Configuration Probability	Excitation Energy
¹¹ C* or ¹¹ B*	$s_{1/2}$	1/3	$E^* = 23 \text{ MeV}$
	$p_{3/2}$	2/3	$E^* = 0 \text{ MeV}$
$^{10}\mathrm{C}^*$ or $^{10}\mathrm{Be}^*$	$s_{1/2}$	1/15	$E^* = 46 \text{ MeV}$
	$p_{3/2}$	6/15	$E^* = 0 \text{ MeV}$
	$s_{1/2} \ \& \ p_{3/2}$	8/15	$E^* = 23 \text{ MeV}$
¹⁰ B*	$s_{1/2}$	1/9	$E^* = 46 \text{ MeV}$
	$p_{3/2}$	4/9	$E^* = 0 \text{ MeV}$
	$s_{1/2} \& p_{3/2}$	4/9	$E^* = 23 \text{ MeV}$

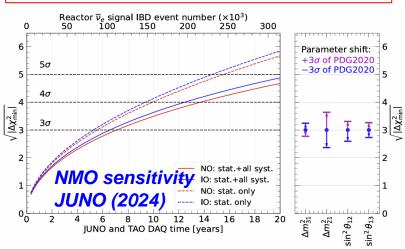
Triggered a variety of research interest in the neutrino interaction community:

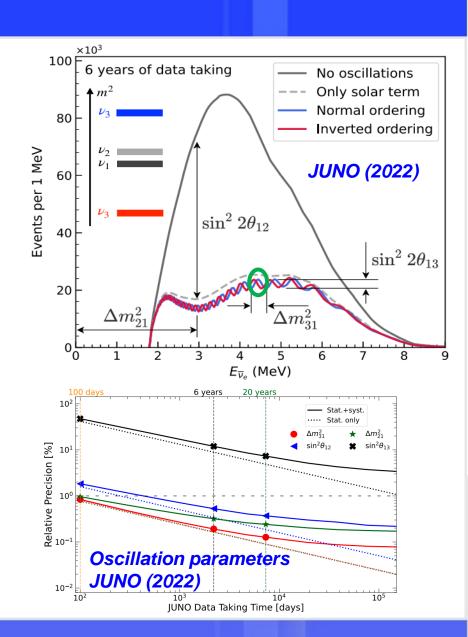

Abe, PRD (2024), 2508.04040, etc. Guo et al, PLB (2022), PLB (2025) etc. Gardiner, MARLEY

Impact on exclusive cross sections

Before deexcitation

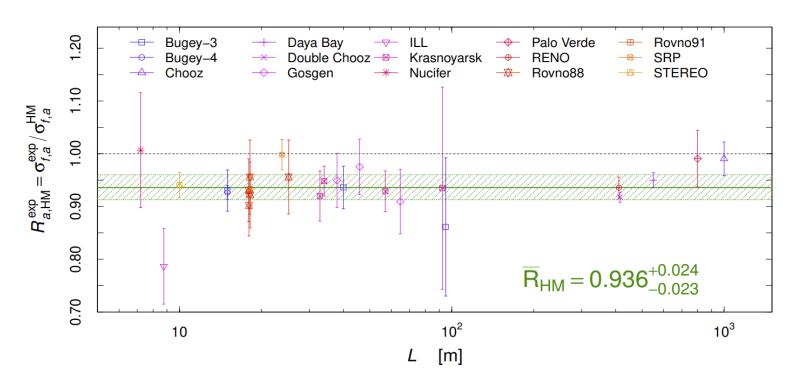



After deexcitation



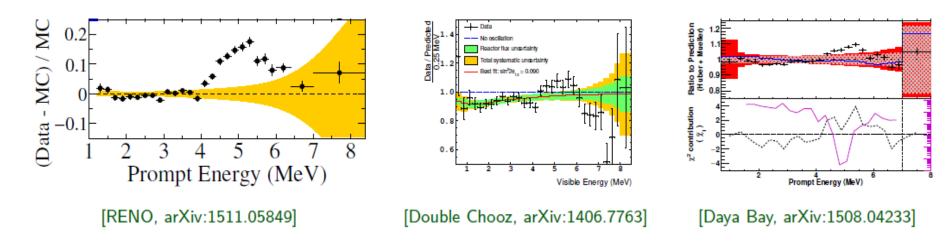
- ¹¹C, ¹¹B, ¹⁰B reduced, and lighter nuclei increased; neutron multiplicity redistributed.
- Exclusive final-state information, such as the neutron multiplicity, the charge pion multiplicity, the unstable nuclei, is important for
- (a) Energy reconstruction
- (b) Evaluate systematics

