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A Brief Retrospective on NNQFT:

Basic conception

The output of the NN for a-th sampling

H
fa(®) =" o(@W ) + bl )W)

in,h h,out?
h=1

with the parameters sampling from the Gaussian distribution (uw =, =0)

Wi:j])j ~ N(vaaw/\/ﬁ)v W(a) ~ N(vaa'w/\/ﬁ), béa) ~ N(ub,ab),

h,out

the correlators

1 Mnets

> fal@r)fol@s) - folmn).

a=1

(n) —
Gyn(z1, @2, .., ) =
Mnets
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Generating functional understanding

Generating functional (denote Q, = (Wi n, Wa, i, ., Wp.1), Vi = biy dous = 1 and ¢y, = H * Wiy out=1)-

H
zul =] [/ththd% P(Q;L)P(Vh)Pm)} o [aPeI@1@VIe),
h=1

2 1 H
- [1 - % /dDmdDyJ(m)wQ VIML(Q, Vm, )] (y) + o<ﬁ>} ,
with M, (Q, Ve, y) = o(z- Qn + Vi)o(y - Qn + Vi).

62
lim Zx[J] = o JaPzaPyr(e)ig o [M1(Q,V]ey)]J(y)
H— o0 ’

the correlators can be calculated via the free bosonic QFT Feynman diagrams,

(@1, @2, ..., ) = N-points Feynman diagrams.

(4)
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Complex-valued NN and Corresponding Bosonic Complex Scalar Field

Both the real and imaginary parts of the complex-valued parameters in NN satisfy the same
Gaussian distribution

Re(W,(™)), Im(W{T) ~ N (pw, o/ VD), (7)
Re(W\% ), Im(W{%),) ~ N (i, 0 /VH), (8)
Re(b{™), Im(b{™) ~ N (s, ov)- (9)

The output funciton of the NN is

H

F@QVIe) = 2 > (@ Vie)en, (10)
h=1

(@ Viw) = SR @ Qnt Vi) (11)

exp (012) + o’fvmz/D) !

The corresponding field theory is free Bosonic Complex Scalar Field

Jim Zp[7] = exp{ - 2ai/dDmdDyJ(z)EQ,\~[,\m (Q, Ve, y)]J*(y)}, (12)

with M, (Q, V]z,y) = X\ (Q, V]z)\n(Q, V]y).
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Renormalization and divergence of finite width hidden layer CVNN
The generating functional for finite width hidden layer CVNN is

oo m (20_2 )rn. m

20,91 = {1+ Z )" (Bow) /H[d 2Py, [HJ@J)]EQV[HMl(Q vm,ym][HJ yl>]} . (13)

m=

To analyse ultraviolet (UV) effects we switch to momentum space and impose a hard cutoff,

de

f<(Q7V\93)E/Weiim'pf<(Q7V|P)7 (14)
,Vip), v,
s others,

where V is the area of D-dimensional cube of side length pr (thus p; € [-pr/2,pr/2], (i =1,2,..., D))
and f(Q,V|p) is the momentum representation of f(Q, V|z),

Q. Vip) = Z An(Q, VID)en, (16)
h,
D D/2 _ (P*;Qh)2 7012
)\h(Q,V‘p) = (202 ) e 402 /D +Vh > (17)

It can be noticed that the UV divergence arises when we calculate the Feynman diagrams in
momentum representation. This divergence is caused by exchanging the integral order of @
(especially the real part of Q) and p, mathematically.
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A single Wilsonian RG step enlarges the cutoff, pr — spr with s > 1. Under this rescaling the
connected m-point coefficients transform as

Eq.v [ I M5 @, V|wk,yk)] = E.quv [ I M5 (@, Visa, sym], (18)
k=1 k=1
where the notation E;q v means that the variance of each real component of Q,, is rescaled,
02 /D s 02 /(s*D). Taking s — oo restores the original uncut theory:

[T (@ Vieww)] (19)

m
lim E, MI(Q,V , =E
Jdim .Q,v[kljl (@, Vl]szy Syk)] Q,V[k:1

hence the coefficients of the full CVNN-QFT are invariant under the scaling @ — sz once the
cutoff has been removed, confirming that they define a fixed-point theory, which is more
important for Deep Neural Networks.
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Quantum State in the co-Width Limit:
Degeneracy of Interaction Terms Arising from Measure Zero
Denote Wiy n, bn and Wi, oue With Qn, Vi and ¢y, as
Qn = Winn, Vi = by, ¢¥n = VH * Wi ous, (20)
then
Wlsoc;)ut ~ N(Nw7 UW/\/E) = Yp ~ N(HW7 UW) (21)

the vertexes higher than 4-points (1ncluding) vanish for measuring zero,

exp (- Qn + Vi)
QI = S 2

the vertex terms higher than 4-points will reduce the number of r-summation

(Fo(@, V@) - f2(Q, V]en) foo (Q, VL) - foo (@, VIyn)), (23)

only the all free progator connection will survive (H”, for sum of N) in the H — oo condition for
measuring zero (1/H").

