

Testing Leptogenesis from Observable Gravitational Waves

Wei Liu (刘威) Nanjing University of Science and Technology

in collaboration with Yongcheng Wu Arxiv:2504.07819

Baryon Asymmetry of the Universe

$$\frac{n_{\Delta B}}{s} \approx (8.59 \pm 0.11) \times 10^{-11}$$
 from Planck satellite

$$10^{10} + 1$$
 10^{10}

Figure from Kaori Fuyuto

Baryon Asymmetry of the Universe

- Sakhorov's criteria
- 1. Baryon number violating process,

Generate n_{AB} .

Triangle Anomoly

2. C and CP violations,

$$\Gamma(X \to Y + b) \neq \Gamma(\overline{X} \to \overline{Y} + \overline{b})$$
, L and R. CKM

$$\Gamma(X \to Y + b) \neq \Gamma(Y + b \to X).$$

Electroweak phase transition

Way too small to explain the observed BAU within the SM. We need new physics!

Baryon Asymmetry of the Universe

Seesaw mechanism

$$L \supset -y_D \overline{I_L} \widetilde{H} v_R - M_R \overline{v_R}^c v_R$$

$$M = \begin{pmatrix} 0 & M_D \\ M_D & M_R \end{pmatrix}$$

$$m_1 \approx \frac{-M_D^2}{M_R}, m_2 \approx M_R.$$

The lightness of the observed neutrinos is explained by heavy righthanded neutrinos,

Additional CP violations can exists in the neutrino mass matrix.

Leptogenesis

• ϵ_{aa} is the CP asymmetry in N_1 decay, comes from the interference between the tree-level and one loop amplitude.

• Hierarchical RH neutrinos,

$$M_{N_1} \ge 10^9 \text{GeV}.$$

Davidson-Ibarra Bound, no possible signatures.

Higgs mass unstable, Hierarchy problem

Resonant leptogenesis

if at least two of the RH neutrinos masses are degenerate,

Fine-tuned

$$\epsilon \lesssim \frac{1}{2}$$
, only needs $M_{N_1} \geq T_{sph} \approx 130 \text{ GeV}$.

ARS leptogenesis

Degenerate RH neutrinos Oscillate, Fine-tuned

$$M_{N_1} \ge 1 \text{GeV}.$$

Test Leptogenesis

How to test leptogenesis?

High scale: Collider can not reach

Low scale: Can not measure mass degeneracy

Only allowed region, No test

Marco Drewes, Yannis Georis et al, Phys.Rev.Lett. 128 (2022) 5, 051801

Test Leptogenesis from GWs

Can we test leptogenesis from GWs?

Leptogenesis

GWs

Relativistic bubble wall dynamics

EWPT, RHN mass, wall speed

- I. Baldes, S. Blasi et al, Phys.Rev.D 104 (2021) 11, 115029
- P. Huang, K. Xie, JHEP 09 (2022), 052
- D. Borah, A. Dasgupta et al, JHEP 11 (2022), 136
- E. J. Chun, T. P. Dutka et al, JHEP 09 (2023), 164

• Early Matter Dominance from RHNs or scalar

Inflation or EWPT GWs

- S. Datta, R. Samanta et al, JHEP 11 (2022), 159, JCAP 11 (2024) 051, JCAP 08 (2025), 095 More from A. Ghoshal et al
- Graviton...

Test Leptogenesis from GWs

• Can we modify mechansim of Leptogenesis to connect GWs?

- Can we enhance CP, without finetuned mass splitting? And without distablize the Higgs mass?
- Can we probe leptogenesis with GWs?
- Toy model:

Scalar assisted Leptogenesis, scalar Z₂ symmetric Model

$$-\mathcal{L}\supset \left[h_{lpha i}\,ar{\ell}_lpha N_i H + rac{1}{2}\left(M_{ij} + a_{ij}\mathcal{S}
ight)N_i N_j + ext{H.c.}
ight],$$

$$V_0(H, \mathcal{S}) = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \frac{1}{2} \mu_S^2 \mathcal{S}^2 + \frac{1}{4} \lambda_S \mathcal{S}^4 + \frac{1}{2} \lambda_{SH} \mathcal{S}^2 |H|^2.$$

