Axion Star Tidal Effects & Bosenova

高宇 Yu Gao

中国科学院高能物理研究所

IHEP, CAS

Q. Qiu, Y. Gao, K. Wang, H. Tian, X-M. Yang, Z. Wang, Z. JCAP 02 (2025) 001

Z.Wang and Y. Gao, <u>Phys.Rev.D 111 (2025) 4, 043042</u> Z.Wang and Y. Gao, <u>2508.14535</u>

大连 2025/09/21

- Brief remarks
- DM gravity on stars: kinetic heating
- Binary disruption: form factor for fuzzy objects
- Quick story about axion & DM
- Dilute stars
- Binary limits for axion stars & miniclusters.
- Bosenova in Miniclusters

Axion can form miniclusters & stars

Sensitivity on via density/gravity structural patterns can shed some light on boson DM properties.

Miniclusters:

Post-inflationary scenario causes inhomogeneities. A naïve estimate on the clump masses:

$$M \approx \frac{4\pi}{3} (1+\delta) \bar{\rho} H (T_{osc})^{-3}$$

Or solve the density fluctuation's equation

$$\ddot{\delta} + 2H\dot{\delta} + \left(\frac{c_s^2 k^2}{a^2} - 4\pi G_N \bar{\rho}_a\right) \delta = 0$$

$$c_s^2 \approx \frac{k^2}{4m_a^2 a^2} \quad \text{See:} \quad {}^{1404.1938}_{1911.07853} \, {}^{1810.11468}_{2006.08637}$$

Or use N-body simulation.

1911.09417 2101.04177 2207.11276 2402.18221

See review:

Axion stars:

Braaten & Zhang, 19' J. Niemeyer, 19'

Localized (soliton) solutions under self-interaction / gravity

Oscillons ($\dot{m}_a > 0$): astro-ph/9311037 Boson star (w gravity) 1406.6586

$$i\dot{\psi} = -\frac{\nabla^2 \psi}{2m} - Gm^2 \psi \int d^3 x' \frac{\psi^*(\mathbf{x}')\psi(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} + \frac{\partial}{\partial \psi^*} V_{nr}(\psi, \psi^*)$$

Gravitational interests in dark clumps/solitons

All evidences of DM are gravitational: should gravity tell us more?

>> Preferred as a cored DM halo <<

Galaxy scale dynamics:

Disk thickening, stellar streams
Church, J. P. Ostriker, and P. Mocz, 18'

Amorisco and A. Loeb, 18'

excludes $m < 10^{-22}$ eV

Granularity above the de Broglie wavelength $\sim 2\pi/mv$ L.Hui, 16' exclusion limit $m \to 10^{-21} \mathrm{eV}$

Relaxation of old clusters, exclusion limit $m \to 10^{-20} \sim 10^{-19} \rm eV$ Bar-Or, Fouvry, and Tremaine, 19' Marsh and Niemeye, 19' Wasserman, 19' etc.

The tidal relaxation

1. Density granularity (by solitons) above its coherent scale creates a randomized, noise-like gravitational potential.

2. Randomized tidal perturbations drive stars away from their orbits, leading to eventual evaporation of the system

- 3. Most effective on systems comparable or larger than the granularity size.
- 4. Unlike WIMPs, solitons have a macroscopically significant mass and contribute to relaxation.

DM granules $(\lambda \sim (mv)^{-1})$ passing by a star perturb the star's velocity, raising the (average) stellar velocity dispersion:

$$\Delta v_{\star}^2 \propto \left(\frac{v_{\star}}{v_{DM}}\right)^4 \frac{t}{m_{DM}^3 r_{1/2}^4}$$

DM kinetic heating

Axion DM granularity contributes to Cluster Relaxation

Relaxation for **Eridanus II**, see Marsh and Niemeyer, 19' See 'revised constraints', Chiang et.al: 2104.13359

The MUSE-Faint survey (2101.00253)

Quote: These limits are equivalent to a fuzzy-dark-matter particle mass $m_a > 4*10^{-20} \text{ eVc}^{-2}$."

Ultra-faint dwarves (Segue I, II)

<u>Dalal & Kravtsov, 2203.05750</u>, quote: ... derive a lower limit on the dark matter particle mass of $m_{FDM} > 3x10^{-19}$ eV at 99% C.L.[via simulated stellar motion] 6

Smaller (<< kpc) objects for small structures?

Our Galaxy hosts a population of very wide (up to ~ 1pc) binaries/candidates

Evaporation: increment of energy leads to final disruption of the binary system.