Quantum fluctuation

Denote Oy (x) = [An(Q. V]z)[* = AL (Q, VI2)An(Q, Vx), then

4
(7@ Via)*) = 804 {Baq.v [01@)]} + T Bq v [(40: ()], (24)

the quantum fluctuation term is depressed for infinite H, H — oo. 1o/ 21



Quantum State in the co-Width Limit: Equivalent representation

Denote Wi, 1, by and Wy, ou With Qn, Vi, and ¢, as

Qr = Winn, Vi =bn, on = H * Wi out, (25)

infinite-width last hidden layer condition: h-summation— integration

exp (- Q) + V(§))

H
Qh +‘/h,) _ .
e on = (@ VIe) = [ oo 1 ozat D) P& (26)

Q. Vie) = Z (o2 + oZa? /D)

since the higher order correlation functions vanish in the H — o limit, we can absorb the
arithmetic square root of Q(¢) and v (¢)’s distributions into the definition of the field to reproduce
the 2-pt correlation function of f equivalently reproduces the expectation of {(f*(Q,V|z)f(Q,V|y)),

fur(@ Vi) = [ aey/PV(©)P@E) ZEE AL oe) (27)

with (" (€)e(&))) = 2025(¢ — €').
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Quantum State in the co-Width Limit: Simplification

It can be noticed that v (¢) does not connect to the position =, and f.¢(Q, V|x) can be divided into
two parts

far(@VIz) = [ " e 91(QUE)2)95 (V(©)9(E), (28)

g2(V(¢)) will not influence (f*(Q, V|z)f(Q,Vl]y)) for given = and y,

1 o IV =208/ (40D) = 3 [V () =V (6)]
L (@ V) = [ e (29)
0 2770]2)
o~ 1Q©) —205®/DI|?/(403, /D)~ {2 [Q* (£) - Q(8&)]
x T D73 © (&)
(2702 /D)P/
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Quantum State in the co-Width Limit: Simplification

Then the quantum state can effectively be

Qr(§)—202a/D1*+Q1(£)* | .
- - +ixz-Qr(§)
1o /P @(8). (30)

1 1
fert (Qlz) = W/[; dée

The Wick contraction of ¢(¢) actually controls the equivalence of Q(¢),
(e @eEN =20306-¢) = £=¢ = QO =QE) 31)

and one can transform ¢ to the function of Q with its 2-pt correlation function gives the Dirac
delta function of @, namely,
#(§) = 2(Q), (32)
(#"(@#(@)) = 20067 (Q - Q). (33)
the corresponding ¢ integral becomes Q integral,
_ (Qr—2022/D)* Q

d”Qrd” Qi =TD
(2m02,/D)P/2

Fote() = ST Q). (34)

e
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Quantum State in the co-Width Limit:
Tensor-Product State of Dual Gaussian Wave Packets

D D (Qr—202x/D)? Q}
¥ (:13) _ d”Qrd” Q1 e* = 102 /D
(@ro2 /D)P/2

+ize-Qr _
o /P #(Q).

Considering the variables’ transformations _ and -, the quantum field f.¢ can
be written as the direct product of the two Gaussian wave packets as

Fort (@) = V20, / 4Py Ypeo(2 VD ow, z, ¥)i(y) ® / 4P q a(ow/VD, a,0)7(a), (35)

with and the wave function of a Gaussian wave packet being

(q a0)?

Va(0,q,q0) = (2m0%) " P/te Tagt e laTa), (36)
(7(p)'7(a)) = 5 (p— a), (37)
and the Fourier transformation relation that
d” Ciy-qa
R(y) = (2@—;’/29/ Y %i(q), (38)
aP ;
Upmo(20) ™ my) = [ e N (0,a,0), (39)
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Quantum State in the co-Width Limit:

Key understanding of the quantum state

The replacement that Qr — 202y/D, Qi — g and the neglect of v
(Qn = Winn, Vi =bu, on = H* Wy out) tell that

Qn, Vi = cigenvalues, (40)
o1, = bosonic field. (41)

» For NN with multi-hidden layers, only the weights between the last hidden layer and the
output layer connect to the quantum fields, the parameters between the input layer and the
last hidden layer should be the eigenvalues.