CP Asymmetry

Require $m_{N_2} - m_{N_1} > m_{S}(T)$

CP Asymmetry from vertex correction, \propto SHH, $\propto N_2N_1S$

CP Asymmetry from self energy, $\propto (N_2 N_1 S)^2$

$$\varepsilon_{2}^{v} \sim \frac{|a_{21}|}{8\pi} \frac{\mu_{hhs}}{m_{N_{2}}} \sqrt{\frac{m_{N_{1}}}{m_{N_{2}}}} \left(\mathcal{F}_{jLL}^{v} + \mathcal{F}_{jRL}^{v} \right), \qquad (11)$$

$$\varepsilon_{2}^{s} \sim \frac{|a_{11}a_{21}|}{8\pi} \sqrt{\frac{m_{N_{1}}}{m_{N_{2}}}} \left(\mathcal{F}_{jlLL}^{s} + \mathcal{F}_{jlRL}^{s} + \mathcal{F}_{jlLR}^{s} + \mathcal{F}_{jlRR}^{s} \right),$$

Advantage:

Do not need degenerate RHNs, or too heavy RHNs No fine-tuning, Higgs mass stable

SHH couplings = $2\lambda_{SH}\omega_s$, ω_s is the vev of S

Leptogenesis is highly connected to 1st order EWPT, in magnitude

• CP Asymmetry from vertex correction Dominates for light RHNs

- CP Asymmetry from **self energy** Dominates for not that heavy RHNs
- CP Asymmetry from vannila seesaw
 Dominates for heavy RHNs

We consider light RHNs to avoid **Hierarchy problem Dominant vertex correction**

Boltzmann Equations

$$\begin{split} \frac{\mathrm{d}N_{N_2}}{\mathrm{d}z} &= -(D_2 + D_{21})\Delta_2 + D_{21}\Delta_1 \\ &- \Delta_{12}S_{N_1N_2 \to HH} - \Delta_{22}S_{N_2N_2 \to HH} \\ \frac{\mathrm{d}N_{N_1}}{\mathrm{d}z} &= -(D_1 + D_{21})\Delta_1 + D_{21}\Delta_2 \\ &- \Delta_{12}S_{N_1N_2 \to HH} - \Delta_{11}S_{N_1N_2 \to HH} \\ \frac{\mathrm{d}N_{B-L}}{\mathrm{d}z} &= -\sum_{i=1}^2 \varepsilon_i D_i \Delta_i - W N_{B-L} \end{split}$$

• Additional terms from $N_2 \rightarrow N_1 S$:

$$D_{21}(z) = K_{21} z \, rac{\mathcal{K}_1(z_2)}{\mathcal{K}_2(z_2)} N_{N_2}^{
m eq}(z) \,, \qquad \quad K_{21} \equiv rac{\Gamma(N_2 o N_1 S)}{H(T=m_{N_2})},$$

$$\Gamma(N_2 \to N_1 S) = \frac{|\alpha_{12}|^2 M_2}{16\pi} \left[(1 + r_{12})^2 - \sigma_2 \right] \sqrt{\delta_{12}},$$

• At finite temperature:

$$V_0(H, \mathcal{S}) = \mu_H^2 |H|^2 + \lambda_H |H|^4$$

$$+ \frac{1}{2} \mu_S^2 \mathcal{S}^2 + \frac{1}{4} \lambda_S \mathcal{S}^4 + \frac{1}{2} \lambda_{SH} \mathcal{S}^2 |H|^2.$$

$$V(\omega_h, \omega_s, T) = V_0 + \frac{1}{2} c_h T^2 \omega_h^2 + \frac{1}{2} c_s T^2 \omega_s^2$$

$$c_h = \frac{3g^2 + g'^2 + 4y_t^2}{16} + \frac{\lambda_H}{2} + \frac{\lambda_{SH}}{12}, c_s = \frac{\lambda_S}{4} + \frac{\lambda_{SH}}{3}$$