B: MeV neutrino production from Reactors



2011: HM fluxes (conversion method)

[Mueller et al, arXiv:1101.2663], Huber, arXiv:1106.0687]



 $2.5 \sigma \text{ deficit} \Longrightarrow \text{Anomaly!}$

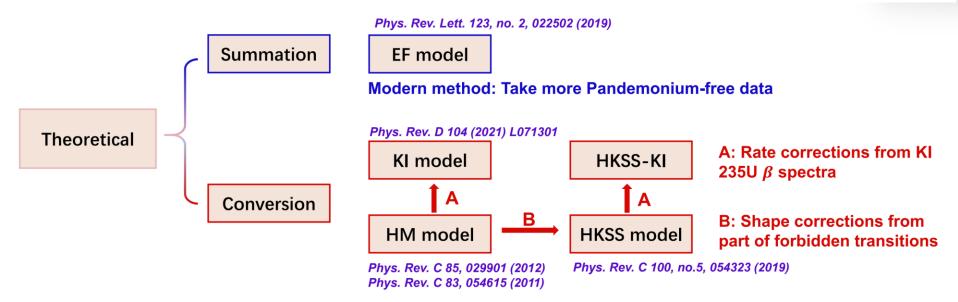
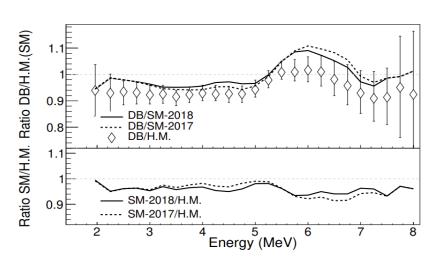
Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

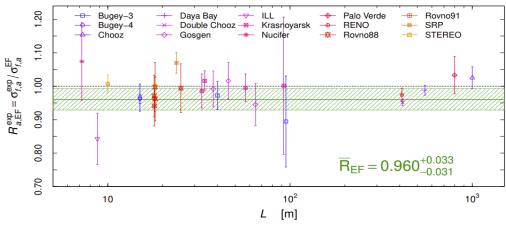
ightharpoonup Original 2011 Reactor Antineutrino Anomaly: 2.5 σ [Mention et al, arXiv:1101.2755]

Even worse for spectral measurement

- (1) "5 MeV bump" (cannot be explained by oscillation) questioned the theoretical reactor model (HM model).
- (2) New development in theoretical models
 - New summation model
 - KI (Kurchatov Institute) beta spectrum measurements
- (3) New development in experimental measurements
 - > Fission evolution data from Daya Bay & RENO

New reactor flux models

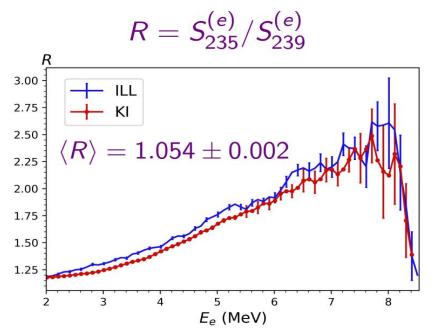

Diagram Courtesy: XIN Zhao

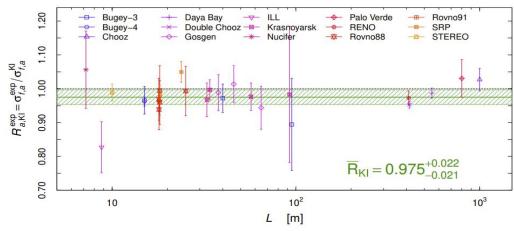
Many efforts from nuclear physics community!

2019: EF fluxes (summation method)

[Estienne, Fallot, et al, arXiv:1904.09358]

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820


1.2σ deficit \Longrightarrow No Anomaly!

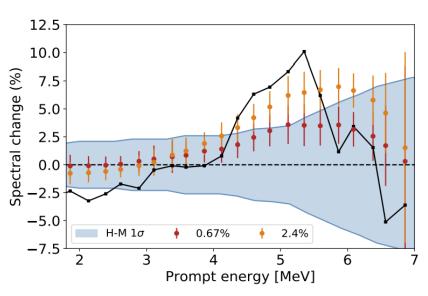

[See also: Berryman, Huber, arXiv:1909.09267, arXiv:2005.01756]

