Next-to-leading-order QCD corrections to double prompt J/ψ hadroproduction

Xiao-Bo Jin

Beijing University of Chemical Technology Based on work in Collaboration with Zhi-Guo He and Bernd A.Kniehl Phys.Rev.D 111,094040

第四届高能物理理论与实验融合发展研讨会 09.21.2025, Dalian

Calculation framework

NRQCD factorization

Bodwin, Braaten, and Lepage 1995

$$d\sigma(A+B\to J/\psi+X) = \sum_n d\hat{\sigma}(A+B\to Q\bar{Q}[n]+X) \langle \mathcal{O}^{J/\psi}[n] \rangle$$

The challenges to NRQCD:

- The long-standing J/ψ polarization puzzle.
- ② The universality of the NRQCD LDMEs for J/ψ production up to QCD NLO.
- **3** The success of CSM to account for J/ψ production in e^+e^- annihilation, and η_c meson hadroproduction at the LHC.

New features in quarkonium pair hadroproduction

- To test NRQCD factorization and to provide crucial constraint on the long-distance matrix elements. Barger, Fleming, and Phillips 1996
- To improve the NRQCD factorization formalism for double P-wave production. He, Kniehl, and Wang 2018
- ullet To extract $\sigma_{
 m eff}$ for DPS process. Kom, A. Kulesza, and Stirling 2011
- To understand the new fully heavy tetraquark states ($Q\bar{Q}Q\bar{Q}$). Aad et al. 2023; Aaij et al. 2020; Hayrapetyan et al. 2024 (See Talk RuiLin Zhu)

Schematical representation of SPS (left) and DPS (right) for a proton-proton collision. Figure from *Borschensky and Anna Kulesza 2017*

Experimental Status of hadroproduction

The summary experimental measurements

Experiment	\sqrt{s}	states	kinematic condition
D0 (2014)	1.96 TeV	$J/\psi + J/\psi$	$p_T^{J/\psi} > 4.0 \text{GeV}, \eta^{J/\psi} < 2$
LHCb	7 TeV	$J/\psi + J/\psi$	$P_T^{J/\psi} < 10 \text{GeV } 2.0 < y^{J/\psi} < 4.5$
(2012)	13 TeV	$J/\psi + J/\psi$	$P_T^{J/\psi} < 10(14) { m GeV}$
(2017, 2024)		$J/\psi + \psi(2S)$	$2.0 < y^{J/\psi} < 4.5$
CMS (2014)	7 TeV	$J/\psi + J/\psi$	$p_T^{J/\psi} > 4.5 \text{GeV}, y^{J/\psi} < 2.2$
ATLAS (2017)	8 TeV	$J/\psi + J/\psi$	$p_T^{J/\psi} > 8.5 \text{GeV}, y^{J/\psi} < 2.1$
ALICE (2023)	13 TeV	$J/\psi + J/\psi$	$p_T^{J/\psi} > 0 \text{GeV}, 2.5 < y^{J/\psi} < 4.0$

Rich observables

$$\bullet \ \sigma, \, \frac{d\sigma}{dp_T^{\psi}}, \, \frac{d\sigma}{dy^{\psi}}, \, \frac{d\sigma}{dp_T^{\psi\psi}}, \frac{d\sigma}{dy^{\psi\psi}}, \, \frac{d\sigma}{dm^{\psi\psi}}, \, \frac{d\sigma}{d|\Delta y^{\psi\psi}|}, \, \frac{d\sigma}{d|\Delta \phi^{\psi\psi}|} \, \, \frac{d\sigma}{d\omega_T^{\psi\psi}}.$$

Theoretical study of J/ψ pair hadroproduction

- The $2({}^3S_1^{[8]})$ channel. Barger, Fleming, and Phillips 1996
- The $2({}^{3}S_{1}^{[1]})$ channel. Qiao 2002
- Complete NRQCD calculation. He and Kniehl 2015
- Relativistic corrections to $2({}^3S_1^{[1]})$ and $2({}^3S_1^{[8]})$ channels. He, Jin, and Kniehl 2024; Li, Xu, Liu, and Zhang 2013
- Parton reggeization approach (PRA) with high-energy resummation. He, Kniehl, Nefedov, and Saleev 2019
- QCD corrections to $2(^3S_1^{[1]})$ channel. Sun, Han, and Chao 2016

Why are we interested in the NLO QCD corrections to $2({}^3S_1^{[1]})$ channel?

- Theoretically, the NLO QCD corrections become much more complicated when bound states are involved.
- In single J/ψ production, almost all channels were evaluated by more than one group.
- We presented an up-to-date comparison with the latest LHC measurements.