For binary evaporation, the two-body system can be reduced to a well-defined single-body problem (plus some input from its COM motion)

$$\Delta E = \mu \vec{v_r} \cdot \Delta \vec{v_r} + \frac{1}{2}\mu(\Delta \vec{v_r})^2$$

 ∇ Φ drives the CM's random walk (can be small compared to $v_{cm} \sim 10^{-3} c$) Tidal acceleration should be in proportional to ∂ \wedge ∂ Φ

$$\begin{split} \Delta \vec{v}_r &= \Delta \vec{v}_1 - \Delta \vec{v}_2, \\ \frac{\langle \Delta \vec{v_r}^2 \rangle}{T} &= \frac{1}{T} \left(\langle \Delta \vec{v}_1^2 \rangle + \langle \Delta \vec{v}_2^2 \rangle - 2 \langle \Delta \vec{v}_1 \cdot \Delta \vec{v}_2 \rangle \right) \\ \frac{\langle \Delta E \rangle}{T} &= \mu \frac{\vec{v}_r \cdot \langle \Delta \vec{v}_r \rangle}{T} + \frac{1}{2} \mu \left(\frac{\langle \Delta \vec{v}_1^2 \rangle}{T} + \frac{\langle \Delta \vec{v}_2^2 \rangle}{T} - \frac{2 \langle \Delta \vec{v}_1 \cdot \Delta \vec{v}_2 \rangle}{T} \right) \end{split}$$

\(\rightarrow\): spectral averaging over the soliton ensemble.

1/T: time averages... should also take account of the binary's Keplerian motion.

Slow orbit: wide binaries

$$\frac{\lambda_{\rm DM}}{v} \ll T \ll \frac{2\pi}{\omega_b}$$

For wide binaries, $v_r / v_{cm} \sim 10^{-3}$. For a longer orbit period than the time scale of potential variations, one can take the ensemble average first, and leave the orbital parameters as constants.

Velocity change driven by the potential's gradient

The first term will vanish after the ensemble average. The only contribution comes from the second term

Expand out the equation

$$\Delta \vec{v} = i \int_0^T dt \int_0^t d\tau (t - \tau) \int \frac{\vec{k} d^3 k d\omega}{(2\pi)^4} \int \frac{(\vec{k} \cdot \vec{k'}) d^3 k' d\omega'}{(2\pi)^4} \Phi(\vec{k}, \omega) \Phi^*(\vec{k'}, \omega') e^{i\vec{k} \cdot (\vec{r_0} + \vec{v_0}t) - i\omega t} e^{-i\vec{k'} \cdot (\vec{r_0} + \vec{v_0}\tau) + i\omega'\tau}$$

And make use of the relation:

$$\left\langle \Phi(\vec{k},\omega)\Phi^*(\vec{k}',\omega') \right\rangle = (2\pi)^4 C_{\Phi}(\vec{k},\omega)\delta^3(\vec{k}-\vec{k}')\delta(\omega-\omega')$$

We can make it an integral over the correlation function.

$$\langle \Delta \vec{v} \rangle = \int_0^T dt \int_0^t d\tau \int \frac{d^3k d\omega}{(2\pi)^4} \vec{k}^2 C_{\Phi}(\vec{k}, \omega) \frac{\partial}{\partial \vec{v_0}} e^{i(\vec{k} \cdot \vec{v_0} - \omega)(t - \tau)}$$

The 1st order 'diffusion' coefficient:

$$D[\Delta \vec{v}] = \frac{\langle \Delta \vec{v} \rangle}{T} = -\frac{1}{2} \int \frac{\vec{k} d^3k d\omega}{(2\pi)^3} \vec{k}^2 C_{\Phi}(\vec{k}, \omega) K_T'(\omega - \vec{k} \cdot \vec{v_0})$$

$$\text{where} \quad K_T'(\omega) = \frac{\omega T \sin(\omega T) - 2[1 - \cos(\omega T)]}{\pi \omega^3 T}$$

Correlation functions

Spectra of the two-point correlation functions for the density ρ and gravitational potential Φ

$$\langle \rho(\vec{r},t)\rho(\vec{r'},t')\rangle \equiv C_{\rho}(\vec{r}-\vec{r'},t-t')$$

$$\langle \Phi(\vec{r}, t) \Phi(\vec{r'}, t') \rangle \equiv C_{\Phi}(\vec{r} - \vec{r'}, t - t')$$

Fourier trans.

$$C_{\rho}(\vec{r},t) = \int \frac{d^3k d\omega}{(2\pi)^4} C_{\rho}(\vec{k},\omega) e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$

By Poisson Eq. $\nabla^2 \Phi = 4\pi G \rho$

$$C_{\Phi} = 16\pi^2 G^2 k^{-4} C_{\rho}$$

$$F(\vec{v}) = \frac{\rho_0}{(2\pi\sigma^2)^{\frac{3}{2}}} e^{-\frac{v^2}{2\sigma^2}}$$

Small-sized solitons are more likely virialized so we assume a Maxwellian velocity distribution.