Here we tackle the complementary questions posed by NN-QFT: what neural architecture
gives rise intrinsically to a fermionic quantum field theory?

on — fermionic quantum field? (42)
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Fermion Field Representation via Tensors Weights

@n — Clifford algebra

Construct the anticommute matrices v, via Pauli matrices. For H = 3, set 7(‘” =0y, (h=1,2,3). For

H being odd numbers and H > 5, one can construct the gamma matrices by recursive definition as

YWD = —oa@4 "7, h=1,2,..,H -2, (43)
7;1)170'1@91%)(%, (44)
W;_IH)203®I%X%, (45)

with the matrices v\ meet the Clifford algebra {~\"),~\/"} = 26,/ Iaxa and (")t =4, the
dimensions of v should be d = 2(7-1/2,

Transform the weighting parameters between last hidden layer and the output layer to the
tensor-formatted coefficients by multiplying the gamma matrices as

©h = OnYh, O = enn, h=1,2,.., H, (46)

redefine the correlator

Tnets

> fal@n) falwn) fa ) fw) ). (47)

a=1

1
G?]nl\g(wlwu)mnvylf"' yYnt) = P (

Mnets
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CVNN-fermionic QFT: Feynman Rules for co-Width NN

In the infinite width hidden layer condition, H — oo, the vertexes higher than 4-point vertex
(including) vanish, and the Clifford algebra of {*’ transforms to the Grassman algebra, the first
term in Eq. (48) being depressed, for example.

Take the 4-pt correlation function as a example, there exist the measure zero that

1, . . 404
E<‘/’h1 Phy Pl Pry ['thl’th'z’Yh;'th] = H;V (25hv1h2 SniniOnyny = OnintOnyny + O ny 5@}4)7

with the last two terms inside the bracket give the anticommute characters of ¢y,.

Jim (7 Ge) £ (x2) f(x3) f(xa)) = GRR (e1, xa)GR% (x2, x3) — GRR (1, x3) G (x2, %4), (48)

the fermionic Feynman rules holds for arbitrary n-points correlators,

H11_r)n (F*x1) - £ xn) fy1) - F(y1)) = 6,,,,s X (free fermion Feynman diagrams). (49)
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Necessity of Grassmann Algebra in Generating Functionals

The generating functional can not be transformed to the fermionic condition using the traditional
auxiliary field method, for the derivatives of the auxiliary field will not give the extra
tensor-formatted field f(Q, V|z), considering the inequation that

5 D
[ APz I () f~(Q,V|x) V). 50
77" L AHQVI) (50)

The Grassmann algebra is necessary to introduce the generating functional.
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Outlook

v

Finite width hidden layer condition (fermi ¢*?)

v

What the tensor-weights NN can do in daily life? image identification? ......

» How to use the tensor-weights NN in data simulation?

v

Is it possible for tensor-weights NN to solve the sign problem?
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Tensor weights 4-point correlation function
The 4-points correlation function of tensor weights last hidden layer condition is

ox - s Nz 1 e . .
(7o) 7 (x2) f(xa) f(xa) ) = tr(ﬁ > fa<x1)fa(x2>fa(xS)fa(x4)>, (51)
nets
which can be expended as
(F7 ) 7 (x2) f(x3) f(xa) ) (52)
= (0 (x1Winn +bn)" Wy 10 (x2Winn + bu)” Wy 0100 (x3Win w4 bn) Wi outo (xaWinn + bu) Whout),
considering that the dimension of the output function f is dou: = 1 and the relation that
1 . 40l
= <WL W Wle> tr[yvivivev] = ;2 ij0ik0i — 0indj1 + didjn), (53)
the 4-points correlation function can be calculated as
< f*(xl)f(X2)f* (x3)f(x4) )
= <<7 (xaWin,n +bn)o ( in, WXl + bh> (x3Win,n + bn) o ( inh x5 +b )>
4, 4
- ;‘2" <U (x3Win,n +bn) o ( hx1 + bT) 0 (x4Winn +bn) o ( in 1,X2 + bT)>
d;
8 in
Jr% 1<exp{Z[z§l)*w +z(1)*w +z(1)w +a:(l>w.;j]+2bj+2b;}>. (54)
Jj=
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According to the matrix multiplication relation that

exp(x4Win,h + bn) exp(WitthI + bl h) exp(x3Win 1w + by) exp(Wm hx2 b:})
H

H din in
:Zexp{Z[w( Jwiy + (P ,fj]+bj+b;}2exp{2[x3 w//+x( D wir ]+ by +b;/} (55)
j=1 i=1

i'=1
the mathematical expectation of the above equation gives

(exp(x4Win 1 + bn) exp(W;l

Faxd 4 b)) exp(xs Win n + bn) exp(W;, | x) + b))
2 2

20 2 20
= H(H — 1)exp dw(xl-X4+xz-X3)+4ab + H X exp dw

in in

(X1+XZ)'(XS+X4)+80’§}’ (56)

considering x; (i = 1,2,3,4) being real valued vectors, with the first term comes from the j # j’
case, and the second term comes from the j = j’ case.

As for the third term in equation (54), the mathematical expectation gives the value of the second
term in equation (56), thus, in the large H limit, this term vanishes, and the 4-points correlation
function gives

I}i_f)noo(f*(xl)f*(x2)f(x3)f(X4)>— Gl (x1, %) GG (32, %3) — GJR (x1,%3) G R (%2, X4). (57)
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Thank you!
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