ee->mumu forward-backward asymmetry at CEPC

Jiawei wan , Shuo Han

PFO CUTFLOW

- Reco-level selection for a pair of opposite charge muon from Z with muon ID
- Selection in a ± 10 GeV Z mass window
- Count for muon- costheta > 0 or < 0
- WP:98%

CEPCSW 25.3.6	Z ->mumu	Z->tautau	Z->bb	Z->ee
Total	984396	187855	88200	32397
PID selection	907804	6691	9715	3
Z mass window	854634	7	0	0
costheta >0.05	827597	7	0	0
Wrong selection	2			
costheta > 0	421049	1	0	0
costheta < 0	406548	6	0	0
AFB	0.0175218			

The interference between Z/y*

- $Z \rightarrow \mu + \mu -$ process is modeled by a double-sided crystal ball (DSCB) function
- $\gamma * \rightarrow \mu + \mu \text{process}$ is modeled by a uniform function
- Count: 421049(forward) 406548(backward)
- Fit:420984(forward) 406494(backward)

PFO selections vs MCP selections

- Apply $|\cos(\theta)|$ and pT selections on the MC particles instead of PFO
- Compare the result based on MC particles with the nominal resultbased on PFO
- PFO Level:

Forward/Backward: 419403 / 404951

Asymmetry: 0.0175313

• MCP Level:

Forward/Backward: 419693 / 405237

Asymmetry: 0.0175239

- The uncertainty is estimated to be 7×10^{-6}

Summary

- We investigated the Z \rightarrow ee channel and found it can be ignored(< 1×10^{-5})
- We calculated five types of uncertainties:
 - Energy spread: result assuming gaussian distribution of Ecm with a 0.13% energy spread, compared with no energy spread, this uncertainty is 2 ×10-5
 - The impact of $\gamma^* \rightarrow \mu\mu$: result from counting forward/backward events, compared with fitting m($\mu\mu$), this uncertainty is 1 ×10-5
 - The acceptance of $|\cos(\theta)| > 0.05$ and other kinematic cuts: result by cutting on MC particles, compared with nominal result, this uncertainty is 7 ×10–6
 - The θ CM resolution: result by using PFO, compared with the result using their Δ R<0.05 matched MC particles, this uncertainty is 5 ×10–6
 - The uncertainty from mis-identification and backgrounds are smaller than $1 \times 10-6$

How to include energy spread and its uncertainty

- Energy spread has 2 impacts: cross-section of forward/backward events, and the energy resolution of PFO
 - The AFB vs Ecm function only estimates the impact on cross-section * ••
 - Recomputing PFO p4 only estimates the impact on energy resolution
 - Whizard 1.95 doesn't support energy spread
- Proposal: generate 5 samples with same stats. @
 - Z mass, Z mass ± 0.53 sigma, Z mass ± 1.4 sigma
 - \circ sigma = 0.13%, with 0.26% or 0.065% as systematic variations