Techniques in NLO corrections I

- The Feynman diagrams are generated by QGRAPH. Nogueira 1993
- The Dirac algebra and color matrices are handled by Form. Vermaseren 2000
- The phase space integrals are calculated numerically by c++ code with the help of cuba package. $Hahn\ 2005,\ 2015$

Virtual corrections

- A self-written Mathematica code is developed to perform the partial fraction decomposition.
- The Reduce 2 and FIRE6 is used to perform the IBP reduction translating scalar integrals to master integrals. Manteuffel and Studerus 2012; Smirnov and Chuharev 2020
- In total, we have about 130 master integrals, which can all be found in the package package-X 2.0 and QCD-loops. *Ellis and Zanderighi 2008; Patel 2017*

Techniques in NLO corrections II

Real corrections

- The two cutoff phase space slicing method is used to isolate the infrared divergences. *Harris and Owens* 2002
- We found only when $\delta_s = 1 \times 10^{-3}$ and $\delta_c = \frac{\delta_s}{300}$, or they are even smaller, the results will be relative stable.
- Below is dependence of LHCb 13 TeV total cross section on the δ_s with fixed $\delta_c = \frac{\delta_s}{300}$

CS NLO(α_s) @ LHCb 7 TeV

Total cross section:

$$\begin{split} \sigma_{\rm LHCb}^{\rm Tot} &= (5.1 \pm 1.0 \pm 1.1) \; \rm nb, \\ \sigma_{\rm CS}^{\rm LO} &= 6.02^{+1.56}_{-1.59} \; \rm nb, \\ \sigma_{\rm CS}^{\rm NLO} &= 6.46^{+3.99}_{-2.01} \; \rm nb. \end{split}$$

- The K-factor of total cross section is about 1.07.
- The invariant mass spectrum of the J/ψ pair:

• The NLO QCD corrections near threshold region are positive, and become negative as $m^{\psi\psi}$ increases.

CS NLO(α_s) @ LHCb 13 TeV I

Total cross section:

$$\begin{split} &\sigma_{\rm LHCb}^{\rm Tot} = (16.36 \pm 0.28 \pm 0.88) \, {\rm nb}, \, \sigma_{\rm LHCb}^{\rm SPS} = (7.9 \pm 1.2 \pm 1.1) \, {\rm nb}, \\ &\sigma_{\rm CS}^{\rm LO} = 10.9^{+1.4}_{-2.5} \, {\rm nb}, \sigma_{\rm CS}^{\rm NLO} = 11.4^{+5.8}_{-3.2} \, {\rm nb}. \end{split}$$

- The K-factor of total cross section is only about 1.05.
- The invariant mass spectrum of the J/ψ pair:

• When $m^{\psi\psi} > 15 \text{GeV}$, the CS contribution tends to underestimate the LHCb measurements leaving room for CO contribution.

CS NLO(α_s) @ LHCb 13 TeV II

• The $|\Delta y^{\psi\psi}|$ distribution of the J/ψ pair:

- The NLO QCD corrections barely shift the LO predictions for $|\Delta y^{\psi\psi}| < 1$ region.
- When $|\Delta y^{\psi\psi}| > 1$, the NLO QCD corrections result in a reduction from 30% to 40%.
- Unlike the invariant mass spectrum, in the last bin there is no room for CO contribution.

CS NLO(α_s) @ LHCb 13 TeV III

• The rapidity distributions of single J/ψ (left) and J/ψ pair (right):

- The tiny effect of NLO QCD corrections are almost uniform in the whole region of $2.0 < y^{\psi}(y^{\psi\psi}) < 4.5$.
- In most bins, the central values of CS predictions lie slightly above the experimental data.
- CS predictions can reasonably well describe the data within errors.

CS NLO(α_s) @ LHCb 13 TeV IV

• The p_T distribution of single J/ψ :

- The LO prediction is about 3.7 times larger than LHCb measurements in the first bin, while falls off by more than 2 orders of magnitude in the last bin.
- The NLO QCD corrections bring about −51% decrease and 61 times increase in the first and last bins.
- The NLO QCD corrections greatly moderate the conflict!

CS NLO(α_s) @ LHCb 13 TeV V

• The p_T distribution of J/ψ pair:

- In collinear parton model (CPM), only the $2 \rightarrow 3$ real corrections contribute when $p_T^{\psi\psi} \neq 0$.
- In small $p_T^{\psi\psi}$ region, perturbation theory is spoiled due to soft, hard-collinear gluons, and quarks radiation.
- Yet, as the value of $p_T^{\psi\psi}$ becomes larger, the NLO prediction falls off faster than experimental data.

CS NLO(α_s) @ LHCb 13 TeV VI

• The $|\Delta\Phi^{\psi\psi}|$ (left) and $A_{p_T}^{\psi\psi}$ (right) distributions of J/ψ pair:

- At LO, $|\Delta \Phi^{\psi\psi}| = \pi$, $A_{p_T}^{\psi\psi} = 0$, so near these end point regions, perturbative results are not reliable too.
- The NLO predictions tends to agree with experimental data away from the end point regions.
- Small p_T resummation approach can improve the results obtained in fixed-order computation.