 $C_{\rho}(\vec{k},\omega) = \frac{1}{m_s} \int d^3r d^3r' d^3v dt \rho(\vec{r}) \rho(\vec{r'}) F(\vec{v}) e^{-i\vec{k}\cdot(\vec{r}+\vec{r'}+\vec{v}t)} e^{i\omega t}$

 $\rho(k)$ is the F.T. of the soliton profile

Quadratic terms dominate kinetic energy growth.

$$\frac{1}{2}\mu \left(\frac{\langle \Delta \vec{v}_1^2 \rangle}{T} + \frac{\langle \Delta \vec{v}_2^2 \rangle}{T} - \frac{2\langle \Delta \vec{v}_1 \cdot \Delta \vec{v}_2 \rangle}{T} \right)$$

An accurate and concise form factor is obtained after lengthy algebra

$$\frac{\langle \Delta \vec{v}_1^2 \rangle}{T} = \int \frac{k^2 d^3 k}{(2\pi)^3} C_{\Phi}(\vec{k}, \vec{k} \cdot \vec{v}_1)$$

$$\frac{\langle \Delta \vec{v}_2^2 \rangle}{T} = \int \frac{\vec{k}^2 d^3 k}{(2\pi)^3} C_{\Phi}(\vec{k}, \vec{k} \cdot \vec{v}_2)$$

$$\frac{\langle \Delta \vec{v}_1 \cdot \Delta \vec{v}_2 \rangle}{T} = \int \frac{\vec{k}^2 d^3 k}{(2\pi)^3} C_{\Phi}(\vec{k}, \vec{k} \cdot \vec{v}_c) \cos[\vec{k} \cdot (\vec{r}_1 - \vec{r}_2)]$$

[Use approximation]

$$v_c \gg v_r, v_1 \approx v_2 \approx v_c$$

Finally, the tidal heating rate:

Remember $|r_1-r_2| \sim 2a$, soliton size becomes relevant.

$$\frac{\langle \Delta E \rangle}{T} = \sqrt{\frac{2}{\pi}} \frac{\mu \rho_0 G^2}{m_s \sigma} \int \frac{d^3 k}{k^3} \rho^2(\vec{k}) e^{-\frac{(\vec{k} \cdot \vec{v}_c)^2}{2k^2 \sigma^2}} 2\left(1 - \cos\left[\vec{k} \cdot (\vec{r}_1 - \vec{r}_2)\right]\right)$$

This convolution factor takes care of scale dependence and reveals the difference btw the 2-body relative motion and the Brownian walk of a single-point particle (COM) under tidal perturbations.

Size effect in evaporation time scale

$$\frac{\langle \Delta E \rangle}{T} = \frac{8\pi\mu\rho_0 G^2 m_s}{v_c} A\left(r_x, r_y, r_z, R, \frac{v_c}{\sigma}\right)$$

Re-define our integrals and make a similar-looking to the classical formula

$$t_d = \frac{|E_0|}{\left(\frac{dE}{dt}\right)_0} \int_0^1 \frac{dx}{A\left(\frac{R}{a_0}x, \frac{v_c}{\sigma}\right)}$$

$$A = \frac{1}{\sqrt{2\pi}} \frac{v_c}{\sigma} \int_0^{+\infty} \frac{dk}{k} \frac{\rho^2(k)}{m_c^2} \int_{-1}^1 dx e^{-\frac{v_c^2 x^2}{2\sigma^2}} \left[1 - J_0 \left(k \sqrt{r_x^2 + r_y^2} \sqrt{1 - x^2} \right) \cos(kr_z x) \right]$$

GAIA catalog: halo-like wide binaries

Select old binary candidates with large tangential velocity

El-Badry and H.-W. Rix, Mon. Not. Roy. Astron. Soc. 480, 4884 (2018)

- Select candidates with a low probability of being aligned by chance
- Veto candidates with close companions, many neighbors (N<2)
- Exclude candidates containing white dwarves

2000+ candidates pass selection cuts out of 62990 from GAIA data

Gaia Collaboration, Astronomy & Astrophysics 649, A9 (2021), 2012.02036.

Select high-prob. candidates with large separation and relatively lower mass.