• An Illustration –

 $T > T_c$ $T = T_c$ $T < T_c$ $1^{st} - \text{order EWPT (vacuum decay)}$ h

Gravitational wave spectrum

Magnitude controlled by λ_{SH} , λ_{S} , ω_{s}

Observable GWs

GW spectrum can be calculated from EWPT:

$$\alpha = \frac{\Delta(V - \frac{1}{4}T\partial_T V)|_{T_n}}{g_*\pi^2 T_n^4/30}, \ \frac{\beta}{H_n} = T\frac{d(S_3/T)}{dT}\Big|_{T_n}.$$

• For the LISA detector, signal-to-noise ratio (SNR):

$$SNR = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left(\frac{\Omega_{GW}(f)}{\Omega_{LISA}(f)}\right)^2}$$

SNR > 10, can be regarded as criteria of signal

Connection between Leptogenesis and EWPT

• Two Step Phase Transition: for **Z**₂ symmetric Model

$$egin{cases} m_h^2 = \mu_H^2 + c_h T^2 \ m_s^2 = \mu_S^2 + c_s T^2 \ \mu_{hhs} = 0 \end{cases} \qquad T > -rac{\mu_S^2}{c_s} \ egin{cases} m_h^2 = \lambda_S (\mu_H^2 + c_h T^2) - \lambda_{SH} (\mu_S^2 + c_s T^2) \ M_h^2 = -2(\mu_S^2 + c_s T^2) \end{cases} \qquad T_n < T < -rac{\mu_S^2}{c_s} \ egin{cases} m_h^2 = -2(\mu_S^2 + c_s T^2) \ \mu_{hhs} = 2\lambda_{SH} \sqrt{-rac{\mu_S^2 + c_s T^2}{\lambda_S}} \ egin{cases} m_h^2 = -2(\mu_H^2 + c_h T^2) \ M_s^2 = rac{\lambda_H (\mu_S^2 + c_s T^2) - \lambda_{SH} (\mu_H^2 + c_h T^2)}{\lambda_H} \end{cases} \qquad 0 < T < T_n \ egin{cases} m_h^2 = 0 \end{cases}$$

CP Asymmetry is highed related to the EWPT

Connection between Leptogenesis and EWPT

• Leptogenesis is highly connected to 1st order EWPT, in time Require $m_{N_2} - m_{N_1} > m_S(T)$, mass bound SHH couplings = $2\lambda_{SH}\omega_s$, ω_s is the vev of S

Testing Leptogenesis from Observable GWs

• Leptogenesis is strongly correlated to GWs!

 T_n : Nucleation temperature,

 T_c : Critical temperature, degenerate vacuum

 $T_c - T_n > 10 \text{ GeV}$: Strong EWPT,

• For one benchmark:

Linear dependence!

General correlation

weaker dependence when mass bound close before PT

$$m_{N_2} - m_{N_1} > m_{\rm S}(T)$$

• Successful Leptogenesis can lead to observable GWs in the near future

Conclusion

Leptogenesis can be tested via Gravitational Waves

- CP Asymmetry can be enhanced by additional scalar
- No fine-tuning, Higgs mass stable
- CP Asymmetry connected to 1st-order EWPT in magnitude, $\propto \lambda_{SH}\omega_s$, also control 1st-order EWPT in time, near the EWPT period, EWPT control mass bound
- Leptogenesis is strongly correlated to GWs, can be tested from Observable GWs

Leptogenesis

BAU from neutrino!

- 1. Lepton number is violated within the neutrino masses terms.
- 2. Additional CP violations can exists in the neutrino mass matrix.
- 3. Right-handed neutrinos decay out of equilibrium potentially.

And EW sphaleron to transfer $n_{\Delta L}$ into $n_{\Delta B}$ before EW phase transition,

$$Y_B = \frac{28}{79} Y_{B-L}$$

What is EWPT?

EW symmetry restoration in the early Universe

It could be –

Lattice calculation shows the phase diagram ==>

Thus in the SM it is a crossover, since $M_h = 125 \text{ GeV} > 75 \text{ GeV}$;

However, a 1st-order EWPT is more interesting.

(Needs new physics)

Figure from L.-T. Wang's talk in IHEP workshop

First Order Phase Transition

Why we focus **1st-Order EWPT**? Sources of the stochastic GWs:

- Collision of the bubbles
- Sound waves in plasma
- Turbulance in plasma

LISA detector

Earth

relative orbit of spacecraft

Venus

Mercury

EWPT GWs typically peak in mHz.