CS NLO(α_s) @ CMS 7 TeV I

Total cross section:

$$\begin{split} &\sigma_{\rm CMS} = (1.49 \pm 0.07 \pm 0.13) \text{ nb}, \\ &\sigma_{\rm CS}^{\rm LO} = 0.052^{+0.020}_{-0.016} \text{ nb}, \\ &\sigma_{\rm CS}^{\rm NLO} = 0.147^{+0.136}_{-0.061} \text{ nb}. \end{split}$$

- The CS predictions at QCD NLO are about 10 times smaller than CMS data, even though the K-factor is about 2.8.
- The p_T spectrum of the J/ψ pair:

• The CSM predictions lie below the CMS data in the whole $p_T^{\psi\psi}$ range.

CS NLO(α_s) @ CMS 7 TeV II

• The $m^{\psi\psi}$ (left) and $|\Delta y^{\psi\psi}|$ (right) distributions of J/ψ pair:

- The CS contribution at QCD NLO can describe none of the data in experimental bins too.
- The NLO QCD corrections improve theoretical predictions in $m^{\psi\psi}$ < 13 GeV and $|\Delta y^{\psi\psi}|$ < 1 regions.
- In the residual bins, NLO QCD corrections turn to be negative and lead to 50% and 90% reduction in the last bin, respectively.

CS NLO(α_s) @ ATLAS 8 TeV I

Total cross section:

$$\sigma(pp \to J/\psi J/\psi + X) = \left\{ \begin{array}{l} 82.2 \pm 8.3 \ ({\rm stat}) \pm 6.3 \ ({\rm syst}) \pm 0.9 \ ({\rm BF}) \pm 1.6 \ ({\rm lumi}) \ {\rm pb}, \ \ {\rm for} \ |y| < 1.05, \\ 78.3 \pm 9.2 \ ({\rm stat}) \pm 6.6 \ ({\rm syst}) \pm 0.9 \ ({\rm BF}) \pm 1.5 \ ({\rm lumi}) \ {\rm pb}, \ \ {\rm for} \ 1.05 \le |y| < 2.1. \end{array} \right.$$

$$\begin{split} \sigma_{\mathrm{CS}}^{\mathrm{LO}} &= \begin{cases} 2.97_{-0.96}^{+1.42} \, \mathrm{pb}, \ \ \mathrm{for} |y(J/\psi_2)| < 1.05 \\ 1.98_{-0.65}^{+0.97} \, \mathrm{pb}, \ \ \mathrm{for} 1.05 < |y(J/\psi_2)| < 2.1 \end{cases} \\ \sigma_{\mathrm{CS}}^{\mathrm{NLO}} &= \begin{cases} 8.61_{-3.56}^{+7.87} \, \mathrm{pb}, \ \ \mathrm{for} |y(J/\psi_2)| < 1.05 \\ 6.64_{-2.82}^{+6.36} \, \mathrm{pb}, \ \ \mathrm{for} 1.05 < |y(J/\psi_2)| < 2.1 \end{cases} \end{split}$$

- The K-factor are about 2.9 and 3.4 in central and non-central regions.
- However, the same as CMS case, CS contributions are still about 1 order of magnitude smaller than ATLAS measurements.

CS NLO(α_s) @ ATLAS 8 TeV II

• The p_T distribution of the soft J/ψ in central (left) and forward (right) y^{ψ_2} regions:

- The LO predictions systematically underestimate the ATLAS measurements by upto 2 orders of magnitude.
- The K-factors range from 2.5 and 2.9 in the first bins to 8.5 and 9.8 in the last bins.

CS NLO(α_s) @ ATLAS 8 TeV III

• The p_T distribution of J/ψ pair in central (left) and forward (right) y^{ψ_2} regions:

- The CS predictions at QCD NLO nicely reproduce the shapes of $p_T^{\psi\psi}$ distribution similar to CMS case.
- Incidentally, there is agreement within errors in the last two and third bins of the central and forward y^{ψ_2} regions, respectively.

CS NLO(α_s) @ ATLAS 8 TeV IV

• The J/ψ pair invariant mass distributions in central (left) and forward (right) y^{ψ_2} regions:

- The LO predictions show up from the third bin due to kinematics cut, and that is why the NLO results are negative in the third bin.
- From the fourth bins onward, the NLO QCD corrections are negative, ranging from -95%(-90%) in the fourth bin to -40%(-50%) in the last bins of central (forward) y^{ψ_2} region.

Conclusion and summary

- The NLO QCD corrections are important to understand the mechanism of J/ψ pair hadroproduction.
- In LHCb case, the CS contribution can account for most of the experimental measurements although some resummation techniques are needed to improve theoretical predictions.
- In CMS and ATLAS cases, the CS contribution are far below the experimental measurements, which indicates the CO contribution may play an important role to fill the large discrepancies.
- Much more theoretical effort are still needed to explain the experimental measurements.

Thank you!