Require their average evaporation to be longer than 10 Gyr

$$\langle t_d \rangle \equiv \frac{1}{N} \sum_i t_{d,i} < 10 \text{ Gyr},$$

Source id1	Source id2	parallax1	parallax2	g mag1	g mag2	R chance align	M_1	M_2	M_T	$a_{\perp}(pc)$
1312689344512158848	1312737894822499968	3.375	3.310	12.07	17.21	0.000996	0.950	0.483	1.432	0.675
6644959785879883776	6644776515331203840	2.007	2.354	17.85	18.00	0.0462	0.440	0.412	0.851	0.929
2305945096292235648	2305945538674043392	2.366	2.316	15.74	17.30	1.53e-09	0.518	0.373	0.891	0.508
2127864001174217088	2127863726296352256	1.370	1.363	13.64	15.60	0.0357	0.924	0.741	1.665	0.737
577970351704355072	580975626220823296	3.117	3.021	16.35	17.47	0.0850	0.484	0.452	0.937	0.557
1401312283813377536	1401310698969746944	1.244	1.234	16.97	18.92	0.0113	0.631	0.409	1.040	0.523
1559537092292382720	1559533965556190848	1.209	1.224	13.63	15.03	0.00142	1.117	0.854	1.971	0.682
5476416420063651840	5476421406528047104	1.204	1.214	13.66	15.46	0.0834	1.016	0.775	1.791	0.503
4004141698745047040	4004029857796571136	5.104	5.100	14.09	16.07	0.00492	0.580	0.412	0.992	0.783
6779722291827283456	6779724009814201984	1.575	1.579	17.72	18.79	0.00712	0.484	0.378	0.862	0.641
3594791561220458496	3594797539814936832	1.065	1.069	14.44	16.31	0.0763	0.917	0.731	1.649	0.582
3871814958946253312	3871818601078520192	1.449	1.499	15.66	17.13	0.0188	0.676	0.657	1.333	0.533
2379971950014879360	2379995177198014976	1.604	1.588	14.21	16.58	0.0270	0.876	0.712	1.588	0.507
6826022069340212864	6826040868412655872	2.379	2.373	11.76	14.05	0.0987	1.016	0.738	1.754	0.572
5798275535462480768	5798276325736369024	1.247	1.261	13.32	13.76	0.000536	1.443	1.176	2.619	0.575

TABLE I: (Catalog I). High probability halo-like wide binaries with $a_{\perp} > 0.5$ pc and $M_T < 3 M_{\odot}$.

- Binaries shift left-ward over time under tidal perturbations
- A t_d=10 Gyr curve and its soliton configuration (m_s, R) is *disfavored* if lots of candidates reside on its left/top side
- (red line) on the boundary of populated region corresponds to $t_d = 10$ Gyr with ($m_s = 9.3 m_{\odot}$, R = 0.03 pc)

JCAP 02 (2025) 001

Catalog I & II limits for $t_d = 10^{10}$ yr under solitons' tidal perturbation. (Blue bands) solutions for ALPs with potential: $V(a) \sim -m_a^2 f_a^2 \cos(a/f_a)$

Brief notes about axion stars

Derive the non-relativistic Hamiltonian and find a minimum.

Real scalar Lagrangian:
$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \nabla_{\mu} a \nabla_{\nu} a - V(a) \right]$$

Nonrelativistic approximation:
$$a(\vec{x},t) = \frac{1}{\sqrt{2m_a}} \left(e^{-im_a t} \psi(\vec{x},t) + e^{im_a t} \psi^*(\vec{x},t) \right)$$

$$n(\mathbf{x}) = \psi^*(\mathbf{x})\psi(\mathbf{x}) \text{ and } \rho(\mathbf{x}) = m \psi^*(\mathbf{x})\psi(\mathbf{x})$$

Nonrelativistic Lagrangian, with $g_{00} = 1 + 2\phi_N$:

$$\mathcal{L}_{nr} = \frac{i}{2} \left(\dot{\psi} \psi^* - \psi \dot{\psi}^* \right) - \frac{1}{2m} \nabla \psi^* \cdot \nabla \psi - V_{nr}(\psi, \psi^*) - m \, \psi^* \psi \, \phi_N(\psi^*, \psi)$$

Stable solution: presence of a minimum of the reduced Hamilitonian.

Use dimensionless variables:

$$\begin{split} \tilde{H} &= \frac{\sqrt{|\lambda|^3}}{m_a^2 \sqrt{G}} H \;, \\ \tilde{N} &= m_a \sqrt{G|\lambda|} N \;, \\ \tilde{R} &= m_a^2 \sqrt{\frac{G}{|\lambda|}} R \;, \end{split}$$

Rescaled energy:

$$\tilde{H} = a \frac{\tilde{N}}{\tilde{R}^2} - b \frac{\tilde{N}^2}{\tilde{R}} - c \frac{\tilde{N}^2}{\tilde{R}^3}$$

Plug into ansatz:

$$a = \frac{12 + \pi^2}{6\pi^2}, b = \frac{6\left[12\zeta(3) - \pi^2\right]}{\pi^4}, c = \frac{\pi^2 - 6}{8\pi^5}$$

At low density, the axion number stays unchanged. For fixed N[~], H[~] can minimize at a certain radius

$$\tilde{R} = \frac{a \pm \sqrt{a^2 - 3bc\tilde{N}^2}}{b\tilde{N}}$$

Growth beyond this point destabilizes the axion star.

Solution stability at fixed N~

(Blue bands) show stable dilute-star solutions

for ALP potential: $V(a) \sim -m_a^2 f_a^2 \cos\left(\frac{a}{f_a}\right)$

Larger f_a reaches denser solutions (left).

Binary disruption bounds: for ALP minicluster halos

More `realistic' axion distributions from numeric and semi-analytic calculations

$$m_0 = 281 M_{\odot} \left(\frac{m_a}{10^{-16} \,\text{eV}}\right)^{-\frac{3}{2}} \frac{g_{*S}(T_{\text{osc}})}{g_{*S}(T_0)} g_*^{-\frac{3}{4}}(T_{\text{osc}})$$

Denser models of MCH indicate for more significant disruption effect.

