

Research progress

Group meeting

Mohamed Reda Mekouar

April 16, 2025

Institute of High Energy Physics, Chinese Academy of Sciences

Background efficiency (by Wang Han)

Signal efficiency

==== Event Selection Summary =====
Total events processed: 8913
Inclusive 2 photons: 8825 (99.0127%)
E_y > 30 GeV: 7936 (89.9263%)
[cos(theta_y)| < 0.8: 5688 (71.6734%)
pT_y > 20 GeV: 5688 (100%)
M_missing > 60 GeV: 5443 (95.6927%)
110 GeV < m_yy < 140 GeV: 5346 (98.2179%)
120 GeV < E_yy < 150 GeV: 5318 (99.4762%)
Final selected events: 5318 (59.6657%)
Expected yield at 20ab^-1: 1253.91 events</pre>

${\bf 3} \quad e^+e^- \rightarrow \nu\bar\nu \ {\bf process} \ {\bf efficiency}$

Selections	Efficiency	Event Number
Generator	100%	82804236
Gen Filter $(M_{\gamma\gamma} \ge 90 GeV)$	1.80%	1491000
Delphes fast sim $(M_{\gamma\gamma} \ge 90 GeV)$	3.36271%	50138
$E_{\gamma} > 30 GeV$	83.6292%	41930
$ \cos \theta_{\gamma} < 0.8$	7.42666%	3114
$pT_{\gamma} > 20 GeV$	99.5183%	3099
$M_{missing} > 60 GeV$	99.5805%	3086
$m_{\gamma\gamma} \in [110, 140] GeV$	48.7686%	1505
$E_{\gamma\gamma} \in [120, 150] GeV$	99.6013%	1499
Total eff	0.00181%	1499

Yield at 20 ab^{-1} : 19655 events

CDR results

Table 4. Selection criteria and corresponding efficiencies in the $v\bar{\nu}\gamma\gamma$ channel. $M_{missing}$ is the missing mass calculated from the total visible objects.

Selections	Higgs signal	vyyy background
Inclusive 2 photons	85.51%	0.34%
$E_{\gamma\gamma} > 30 \text{ GeV}$	99.81%	20.13%
$ \cos \theta_{\gamma} < 0.8$	70.48%	11.56%
$pT_{\gamma} > \text{GeV}$	99.97%	99.26%
$M_{\rm missing} > 60 { m ~GeV}$	98.17%	99.71%
$m_{\gamma\gamma} \in [110, 140] \text{ GeV}$	97.51%	22.86%
$E_{\gamma\gamma} \in [120, 150] \text{ GeV}$	99.16%	99.58%
Total eff	57.08%	0.002%
Yields in 5.6 ab ⁻¹	335.89	3640.20

Diphoton $\nu \bar{\nu}$ sub-channel: $m_{\gamma \gamma}$ signal distribution

Diphoton $\nu\bar{\nu}$ sub-channel: $m_{\gamma\gamma}$ background distribution

Diphoton $\nu \bar{\nu}$ sub-channel: Signal over background plot

Signal efficiency

===== Event Selection Summary ===== Total events processed: 99800 Exclusive 2 jets and 2 photons: 90823 (91.005%) E_y1 > 20 GeV: 82841 (91.2115%) 30 GeV < E_y2 < 100 GeV: 81358 (98.2098%) cos(theta_yy) > -0.95: 79662 (97.9154%) cos(theta_ji) > -0.95: 77967 (97.8723%) pT_y1 > 20 GeV: 71433 (91.6195%) pT_y2 > 30 GeV: 67262 (94.6705%) 110 GeV <m_yy < 140 GeV: 64266 (95.0315%) E_yy > 110 GeV: 64266 (100%) Final selected events: 64266 (64.3948%) Expected yield at 2036-1: 3399.67 events

Background efficiency (by Wang Han)

1 $e^+e^- \rightarrow q\bar{q}$ process efficiency

Selections	Efficiency	Event Number
Generator	100%	24739403
Gen Filter $(M_{\gamma\gamma} \ge 90 GeV)$	13.64%	3375000
Delphes fast sim $(M_{\gamma\gamma} >= 90 GeV)$	13.04%	440203
$E_{\gamma 1} > 20 GeV$	98.4409%	433340
$E_{\gamma 2} \in [30, 100] GeV$	25.2707%	109508
$\cos \theta_{\gamma\gamma} > -0.95$	89.5798%	98097
$\cos \theta_{ii} > -0.95$	89.6847%	87978
$pT_{\gamma 1} > 20 GeV$	52.1301%	45863
$pT_{\gamma 2} > 30 GeV$	74.293%	34073
$m_{\gamma\gamma} \in [110, 140] GeV$	44.2256%	15069
$E_{\gamma\gamma} > 110 GeV$	100%	15069
$min \cos \theta_{\gamma i}$	99.7677%	15034
Total eff	0.0607%	15034

Yield at 20 ab^{-1} 657525

events

CDR results

Table 2. Selection criteria and corresponding efficiencies in the $q\bar{q}\gamma\gamma$ channel. $\gamma(tq2)$ is defined as the photon with lower (higher) energy, $\cos\theta_{i\gamma}(\cos\theta_{ij})$ is the polar angle of the diphoton (di-jet) system, and min $|\cos\theta_{ij}|$ is the minimum $\cos\theta$ of the photon-jet pairs.