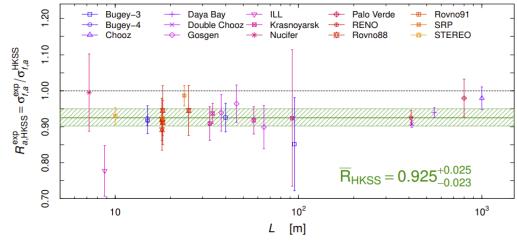
- UNKNOWN UNCERTAINTIES!
- ► Rough estimation used in our calculations: 5% for ²³⁵U, ²³⁹Pu, ²⁴¹Pu and 10% for ²³⁸U. [Hayes, Jungman, McCutchan, Sonzogni, Garvey, Wang, arXiv:1707.07728]

2021: KI fluxes (conversion method)

[Kurchatov Institute: Kopeikin, Skorokhvatov, Titov, arXiv:2103.01684]

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

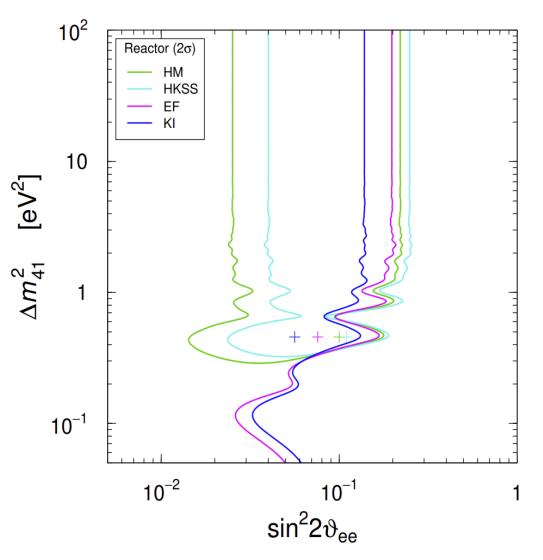

 1.1σ deficit \Longrightarrow No Anomaly!


Approximate agreement with ab initio EF fluxes!

HM + KI uncertainties.

2019: HKSS fluxes (conversion method)

[Hayen, Kostensalo, Severijns, Suhonen, arXiv:1908.08302]

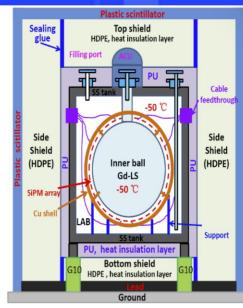

Giunti, YFL, Ternes, Xin, arXiv: 2110.06820

2.9σ deficit \Longrightarrow Anomaly larger than the 2.5σ HM anomaly!

[See also: Berryman, Huber, arXiv:1909.09267, arXiv:2005.01756]

HM + HKSS uncertainties.

Limits on Sterile Neutrinos

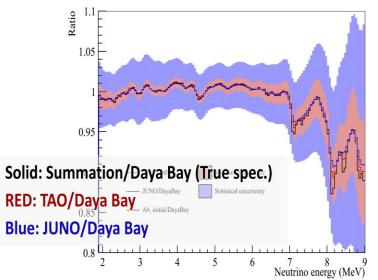


- The favored KI and EF models are compatible with the absence of SBL oscillations and give only 2σ upper bounds on the effective mixing parameter $\sin^2 2\vartheta_{ee} = \sin^2 2\vartheta_{14}$.
 - Independently from the reactor neutrino flux model, we have

$$\sin^2 2\vartheta_{ee} \lesssim 0.25$$
 at 2σ .

JUNO-TAO

- Taishan Antineutrino Observatory (TAO), a tonlevel, high energy resolution LS detector at 30 m from the 4.6 GW_{th} core, a satellite exp. of JUNO.
- Measure reactor neutrino spectrum w/ high E resolution.
 - Model-independent reference spectrum for JUNO
 - A benchmark for testing the nuclear database



<u>CDR:</u> 2005.08745

<u>Calibration</u> <u>strategy:</u> 2204.03256

Detector Features

- 2.8 ton Gd-LS, 10 m² SiPM (84.6% photocathode coverage) w/ PDE > 50%
- Operate at -50 °C (SiPM dark noise)
- 4500 p.e./MeV, <2% resolution @ 1MeV
- 2025 (Commissioning now)

Constrain the fine structure in [2.5, 6] MeV to < 1%

2111.10112

Conclusion and Outlook

Nuclear physics effects play crucial roles in new physics search of neutrino physics:

- GeV neutrino-nucleus interactions
 - → Strong effects in energy reconstruction and systematics
 - → CP violation from long-baseline neutrino experiments
- MeV neutrino production from reactors
 - → important inputs for mass ordering measurement at JUNO
 - → Also affects other new physics search (sterile neutrinos)
- Nuclear Matrix Element of Neutrinoless Double Beta Decay
- Coherent Elastic Neutrino-Nucleus Scattering
- → Opportunities for interdisciplinary research between particle, nuclear, (astro- physics) community!