Condensation (soliton size) models,

$$\rho(r) = \frac{\rho_c}{\frac{r}{r_s}} \left(1 + \frac{r}{r_s} \right)^{-2} \cdot \frac{200}{3} \frac{c^3}{\ln(1+c) - \frac{c}{1+c}}$$

Diffuse: low concentration, c \sim 10, larger MC size Dense: high concentration, c \sim 10⁴, compact MCs Isolated: MCs do not clump into MCHs

Axion star forms inside a 'minicluster' and feeds on its host.

Axion star: large number of axions stay on the same (BEC) state ψ_S

`BEC in virialized DM halos' see Levkov, Panin, Tkachev, 18', formation under self-gravity

Axion star will further grow and potential trigger run-away self-interaction (instability).

Fuzzy axion halo (minicluster) has a nonzero velocity

Star growth calculation: halo axion capture by BEC via self-gravity. see Chan, Sibiryakov, Xue, 24'

Potential signals?

the incorporation of axion's self-interaction: dilute stars :gravity and self-interaction equilibrium.

Q2: Mapping growth stability into axion parameters space (m_a, f_a) requires incorporation of the self-interaction potential

A quantum calculation for axion capture $\psi_a + \psi_a \rightarrow \psi_s + \psi_a$ via self-interaction potential $V \sim a^4$

$$S = \int \mathrm{d}^4x \, \left(\frac{1}{2}\partial_\mu a\partial^\mu a - \frac{1}{2}m_a^2a^2 - \frac{1}{24}\lambda a^4\right)$$

$$S_g = \qquad \qquad \text{Nonrelativistic limit and take } \psi_S \text{ as a bkg state}$$

$$\int \mathrm{d}t\mathrm{d}^3\vec{x} \, \left(i\psi_g^*\partial_t\psi_g + \frac{1}{2m_a}\psi_g^*\nabla^2\psi_g - \frac{\lambda}{16m_a^2}|\psi_g + \psi_s|^4\right)$$

$$|\mathcal{M}_{g+g\to g+s}|^2 = \left|\int \mathrm{d}^3x\mathrm{d}t \, \langle f|\mathcal{H}_{\mathrm{int}}|i\rangle\right|^2 = \frac{\lambda^2}{64m_a^4} \left|\int \mathrm{d}^3x\mathrm{d}t \, \langle f|\psi_s^*|\psi_g|^2\psi_g|i\rangle\right|^2$$

$$\psi_{\mathcal{S}}$$
: BEC's common soliton state
$$\psi_{s}(\vec{x},t) = \chi(r)e^{-i\epsilon_{s}t}$$

 $\chi(r)$ takes stable solution ansatzes.

 ψ_g : `gas' state in virialized minicluster

$$\psi_g(\vec{x}, t) = \frac{1}{\sqrt{V}} \sum_{\vec{k}} a_{\vec{k}} \varphi_{\vec{k}}(\vec{x}) e^{-i\epsilon_{\vec{k}}t}$$

$$\varphi_{\vec{k}}(\vec{\xi}) = e^{i\vec{k}\cdot\vec{\xi}} \Gamma\left(1 - \frac{i\beta}{\kappa}\right) e^{\frac{\pi\beta}{2\kappa}} {}_1 F_1\left[\frac{i\beta}{\kappa}, 1, i\left(\kappa\xi - \vec{\kappa}\cdot\vec{\xi}\right)\right]$$

Scattering states under Coulomb potential

Amp calculation includes both axion self-interaction and self-gravity, 2508.14535 Typical horizon collapse minicluster mass (host mass, M₀)

$$M_0 = \frac{4\pi^4}{3} \frac{\bar{\rho}_a(t_0) R_{\text{osc}}^{-3}}{H^3(t_{\text{osc}})} = 1.235 \times 10^{-9} \, M_{\odot} \left(\frac{m_a}{10^{-5} \,\text{eV}}\right)^{-0.561}$$

Axion star initial mass (by num. simulation, M_{s0}), from Levkov et.al. 2024

$$M_{s0} = 8.384 \times 10^{-11} M_{\odot} \times$$

$$\alpha_0 \left[\delta^3 (1 + \delta) \right]^{\frac{1}{6}} \left(\frac{m_a}{10^{-5} \text{ eV}} \right)^{-1} \left(\frac{M_0}{M_{\odot}} \right)^{\frac{1}{3}}$$

Axion star max stable mass (dilute stars, M_{max})

$$M_{\text{max}} = 1.089 \times 10^{-11} \, M_{\odot} \left(\frac{m_a}{10^{-5} \, \text{eV}} \right)^{-2}$$

Self-interaction growth time to reach M_{max}

$$t_{c,\lambda} = \frac{1}{\Gamma_{\lambda}} = \frac{1541 \,\text{Gyr}}{[\delta^{3}(1+\delta)/10^{8}]^{\frac{5}{3}}} \times \left(\frac{\alpha_{0}}{\sqrt{2/5}}\right)^{2} \left(\frac{\alpha(\nu,\tilde{N})}{60}\right)^{-1} \left(\frac{m_{a}}{10^{-5} \,\text{eV}}\right)^{-1.374}$$

t_{growth} < AoU (yellow shaded region)