Selections	Higgs signal	$q\bar{q}\gamma\gamma$ background
Exclusive 2 jets and 2 photons	85.56%	69.57%
$E_{\gamma 1} > 25 \text{ GeV}$	100.00%	2.35 %
$E_{\gamma 2} \in [35, 95] \text{ GeV}$	98.37%	35.33%
$\cos \theta_{\gamma\gamma} > -0.95$	95.20%	68.01%
$\cos \theta_{jj} > -0.95$	90.86%	85.54%
$pT_{\gamma 1} > 20 \text{ GeV}$	93.42%	56.94%
$pT_{\gamma 2} > 30 \text{ GeV}$	93.25%	54.54%
$m_{\gamma\gamma} \in [110, 140] \text{ GeV}$	97.50%	21.14%
$E_{\gamma\gamma} > 120 \text{ GeV}$	99.47%	98.41%
$\min \cos \theta_{\gamma j} < 0.9$	71.67%	48.05%
Total eff	44.08%	0.01%
Yields in 5.6 ab ⁻¹	766.64	26849.38

Diphoton $q\bar{q}$ sub-channel: $m_{\gamma\gamma}$ signal distribution

Diphoton $q\bar{q}$ sub-channel: $m_{\gamma\gamma}$ background distribution

Signal efficiency

===== Event Selection Summary ==== $^{-1}$ Total events processed: 10000 Exclusive 2 muons and 2 photons: 7227 (72.27%) Ey > 35 GeV: 6778 (93.7872%) [cos(thetayy]| < 0.9: 5772 (85.1579%) 10 GeV < pT_y1 < 70 GeV: 5775 (99.8094%) 10 GeV < m_yy < 140 GeV: 5753 (98.5067%) 85 GeV < m^recoil_yy < 105 GeV: 5045 (88.93%) 125 GeV < Eyy < 145 GeV: 5037 (99.8414%) Final selected events: 5037 (50.37%)

Background efficiency (by Wang Han) 2 $e^{+e^{-}} \rightarrow \mu^{+}\mu^{-}$ process efficiency

Selections	Efficiency	Event Number
Generator	100%	10778370
Gen Filter $(M_{\gamma\gamma} \ge 90 \text{GeV})$	8.19%	882451
Delphes fast sim $(M_{\gamma\gamma} >= 90 GeV)$	7.25581%	64029
$E_{\gamma} > 35 GeV$	61.861%	39609
$ \cos \theta_{\gamma} < 0.9$	35.8706%	14208
$pT_{\gamma 1} \in [10, 70]GeV$	92.8491%	13192
$pT_{\gamma 2} \in [30, 100]GeV$	87.1892%	11502
$m_{\gamma\gamma} \in [110, 140] GeV$	48.4611%	5574
$M_{\gamma\gamma}^{recoil} \in [85, 105] GeV$	21.4926%	1198
$E_{\gamma\gamma} \in [125, 145]GeV$	98.1636%	1176
Total eff	0.01%	1176

Yield at 20 ab^{-1} : 12050 events

CDR results

Table 3. Selection criteria and corresponding efficiencies in the $\mu'r_{\gamma'}\gamma$ channel. $\gamma(1\gamma_2)$ is defined as the photon with lower (higher) energy; $\mathcal{M}_{\gamma\gamma}^{recoil}$ is the recoil mass of the di-photon system in CEPC $\sqrt{s} = 240$ GeV : $\left(\mathcal{M}_{\gamma\gamma}^{recoil}\right)^2 = \left(\sqrt{s} - E_{\gamma\gamma}\right)^2 - p_{\gamma\gamma}^2 = s - 2E_{\gamma\gamma}\sqrt{s} + m_{\gamma\gamma}^2$.

Selections	Higgs signal	$\mu^+\mu^-\gamma\gamma$ background
Exclusive 2 muons and 2 photons	70.18%	5.18%
$E_{\gamma} > 35 \text{ GeV}$	99.21%	8.39%
$ \cos \theta_{\gamma} < 0.9$	83.79%	38.14%
$pT_{\gamma 1} \in [10, 70] \text{ GeV}$	99.84%	86.30%
$pT_{\gamma 2} \in [30, 100] \text{ GeV}$	99.96%	95.59%
$m_{\gamma\gamma} \in [110, 140] \text{ GeV}$	98.08%	37.62%
$M_{\gamma\gamma}^{\text{recoil}} \in [85, 105] \text{ GeV}$	80.12%	21.29%
$E_{\gamma\gamma} \in [125, 145] \text{ GeV}$	99.88%	95.86%
Total eff	45.69%	0.01%
Yields in 5.6 ab ⁻¹	39.32	2662.77

Diphoton $\mu^+\mu^-$ sub-channel: $m_{\gamma\gamma}$ signal distribution

Diphoton $\mu^+\mu^-$ sub-channel: $m_{\gamma\gamma}$ background distribution

Perspectives

For single photon study:

*Figuring out the discrepancies in the energy resolution evolution according to truth energy (gap impact)

*Studying the gap impact (module boundaries) to to correct energy peak of PFO to truth for different energy and angle

 $cos(\theta)$ scan with more precision (smaller binning to get a better idea of the ECAL structure)

*θ angular resolution suffers from bias in energy scale (positive cos v. negative cos): we have 2 peaks thence the weird shape, will analyze again after fix from reconstruction team *Check photon convertion rate in the crack region

For diphoton study:

*Studying systematic uncertainties

*Final results with maximum likelihood applied to get an idea on signal strength and get results for $\sigma \times BR$

Thank you!

Back-up

Back-up

14

Back-up

Discrepancies in energy resolution: due to gaps alongside heta and Φ