Bosenovae for QCD axion (large δ) and ALPs (quite common) in our Universe. For details see 2508.14535

Take home messages

- Interest in DM's gravitational imprints is on the rise.
- We provide an *analytic* form factor of binary evaporation by randomly distributed, spatially extended objects. For dilute axion stars, sensitivity extends into heavier ALP mass range $10^{-17} < m_a < 10^{-15}$ eV.
- GAIA data contain some 2000+ high-probability, halo-like, a>0.1 pc candidates → sensitivity to DM tidal disruptions.
- Sophiscated DM mass distributions: Tidal disruption limits are relevant.
- Axion stars go bosenova: possible for both QCD axion/ALP dark matter.

Backups

(Summary version of) the Axion DM story:

The SM contains chiral-U(1) breaking effects and develops $V(ar{ heta}).$

 $\bar{\theta}$ is a naturally ~O(1) fundamental parameter in SM.

Non-detection of neutron EDM requires $V(\bar{\theta})$ sitting right at $\bar{\theta}=0$. (Strong CP)

New field charged under U(1)_{PQ} -> rotational dof contributes to chiral anomaly. $\bar{\theta} \to \bar{\theta} + a/f \text{ helps rolling to } \bar{\theta} = 0.$

a gets mass from $V(\bar{\theta})$ and qualifies as a `wavy' dark matter candidate.

axion field has stable SP-equ solutions under self-gravity & interaction -> axion star

Axion: a story from basic symmetries

Lee & Yang, 56'; Wu, 57'

- Weak int. violates both P and CP.
 - Cronin, Fitch, 64'
- CP symmetry in strong interaction?

$$\mathcal{L} \supset -\frac{1}{4}G^2 + \frac{\theta g_s^2}{32\pi^2}G\tilde{G}$$

In the SM, CP is broken by QCD (θ_{QCD}), as superselection rule of QCD's instanton connected vacua

$$\mid \theta \rangle = N \sum e^{i\theta n} \mid n \rangle$$

Classical (PG) vacua connected by instantons, hep-ph/0009136 Vacuum min. energy @ $\theta = 0$, with Dirac spectrum assumptions (Vafa, Witten 84')

And also explicitly broken after $U(1)_A$ breaking in the SM.

Chiral transformation shifts heta as $e^{i\alpha Q_5}| heta>=| heta+lpha>$

With complex quark masses, a chiral transformation on quarks add $Arg \ det(M_q)$

$$\bar{\theta} = \theta_{QCD} + Arg \ Det \ M_q$$

Is the total angle, which breaks P and T (thus CP breaking), and naturally $\bar{\theta} \sim O(1)$.

 $\bar{\theta}$ is an independent parameter of the theory (SM). It is invariant under the anomalous symmetry:

$$U \to e^{i\alpha}U, \qquad \theta \to \theta - 2\alpha, \qquad M \to e^{-i\alpha}M$$

 $ar{ heta}$ in-principle only determined via measurement. `Naturally' the combined $ar{ heta}$ should take O(1) values. For a conceptual review, see "Reflections on the Strong CP Problem", R. Peccei, hep-ph/9807514

In the effective strong interaction potential

$$\mathcal{L} = f_\pi^2 \, \operatorname{Tr} \, \partial_\mu U \partial^\mu U^\dagger + a f_\pi^3 \, \operatorname{Tr} \, M U + b f_\pi^4 \det U + h.c.$$

Yields the minimum at

$$V = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2 \frac{\overline{\theta}}{2}}$$
$$\overline{\theta} = \theta + \theta_u + \theta_d$$

$$b=|b|e^{i heta}$$
 $U=e^{irac{\Pi^a}{\sqrt{2}f\pi}\sigma^a}$ M = $egin{pmatrix} m_ue^{i heta_u} & 0 \ 0 & m_de^{i heta_d} \end{pmatrix}$

The strong CP problem

θ causes CP-violation and appears in baryon EDM:

$$\mathcal{L} = -\overline{\theta} \frac{c_{+}\mu}{f_{\pi}} \pi^{a} N \tau^{a} N^{c} - i \frac{g_{A} m_{N}}{f_{\pi}} \pi^{a} N \tau^{a} N^{c}, \qquad \mu = \frac{m_{u} m_{d}}{m_{u} + m_{d}}$$

$$g_A \approx 1.27$$

Feynman diagram for neutron EDM

$$d_n = \frac{e\overline{\theta}g_A c_+ \mu}{8\pi^2 f_\pi^2} \log \frac{\Lambda^2}{m_\pi^2} \sim 3 \times 10^{16} \,\overline{\theta} \,\mathrm{e cm} \qquad g_A \approx 1.27$$
$$c_+ \approx 1.7$$

1509.04411

Experimental value: $\overline{\theta} \lesssim 10^{-10}$

10 orders of fine-tuning.

Some easy ways out:

- massless u-quark (G 't Hooft, 76'): $m_u < 10^{-10} m_d$
- P-parity models (Babu, Mahapatra, 90')
- Spontaneous CPV models (Nelson, 84' & Barr, 84')

nEDM @ Oak Ridge see recent worldwide updates: 1810.03718 & Snowmass 2203.08103

Peccei & Quinn's global U(1) symmetry

- After spontaneous breaking, leaves a goldstone
- Anomalous, contributes to a U(1)_A rotation
- Acquires a mass (pseudo-goldstone) at low energy.

Peccei, Quinn, 77'

Assume a global $U(1)_{PO}$ as good UV symmetry

$$Q_i/U_i^c/D_i^c/L_i/E_i^c \longrightarrow e^{i\alpha}Q_i/U_i^c/D_i^c/L_i/E_i^c$$
, $H_d/H_u \longrightarrow e^{-i2\alpha}H_d/H_u$. (as in original PQWW)

 $U(1)_{PQ}$ breaks after 'some' scalar (has PQ charge) gets a vev $\sim O(f_a)$, leaving out a goldstone field a. The goldstone can acquire an (ABJ) anomalous coupling term :

$$\frac{a}{f_a}G\tilde{G} \quad \text{ that effective `extends' $\bar{\theta}$ into a dynamic field } \mathcal{L} \supset \left(\frac{a}{f_a} + \theta\right) \frac{1}{32\pi^2}G\tilde{G}.$$

$$\bar{\theta} \quad \rightarrow \quad \bar{\theta} = \theta + \theta_u + \theta_d + \frac{a}{f_a}$$

KSVZ model (Kim-Shifman -Vainstein-Zakharov):

heavy vector-like quarks, with coupling $\lambda_Q Q^c QS$ Axion as the Im part of an extra scalar.

The PQ U(1):
$$Q^c/Q \rightarrow e^{i\alpha}Q^c/Q$$
, $S \rightarrow e^{-i2\alpha}S$

See Kim's review: *Rev.Mod.Phys.* 91 (2019) 4, 049902 (erratum)

DSFZ model (Dine-Fischler-Srednicki-Zhitnitskii):

$$\Delta L \supset \lambda H_u H_d S^2 \qquad \qquad \{H_u, H_d, S\} \quad \text{charged as}$$

$$\{-1, -1, +1\} \quad \text{under U(1)}_{PQ}$$

$$a = \frac{1}{\sqrt{v_u^2 + v_d^2 + v_S^2}} (v_u \text{Im} H_d + v_u \text{Im} H_d + v_s \text{Im} S) \qquad f_a = \sqrt{v_u^2 + v_d^2 + v_S^2}$$
 raised by large S vev.

+ Many other variants, with a central goal to increase $f_{\rm a}$ to avoid astro/flavor limits. See review: The landscape of QCD axion models, *Phys.Rept.* 870 (2020) 1-117

Example: an effective UV construction into a Fraggett-Nielson $\left(\frac{S}{\Lambda}\right)^{n\geq 1} \overline{f_i} H f_j$ like: A DSFZ type in case of f->SM fermions, e.g. can derive from GUT/higher scale physics, & realize some flavor features.

$$\Delta L \supset -y_{ij}^{u}Q_{i}U_{j}^{c}H_{u} - y_{ij}^{d}\frac{S}{M_{*}}Q_{i}D_{j}^{c}\tilde{H}_{u} - y_{ij}^{e}\frac{S}{M_{*}}L_{i}E_{j}^{c}\tilde{H}_{u} \qquad \qquad Q_{i}, L_{i}, U_{i}^{c}, D_{i}^{c}, E_{i}^{c}: 1 \\ Mod.Phys.Lett.A \ 37 \ (2022) \ 09, \ 2250055 \qquad + \ \text{other PQ} \\ \text{assignments} \qquad \qquad S: -4$$

Axion as cold dark matter

A fast oscillating field at the bottom of a $V(\phi) \sim (\phi - \phi_0)^2$ potential behaves as matter-like: $\rho(z) \sim (1+z)^3$

axion starts to oscillate by V_{inst}. after strong QCD phase transition

$$a(t) = a_0 \left(\frac{R_{m \sim H}}{R(t)}\right)^{2/3} \cos(m_a t)$$

Misalignment Mechanism:

axion potential overcomes Hubble friction and start oscillation from a homogeneous initial value a_0 (via inflation). Initial value gives the DM abundance:

$$\Omega_a h^2 \sim 2 \times 10^4 \left(\frac{f_a}{10^{16} \text{ GeV}} \right)^{7/6} \langle \theta_{a,i}^2 \rangle$$

(topological defects contribute if f_a is lower than inflation scale) M. Turner, 83'

See axion cosmology review 1510.07633 & the more recent 2403.17697

Defects in post-inflation scenario

Cosmic strings form when U(1) breaks after end of inflation.

$$\phi(x) = (f_a + r(x)) e^{i\theta(x)}$$

Contribute to the axion energy density:

Contribute to the axion energy density:
$$\rho_a = \frac{1}{2} f_a^2 \dot{\theta}^2 + \frac{f_a^2}{2a(t)^2} (\nabla \theta)^2 + \chi(T) (1 - \cos \theta)$$

Domain walls form when V_{OCD} develops a 'true' vacuum (vacua)

(DWs can unwind if $N_{DW}=1$)

Huge amount of numerical simulation devoted to study string networks, yet large uncertainties remain, see recent review by Saikawa, Redondo, et.al. 2401.17253

Wavy Dark Matter form Objects

Ultra-light dark matter bosons form localized structures under gravity or self-interaction (boson stars, etc.).

The Schrodinger-Poisson (SP) equation

$$i\dot{\psi} = -\frac{\nabla^2 \psi}{2m} - Gm^2 \psi \int d^3 x' \frac{\psi^*(\mathbf{x}')\psi(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} + \frac{\partial}{\partial \psi^*} V_{nr}(\psi, \psi^*)$$

kSZ

 10^{-26}

UDM mass m_{ϕ} [eV]

+DES

SPARC

 10^{-24}

 10^{-22}

See Braaten & Zhang, 19' for a nice review

SKA-IM

 10^{-30}

 10^{-32}

 10^{0}

 10^{-1}

 10^{-3}

 10^{-4}

Cosmic energy density Ω_{ϕ}

 10^{-18}

Lab exp.

Snowmass 2021, 2203.14915

 10^{-20}

Cosmic scale

kSZ-OV

 10^{-28}

CMB

+BOSS

For binary evaporation, we repeat for the relative velocity $\Delta ec{v}_r = \Delta ec{v}_1 - \Delta ec{v}_2$

1st term in energy increment:

$$\frac{\vec{v_r} \cdot \langle \Delta \vec{v_r} \rangle}{T} = -\frac{1}{2} \int \frac{(\vec{k} \cdot \vec{v_r}) \vec{k}^2 d^3 k d\omega}{(2\pi)^3} C_{\Phi}(\vec{k}, \omega) \left(K_T'(\omega - \vec{k} \cdot \vec{v_1}) - K_T'(\omega - \vec{k} \cdot \vec{v_2}) \right)$$

$$= -\frac{1}{2} \int \frac{(\vec{k} \cdot \vec{v_r}) \vec{k}^2 d^3 k d\omega}{(2\pi)^3} C_{\Phi}(\vec{k}, \omega) \left(\delta'(\omega - \vec{k} \cdot \vec{v_1}) - \delta'(\omega - \vec{k} \cdot \vec{v_2}) \right)$$

For $v_1 pprox v_2 pprox v_{CM}$ and $|v_1 - v_2| \ll v_{CM}$, this contribution is suppressed by v_r/v_{CM}

The evaporation will be dominated by the 2^{nd} order $(\Delta v)^2$ term.

Construction of the potential

An randomly distributed ensemble of solitons:

$$\rho(\vec{x},t) = \sum_{i} |\varphi(\vec{x} - \vec{x}_i - \vec{v}_i t)|^2 - \langle \rho \rangle$$

Soliton profiles are typically solved from S-P equation. Sample ansatzes:

$$\varphi(r) = \begin{cases} \frac{m_s^{\frac{1}{2}}}{(2\pi R^2)^{\frac{3}{4}}} e^{-\frac{r^2}{4R^2}}, & \text{Gaussian [27];} \\ \left(\frac{3m_s}{\pi^3 R^3}\right)^{\frac{1}{2}} \operatorname{sech}\left(\frac{r}{R}\right), & \text{Sech [16];} \\ \left(\frac{m_s}{7\pi R^3}\right)^{\frac{1}{2}} \left(1 + \frac{r}{R}\right) e^{-\frac{r}{R}}, & \text{Exponential linear (EL) [16].} \end{cases}$$

normalized so that the density of the scalar field satisfies $\rho(r) \propto \varphi(r)^2$

The Hamiltonian

Kinetic energy

$$H_{\rm kin} = \frac{1}{2m_a} \int d^3x \, \nabla \psi^* \cdot \nabla \psi$$

(Self) Gravitational energy

$$H_g = -\frac{Gm_a^2}{2} \int d^3x \int d^3x' \, \frac{|\psi(\vec{x},t)|^2 |\psi(\vec{x'},t)|^2}{|\vec{x} - \vec{x'}|}$$

Self-interaction energy

$$H_i = \frac{\lambda}{16m_a^2} \int d^3x \, |\psi|^4$$

Static solution: $\psi(\vec{x},t) = \Psi(r)e^{-i\epsilon t}$

Ansatz:
$$\Psi(r) = \sqrt{\frac{3N}{\pi^3 R^3}} \operatorname{sech}\left(\frac{r}{R}\right)$$

[From Zihang Wang's slides] formulae adapted from Schiappacasse & Hertzberg, 18'

Mass-radius relation of dilute axion stars

